
Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 1 of 21 

 

ASH WARE Inc., 

I2C eTPU DRIVER 

USER MANUAL 

 

 

 
 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 2 of 21 

 

1. Overview..................................................................................................................... 4 

1.1. Revision History ................................................................................................. 4 

1.1.1. Tools Used .................................................................................................. 4 

1.2. References........................................................................................................... 4 

1.3. Definitions........................................................................................................... 4 

2. I2C Master .................................................................................................................. 5 

2.1. Hardware Interface and Configuration ............................................................... 5 

2.1.1. Pin Configuration........................................................................................ 6 

2.2. Host Interface...................................................................................................... 6 

2.2.1. Initialization ................................................................................................ 7 

2.2.2. Data Management ....................................................................................... 8 

2.2.2.1. Transfer Request ..................................................................................... 8 

2.2.3. Interrupts ..................................................................................................... 9 

2.2.4. Fault Detection............................................................................................ 9 

2.3. Worst Case Thread Length (WCTL) .................................................................. 9 

2.3.1. Latency Requirements .............................................................................. 10 

2.4. Host Code API Overview ................................................................................. 11 

3. I2C Slave................................................................................................................... 12 

3.1. Hardware Interface and Configuration ............................................................. 12 

3.2. Host Interface.................................................................................................... 13 

3.2.1. Initialization .............................................................................................. 14 

3.2.2. Data Management ..................................................................................... 15 

3.2.3. Idle ............................................................................................................ 15 

3.2.4. Interrupts ................................................................................................... 15 

3.2.5. Wait for Data vs. Data Ready Mode......................................................... 15 

3.2.6. Fault Detection.......................................................................................... 16 

3.3. Worst Case Thread Length (WCTL) ................................................................ 16 

3.3.1. Latency Requirements .............................................................................. 17 

3.4. Host API Overview........................................................................................... 18 

4. I2C Common Build Set............................................................................................. 19 

4.1. Host-side Utility Software ................................................................................ 19 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 3 of 21 

4.2. Build Configuration .......................................................................................... 19 

4.3. Executable Image.............................................................................................. 19 

4.4. Initialized Global Variables .............................................................................. 20 

4.5. Entry Table Base............................................................................................... 20 

4.6. MISC Compare Register................................................................................... 20 

4.7. Resource Usage................................................................................................. 20 

4.7.1. Code Memory ........................................................................................... 20 

4.7.2. Data Memory ............................................................................................ 21 

 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 4 of 21 

1. Overview 

This is the user manual for the Ashware I2C eTPU driver software.  This driver provides 

I2C master and/or slave capability for any Freescale or STMicro MCU with an eTPU or 

eTPU2 peripheral on-board, with no external hardware required to link into an I2C bus.  

This manual provides the information necessary to perform system design and software 

integration with the driver software package.  The reader is expected to be familiar with 

the I2C Bus specification. 

1.1. Revision History 

Version 1.10 1/6/2016 - update to also support DevTool 

Version 1.00 12/1/2011 - initial document 

1.1.1. Tools Used 

eTPU2+ Development Tool, V2.20A 

System Development Tool, V2.20A 

ETEC (compiler toolset), V2.42A 

eTPU2 Simulator, V4.88A 

eTPU2 System Simulator, V4.88A 

1.2. References 

AMT Publishing: eTPU Programming Made Easy, Munir Bannoura & Margaret Frances  

Freescale : ETPURM/D Rev. 1, Enhanced Time Processing Unit (eTPU) Preliminary 

Reference Manual 

The appropriate MCU reference manual, such as Freescale : MPC5674FRM Rev. 4, 

MPC5674F Microcontroller Reference Manual 

Phillips Semiconductors: The I2C-Bus Specification, Version 2.1, January 2000 

1.3. Definitions 

Host Code.  The host code is the code that resides on the host CPU and interfaces with 

the eTPU. 

eTPU Code. This is the code that runs in the eTPU. 

eTPU Channel.  Piece of eTPU hardware, and associated software, that controls one I/O 

pin. 

HSR. Host Service Request – triggers an eTPU processing thread. 

SCM.  Shared Code Memory.  The memory that is initialized at startup with the eTPU 

executable image. 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 5 of 21 

SDM.  Shared Data Memory.  The eTPU data memory that can be seen by both the host 

CPU and the eTPU.  Receive channel parameters, data buffers and filter tables are stored 

in this. 

2. I2C Master 

The eTPU I2C master driver provides the following set of features: 

• up to 400 KHz operation, or better.  The actual limit depends upon the eTPU 

clock rate and other functions/loading of the eTPU. 

• read, write and combined format transfers 

• 7-bit addressing 

• START byte via combined format 

• unexpected NACKs reported 

• clock stretching (synchronization) by slave devices 

• interrupt on transfer completion 

Arbitration (multi-master), high-speed mode, CBUS and 10-bit addressing are not 

currently supported.  The I2C master solution uses 4 consecutive eTPU channels and 

their associated pins.  The first two must be connected to the SCL wire, the second two to 

the SDA wire. 

Note that multiple instances of I2C master and slave drivers can be supported 

simultaneously, but the bit rate may have to be lowered. 

2.1. Hardware Interface and Configuration 

The four eTPU channels have the following functions assigned to them, given the base 

channel number is ‘N’: 

• N + 0 : SCL_out (drives the clock line) 

• N + 1 : SCL_in (reads the clock line state for clock stretching / synchronization 

support) 

• N + 2 : SDA_out (drives the data line for write transfers and read 

acknowledgements) 

• N + 3 : SDA_in (reads the data line for read transfers and write 

acknowledgements) 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 6 of 21 

eTPU/
eTPU2

MPC55xx/MPC56xx/ST/MCF

N

N+1

N+2

N+3

SCL

SDASDA_in

SDA_out

SCL_in

SCL_out

 

NOTE: Depending upon how the eTPU module is integrated with a particular MCU, the 

I2C Master driver may not be able to be mapped to any set of 4 consecutive channels.  

For example, in some cases a particular eTPU channel is only tied to a pin via its output 

line, and thus cannot function as an input.  Use the appropriate MCU reference when 

deciding on a system configuration. 

2.1.1. Pin Configuration 

Pin configuration is accomplished through the System Integration Unit (SIU) Pad 

Configuration Registers (SIU_PCR).  In all cases the PA field must be set appropriately 

to connect the pin to the eTPU.  Input pins for the I2C driver need to the IBE (input 

buffer enable) field set to 1.  Output pins need both the OBE (output buffer enable) field 

and the ODE (open drain output enable) field set to 1.  

2.2. Host Interface 

At startup the host must initialize the eTPU module before initializing any I2C drivers.  

This initialization includes things like loading the eTPU code memory and initialized data 

memory, and configuring eTPU module registers.  It also includes configuration of the 

two timers in the eTPU, TCR1 and TCR2.  The I2C functions base their timing off of the 

TCR1 counter.  Ideally it runs at a frequency at least 100 times higher than the I2C bit 

rate in order to provide good signal resolution.  This code distribution includes eTPU 

initialization code that can be used as-is or can provide a template.  In any case, several 

outputs of the eTPU software build process are used in the host build and interface: 

• etpu_set_scm.h // eTPU code image 

• etpu_set_idata.h // eTPU initialized data image 

• etpu_set_defines.h // data and function definitions for interfacing to the eTPU 

As well as a common eTPU/CPU interface file: 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 7 of 21 

• etpu_i2c_common.h // HSR definitions, error flags, other useful macros 

This general initialization is discussed in more detail in section 4.  Although initialization 

is described below, this code package includes host code that handles all the discussed 

initialization. 

2.2.1. Initialization 

Initialization of an instance of the I2C master driver is similar to initialization of most 

other eTPU functions, other than 4 channels are involved.  All 4 channels share the same 

data context, or “channel frame”, as it is known.  However, each is assigned its own 

function number.  A channel frame should be allocated from eTPU memory and 

initialized appropriately – the bit timing and setup/hold times, etc.  Note that timing 

configuration is all in terms of TCR1 counts.  Data and command buffers should also be 

allocated at this time; more on that in the next section.  The channels are configured with 

the channel configuration registers (CR) and status control registers (SCR).  Before 

enabling the channels by setting their priority values to a non-zero value the initialization 

host service requests should be made.  Detailed list of channel configuration that must be 

done for each of the 4 channels that make up the I2C master driver: 

• Channel parameter base address (common to all 4 channels).  Use the eTPU 

utility memory allocation routine or other methods to allot a memory chunk from 

SDM.  The size of memory needed is the value of macro 

_FRAME_SIZE_I2C_master_ in etpu_set_defines.h 

• Function mode.  Should be set to 0 on all channels.  These are not used by the I2C 

master. 

• Function number.  Each eTPU function (entry table entry) has a unique number 0 

to 31.  Each channel of the I2C driver is associated with a unique entry table.  

These can be found values can be found in etpu_set_defines.h with the macros 
_FUNCTION_NUM_I2C_master_I2C_SCL_out_, 

_FUNCTION_NUM_I2C_master_I2C_SCL_in_, 

_FUNCTION_NUM_I2C_master_I2C_SDA_out_, and 

_FUNCTION_NUM_I2C_master_I2C_SDA_in_. 

• Entry table type.  Two types supported, standard or alternate.  The setting for each 

channel (function) can be found in etpu_set_defines.h in the macros 
_ENTRY_TABLE_TYPE_I2C_master_I2C_SCL_out_, 

_ENTRY_TABLE_TYPE_I2C_master_I2C_SCL_in_, 

_ENTRY_TABLE_TYPE_I2C_master_I2C_SDA_out_, and  

_ENTRY_TABLE_TYPE_I2C_master_I2C_SDA_in_. 

• Entry table pin direction.  Controls which pin helps select the entry vector for 

servicing an event.  The setting for each channel (function) can be found in 

etpu_set_defines.h in the macros 
_ENTRY_TABLE_PIN_DIR_I2C_master_I2C_SCL_out_, 
_ENTRY_TABLE_PIN_DIR_I2C_master_I2C_SCL_in_, 

_ENTRY_TABLE_PIN_DIR_I2C_master_I2C_SDA_out_, and  

_ENTRY_TABLE_PIN_DIR_I2C_master_I2C_SDA_in_. 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 8 of 21 

2.2.2. Data Management 

The I2C master uses a command list to process message transfers.  A buffer in the eTPU 

data memory must be allocated for this command list.  Each command consists of three 

pieces of data in the following 8-byte structure: 

Byte 0 Byte 1 Byte 2 Byte 3 

Message Header Data Buffer Pointer 

0x00 Transfer Size in Bytes 

In most cases a 16-byte buffer to hold two commands is sufficient as that is enough to 

support a combined format transfer containing two messages. 

Next, data buffers for reading or writing must be allocated.  There are many ways this 

could be managed, but for most basic operation allocating two buffers, one for read data 

and one for write data, is sufficient. 

Data Buffer

Data Buffer

Command 0

Command 1

p_cmd_list (I2C Master Channel Frame)

 

Currently a new transfer and command list cannot be requested and set up until any 

existing transfer completes (i.e. no transfer queuing). 

2.2.2.1. Transfer Request 

Host code must first set up the command list for a transfer, and for write transactions fill 

the appropriate data buffer.  Once this is done, a transfer request HSR 

(ETPU_I2C_MASTER_START_TRANSFER_HSR – etpu_i2c_common.h) can be made. 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 9 of 21 

2.2.3. Interrupts 

The I2C master issues a channel interrupt from the SCL_out channel once a transfer has 

completed (or an error has occurred which causes the transfer to end).  The interrupt is 

generated when the STOP is complete (SDA output goes high). 

2.2.4. Fault Detection 

The I2C master driver can report the following errors (macros defined in 

etpu_i2c_common.h): 

• ETPU_I2C_MASTER_ACK_FAILED – a NACK has been received when an 

ACK was expected.  This could occur because no slave device responds to a 

requested address, or if a slave device fails to ACK on a written byte.  This error 

flag is not set if a NACK is received on the final byte of a write. 

• ETPU_I2C_MASTER_BUSY – a transfer request has been made before the 

previous request has completed.  With proper host software, this error should 

never occur (the host API in this software package prevents this error). 

The error flags can be latched and cleared coherently via host service request 

(ETPU_I2C_LATCH_CLEAR_ERRORS_HSR).  Ideally error flags are checked following 

receipt of a transfer complete interrupt. 

2.3. Worst Case Thread Length (WCTL) 

The ETEC compiler performs a static analysis to calculate the WCTL for each thread in 

each eTPU function (class), which are output into the etpu_set_ana.html analysis file.  

Worst-case RAM accesses per worst case thread are also provided, in case a non-zero 

RCR (ram collision rate) is to be used in system latency calculations.  The WCTL 

numbers are in “steps”, or eTPU instructions.  Each one of these requires two eTPU 

clocks (equivalent to either 2 or 4 system clocks depending upon MCU and system 

configuration). 

Thead/Function Steps Ram Accesses 

I2C_master  44 23 

      I2C_master::I2C_SCL_out  4 0 

            I2C_master::InitSCL_out  4 0 

      I2C_master::I2C_SCL_in  4 0 

            I2C_master::InitSCL_in  4 0 

      I2C_master::I2C_SDA_out  4 0 

            I2C_master::InitSDA_out  4 0 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 10 of 21 

      I2C_master::I2C_SDA_in  44 23 

            I2C_master::InitSDA_in  4 0 

            I2C_master::Shutdown  2 0 

            I2C_master::Shutdown  2 0 

            I2C_master::Shutdown  2 0 

            I2C_master::Shutdown  2 0 

            I2C_master::LatchAndClearErrorFlags  3 3 

            I2C_master::StartTransfer  40 22 

            I2C_master::PulseClock  35 13 

            I2C_master::PulseClockIgnore  43 15 

            I2C_master::ProcessAck  31 9 

            I2C_master::ProcessAck_Step2  44 23 

            I2C_master::ProcessAckIgnore  1 0 

            I2C_master::BeginStop  12 2 

            I2C_master::FinishStop  2 1 

            I2C_master::FinishRepeatedStart  14 4 

            I2C_master::FinishRepeatedStartIgnore 1 0 

The key threads to look at are PulseClock and ProcessAck.  These must complete within 

a half-bit time of their triggering event to completely avoid any latency-induced signal 

delays. 

2.3.1. Latency Requirements 

The I2C master eTPU code is resistant to most latency issues.  Latency can potentially 

cause bit times to extend, but operation should remain correct through such an event.  In 

order to ensure proper execution at the specified bit rate, system latency must be less than 

half of the I2C bit time. 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 11 of 21 

2.4. Host Code API Overview 

The section covers the I2C master host software layer that is included with the I2C 

software distribution.  This software provides initialization and transfer request APIs.  It 

does not contain a transfer complete interrupt handler.  If the user requires such code for 

their application, they must write it. 

The I2C master host software is contained in the files etpu_i2c_master.h and 

etpu_i2c_master.c.  The .h file should be referenced to get details of all the parameters to 

the API functions.  This software supports multiple master instances, thus every call 

includes a channel parameter that is the base channel (SCL_out) of the I2C master of 

interest.  This header file also contains the structure definition of transfer commands. 

Function Name Purpose 

aw_etpu_i2c_master_init() Initializes the designated channels to operate 

as an I2C master.  The timing parameters are 

configured based upon the specified bit rate. 

aw_etpu_i2c_master_set_timing() Allows each individual timing parameter to 

be set by the user.  This interface can be used 

to override the default timing calculations 

made by the main initialization routine. 

aw_etpu_i2c_master_transmit() Write the specified number of bytes from the 

specified data buffer to the specified slave 

address. 

aw_etpu_i2c_master_receive() Read the specified number of bytes into the 

specified buffer from the specified slave. 

aw_etpu_i2c_master_combined_transfer() Perform two back-to-back transfers per the 

specified parameters (combined transfer). 

aw_etpu_i2c_master_raw_transfer() Allows the caller to directly set up a 

command buffer in order to specify any 

series of transfers. 

aw_etpu_i2c_master_latch_clear_error_flags() Causes the running error flags to be latched 

and coherently clears the running flags. 

aw_etpu_i2c_master_get_running_error_flags() Get a snapshot of the running error flags 

value. 

aw_etpu_i2c_master_clear_running_error_flags() Clear the running error flags. 

aw_etpu_i2c_master_get_latched_error_flags() Get the current latched error flags. 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 12 of 21 

aw_etpu_i2c_master_clear_latched_error_flags() Clear the latched error flags. 

3. I2C Slave 

The eTPU I2C slave driver provides the following set of features: 

• up to 400 KHz operation, or better.  The actual limit depends upon the eTPU 

clock rate and other functions in the eTPU. 

• programmable 7-bit address 

• read, write and combined format transfers 

• programmable acceptance of general calls 

• handles START bytes (ignores the START byte and receives the associated 

message). 

• interrupt on read request and transfer completion 

• supports a wait-for-read-data mode wherein the slave driver holds the SCL wire 

low when a read request is received until the host has filled the read data buffer 

and alerted that eTPU that the data is ready. 

The I2C slave solution uses 4 consecutive eTPU channels and their associated pins.  The 

first two must be connected to the SCL wire, the second two to the SDA wire. 

Note that multiple instances of I2C master and slave drivers can be supported 

simultaneously, but the bit rate may have to be lowered. 

3.1. Hardware Interface and Configuration 

The four eTPU channels have the following functions assigned to them, given the base 

channel number is ‘N’: 

• N + 0 : SCL_in (reads the clock line state for timing of bit reads and writes) 

• N + 1 : SCL_out (drives when clock line when waiting for the host to supply read 

data, thereby holding off the master) 

• N + 2 : SDA_in (reads the data line for write transfers and read 

acknowledgements) 

• N + 3 : SDA_out (drives the data line for read transfers and write 

acknowledgements) 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 13 of 21 

eTPU/

eTPU2

MPC55xx/MPC56xx/ST/MCF

N

N+1

N+2

N+3

SCL

SDASDA_out

SDA_in

SCL_out

SCL_in

 

NOTE: Depending upon how the eTPU module is integrated with a particular MCU, the 

I2C slave driver may not be able to be mapped to any set of 4 consecutive channels.  For 

example, in some cases a particular eTPU channel is only tied to a pin via its output line, 

and thus cannot function as an input.  Use the appropriate MCU reference when deciding 

on a system configuration. 

See section 2.1.1 for information regarding pin configuration. 

3.2. Host Interface 

At startup the host must initialize the eTPU module before initializing any I2C drivers.  

This initialization includes things like loading the eTPU code memory and initialized data 

memory, and configuring eTPU module registers.  It also includes configuration of the 

two timers in the eTPU, TCR1 and TCR2.  The I2C functions base their timing off of the 

TCR1 counter.  Ideally it runs at a frequency at least 100 times higher than the I2C bit 

rate in order to provide good signal resolution.  This code distribution includes eTPU 

initialization code that can be used as-is or can provide a template.  In any case, several 

outputs of the eTPU software build process are used in the host build and interface: 

• etpu_set_scm.h // eTPU code image 

• etpu_set_idata.h // eTPU initialized data image 

• etpu_set_defines.h // data and function definitions for interfacing to the eTPU 

As well as a common eTPU/CPU interface file: 

• etpu_i2c_common.h // HSR definitions, error flags, other useful macros 

This general initialization is discussed in more detail in section 4.  Although initialization 

is described below, this code package includes host code that handles all the discussed 

initialization. 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 14 of 21 

3.2.1. Initialization 

Initialization of an instance of the I2C slave driver is similar to initialization of most 

other eTPU functions, other than 4 channels are involved.  All 4 channels share the same 

data context, or “channel frame”, as it is known.  However, each is assigned its own 

function number.  A channel frame should be allocated from eTPU memory and 

initialized appropriately – address, setup/hold times, etc.  Note that timing configuration 

is all in terms of TCR1 counts.  Data buffers should also be allocated at this time; more 

on that in the next section.  The channels are configured with the channel configuration 

registers (CR) and status control registers (SCR).  Before enabling the channels by setting 

their priority values to a non-zero value the initialization host service requests should be 

made.  Detailed list of channel configuration that must be done for each of the 4 channels 

that make up the I2C slave driver: 

• Channel parameter base address (common to all 4 channels).  Use the eTPU 

utility memory allocation routine or other methods to allot a memory chunk from 

SDM.  The size of memory needed is the value of macro 

_FRAME_SIZE_I2C_slave_ in etpu_set_defines.h 

• Function mode.  Only the SCL_in channel of the I2C slave driver uses function 

mode, and it only looks at bit 0.  If FM0 is set to 0 (“data ready mode”) then the 

software assumes the read buffer has been filled and starts outputting data in 

response to a read request without delay.  If FM0 is set to 1 (“wait for data 

mode”) then the slave driver will hold the SCL line low until the host has 

acknowledged that it has filled the read buffer (via HSR 

ETPU_I2C_SLAVE_DATA_READY).  The FM bits should be set to 0 on all other 

channels. 

• Function number.  Each eTPU function (entry table entry) has a unique number 0 

to 31.  Each channel of the I2C driver is associated with a unique entry table.  

These can be found values can be found in etpu_set_defines.h with the macros 
_FUNCTION_NUM_I2C_slave_I2C_SCL_out_, 

_FUNCTION_NUM_I2C_slave_I2C_SCL_in_, 

_FUNCTION_NUM_I2C_slave_I2C_SDA_out_, and 

_FUNCTION_NUM_I2C_slave_I2C_SDA_in_. 

• Entry table type.  Two types supported, standard or alternate.  The setting for each 

channel (function) can be found in etpu_set_defines.h in the macros 
_ENTRY_TABLE_TYPE_I2C_slave_I2C_SCL_out_, 

_ENTRY_TABLE_TYPE_I2C_slave_I2C_SCL_in_, 

_ENTRY_TABLE_TYPE_I2C_slave_I2C_SDA_out_, and  

_ENTRY_TABLE_TYPE_I2C_slave_I2C_SDA_in_. 

• Entry table pin direction.  Controls which pin helps select the entry vector for 

servicing an event.  The setting for each channel (function) can be found in 

etpu_set_defines.h in the macros 
_ENTRY_TABLE_PIN_DIR_I2C_slave_I2C_SCL_out_, 
_ENTRY_TABLE_PIN_DIR_I2C_slave_I2C_SCL_in_, 

_ENTRY_TABLE_PIN_DIR_I2C_slave_I2C_SDA_out_, and  

_ENTRY_TABLE_PIN_DIR_I2C_slave_I2C_SDA_in_. 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 15 of 21 

3.2.2. Data Management 

The channel frame of the I2C slave contains a pointer to a write buffer and a read buffer.  

At initialization time these should be configured.  These pointers could be changed on the 

fly, but this would have to be done very carefully to avoid doing so mid-transfer.  The 

read buffer (read from master perspective; slave sends data out from this buffer when 

commanded by the master to do so) could be switched when using the “wait for data” 

mode.  The write buffer should be read upon receipt of a transfer complete interrupt to 

avoid having it overwritten by an ensuing write transfer.  Both the read and write buffer 

have a size associated with them.  The driver will not read or write past the designated 

size, and throws an error if the transfer causes such a case.  Note that on a write 

transaction, if the write buffer end is reached the slave driver continues to issue an ACK 

rather than a NACK, but the data is thrown away.  A fault flag is set – see 3.2.5. 

3.2.3. Idle 

When the SDA and SCL lines are high for at least tBUF time the slave goes into idle mode, 

awaiting a falling transition on the SDA line – the start of a new message transfer.  When 

such a transfer is detected but not addressed for this slave, the slave goes into a search for 

idle or a new (repeated) START.  During this time, depending upon the tBUF setting, 

spurious invalid start faults can be detected. 

3.2.4. Interrupts 

The I2C slave driver issues two different channel interrupts.  Once is sourced from the 

SCL_in channel.  This is issued when a read command header byte has been received 

targeting this slave and the “wait for data” mode is enabled.  When using the “wait for 

data” mode the host should respond to this interrupt by preparing the read data buffer and 

then issuing the data ready HSR (ETPU_I2C_SLAVE_DATA_READY) – see 3.2.5 for more 

detail.  The SCL_in channel will also generate an interrupt when an invalid or unexpected 

STOP occurs.  The error flags should be checked when this interrupt is handled. 

The other interrupt is sourced from the SDA_in channel.  It is issued when a transfer has 

completed (read or write).  The interrupt is set on receipt of a STOP, or a repeated 

START. 

3.2.5. Wait for Data vs. Data Ready Mode 

The I2C slave can be operated in two different modes in terms of how it handles read 

transfer requests from a master.  In “data ready” mode the data buffer that is read by the 

master must be configured before such a transfer occurs.  The I2C slave software will 

start outputting the bytes from the read buffer without interrupting the host processor. 

On the other hand, when the “wait for data” mode is enabled, the slave eTPU code will 

interrupt the host processor after the ACK bit of the header byte, and simultaneously hold 

the SCL line low.  The host must respond to the interrupt and fill and configure a read 

buffer (if not already done), and then alert the eTPU I2C slave driver that the read buffer 

is ready via an HSR (ETPU_I2C_SLAVE_DATA_READY).  When the slave processes the host 

service request it starts outputting the data bits for the master to read and releases the 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 16 of 21 

SCL line.  Note that the interrupt handler can read the received header byte if needed for 

use in configuring the read buffer. 

3.2.6. Fault Detection 

The I2C slave driver can report the following errors: 

• ETPU_I2C_SLAVE_INVALID_START – The transition from an idle bus (SDA 

and SCL high) to START (falling SDA edge followed by falling SCL edge) did 

not occur as expected.  Signals on the bus are ignored until idle is detected again. 

• ETPU_I2C_SLAVE_BUFFER_OVERFLOW – A read or write transfer exceeded 

the specified buffer size.  Message processing continues but written bytes are 

ignored and read bytes all go out as 0x00. 

• ETPU_I2C_SLAVE_STOP_FAILED – A STOP was expected (NACK received 

on read transfer), but was not detected, or an improperly formed STOP was 

detected.  Further signal transitions are ignored until idle is detected. 

The error flags can be latched and cleared coherently via host service request 

(ETPU_I2C_LATCH_CLEAR_ERRORS_HSR).  Ideally error flags are checked following 

receipt of a transfer complete interrupt. 

3.3. Worst Case Thread Length (WCTL) 

The ETEC compiler performs a static analysis to calculate the WCTL for each thread in 

each eTPU function (class), which are output into the etpu_set_ana.html analysis file.  

Worst-case RAM accesses per worst case thread are also provided, in case a non-zero 

RCR (ram collision rate) is to be used in system latency calculations.  The WCTL 

numbers are in “steps”, or eTPU instructions.  Each one of these requires two eTPU 

clocks (equivalent to either 2 or 4 system clocks depending upon MCU and system 

configuration). 

Thead/Function Steps Ram Accesses 

I2C_slave  73 20 

      I2C_slave::I2C_SCL_in  6 3 

            I2C_slave::InitSCL_in  6 3 

      I2C_slave::I2C_SCL_out  4 0 

            I2C_slave::InitSCL_out  4 0 

      I2C_slave::I2C_SDA_in  6 3 

            I2C_slave::InitSDA_in  6 3 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 17 of 21 

      I2C_slave::I2C_SDA_out  73 20 

            I2C_slave::InitSDA_out  4 0 

            I2C_slave::Shutdown  2 0 

            I2C_slave::Shutdown  2 0 

            I2C_slave::Shutdown  2 0 

            I2C_slave::Shutdown  2 0 

            I2C_slave::ReadDataReady  40 13 

            I2C_slave::LatchAndClearErrorFlags 3 3 

            I2C_slave::IdleDetectPass_SDA  13 3 

            I2C_slave::IdleDetectPass_SCL  11 3 

            I2C_slave::IdleDetectFail_SDA  9 3 

            I2C_slave::IdleDetectFail_SCL  9 3 

            I2C_slave::TransferStart_SDA  16 3 

            I2C_slave::TransferStart_SCL  18 5 

            I2C_slave::DataBitReady  51 11 

            I2C_slave::OutputDataBit  22 6 

            I2C_slave::HandleAck  73 20 

            I2C_slave::FoundStop  19 6 

            I2C_slave::FoundRepeatedStart  19 6 

The key threads are DataBitReady, OutputDataBit and HandleAck.  All of these threads 

need to run within one bit time, and they need to start with a delay of less than half a bit 

time for proper operation.  

3.3.1. Latency Requirements 

The I2C slave is more latency sensitive than the master.  This is because it is the recipient 

of the signals rather than controlling them, so in some cases if it misses the window to 

read a pin or receive a signal, the transfer will fail.  For example, the I2C slave must 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 18 of 21 

service the SDA input high-low transition before the SCL pin transitions to low in order 

to detect a (repeated) START. 

3.4. Host API Overview 

The section covers the I2C slave host software layer that is included with the I2C 

software distribution.  This software provides initialization and APIs to read received 

data and set up data to be transmitted to requesting masters.  It does not contains any 

interrupt handlers (transfer complete, or wait for data) - if the user requires such code for 

their application, they must write it. 

The I2C slave host software is contained in the files etpu_i2c_slave.h and 

etpu_i2c_slave.c.  The .h file should be referenced to get details of all the parameters to 

the API functions.  This software supports multiple slave instances, thus every call 

includes a channel parameter that is the base channel (SCL_in) of the I2C slave of 

interest. 

Function Name Purpose 

aw_etpu_i2c_slave_init() Initializes the designated channels to operate 

as an I2C slave.   

aw_etpu_i2c_slave_set_read_buffer() Sets the read buffer pointer and (maximum) 

size. 

aw_etpu_i2c_slave_issue_data_ready() Issues a host service request to the slave to 

indicate the read data buffer is ready for use 

in the pending read transfer. 

aw_etpu_i2c_slave_set_write_buffer() Sets the write buffer and its maximum size. 

aw_etpu_i2c_slave_get_transfer_status() Get the header, transfer byte count and error 

flags.  Meant to be used after a transfer 

completes (and interrupt is set). 

aw_etpu_i2c_slave_get_write_data() API to retrieve data written to the slave by a 

master.  It retrieves the data into the specified 

buffer (should be in host memory) and also 

returns the header byte and size.  Note the 

destination buffer should be sized to be at 

least as large as the slave write buffer in the 

eTPU, to avoid the chance of an overrun. 

aw_etpu_i2c_slave_latch_clear_error_flags() Causes the running error flags to be latched 

and coherently clears the running flags. 

aw_etpu_i2c_slave_get_running_error_flags() Get a snapshot of the running error flags 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 19 of 21 

value. 

aw_etpu_i2c_slave_clear_running_error_flags() Clear the running error flags. 

aw_etpu_i2c_slave_get_latched_error_flags() Get the current latched error flags. 

aw_etpu_i2c_slave_clear_latched_error_flags() Clear the latched error flags. 

4. I2C Common Build Set 

The I2C source code can be included with other eTPU code in order to support additional 

eTPU functionality.  The I2C driver also comes pre-built, so if no other eTPU functions 

are needed all components for integration are ready right out of the package.  This section 

is mainly applicable when using the pre-built components, but the same concepts apply if 

the I2C software is combined with other eTPU code into a larger build. 

Several auto-generated outputs of the eTPU software build process are used in the host 

build and interface: 

• etpu_set_scm.[c,h] // eTPU code image 

• etpu_set_idata.[c,h] // eTPU initialized data image 

• etpu_set_defines.h // data and function definitions for interfacing to the eTPU 

As well as a common eTPU/CPU interface file: 

• etpu_i2c_common.h // HSR definitions, error flags, other useful macros 

4.1. Host-side Utility Software 

Included in this package are several eTPU utility files based upon the Freescale eTPU 

software distribution.  These include: 

- etpu_init.[c,h] 

- etpu_util.[c,h] 

- etpu_struct.h 

These provide an eTPU register mapping structure, eTPU initialization routines and 

functions to allocate and read/write eTPU memory.  The distribution also includes a set 

of processor-specific memory-map structure header files for the common MPC 

processors with an eTPU/eTPU2 module onboard. 

4.2. Build Configuration 

There are no build-time configuration options for the I2C software at this time. 

4.3. Executable Image 

The eTPU executable code image is contained in etpu_set_scm.h as a set of opcodes.  

This header file can be included in host source code to produce an initialized array, or 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 20 of 21 

etpu_set_scm.c can be added to the host build – it defines an initialized array that 

represents the eTPU executable image. 

At power-up, this array must be block copied to the eTPU’s SCM memory by the host 

code as part of the eTPU’s initialization process. 

4.4. Initialized Global Variables 

eTPU code can have initialized global variables.  I2C does not have any, although the 

built-in global error handling library includes one 32-bit error status word.  Like the 

executable code image, the standard procedure is to place this eTPU data in an in 

initialized array, which is then copied to the eTPU SDM as part of the startup 

initialization process.  The file etpu_set_idata.h contains the data; etpu_set_idata.c can be 

used directly as it defines an initialized array of the eTPU data. 

4.5. Entry Table Base 

When eTPU code is compiled, an entry table is generated and located.  By default, the 

entry table is located at SCM address 0x0000, but if for some reason the build is 

configured differently, it may be located at a non-zero address.  The eTPU’s ECR register 

contains a field named ETB that establishes the Event Vector Table’s (entry table) base 

address.  The host code must initialize this field to correspond to the base address of the 

entry table. 

The _ENTRY_TABLE_BASE_ADDR_ #define specifies the Event Vector Tables (entry 

tables) base address.  It is found in the etpu_set_defines.h file. 

4.6. MISC Compare Register 

The eTPU performs a continuous checksum of the eTPU’s code memory.  This is 

compared for validity against the ETPUMISCCMPR register.  The host code must 

initialize this register with the correct checksum value. 

The _MISC_VALUE_ #define specifies the checksum’s valid value that should be 

written to the MISC register.  It is found in the etpu_set_defines.h file. 

4.7. Resource Usage 

The sections below detail the amount of code (SCM) and data (SDM) memory consumed 

by the most current version of the I2C master/slave drivers.  Note that dynamically 

allocated data buffers for handling transfers are not included, as these are configured by 

the user. 

4.7.1. Code Memory 

The amount of executable eTPU code in the master and slave drivers is as follows: 

File Opcodes Code Size (bytes) Start Stop 

etec_i2c_slave.c 322 1288 0xC80 0x1184 



Copyright ASH WARE, Inc, 2011-2016.  All rights Reserved 

January 6, 2016 Version 1.1  Page 21 of 21 

etec_i2c_master.c 288 1152 0x800 0xC7C 

Also, since each I2C driver uses 4 entry table, and each entry table requires 64 bytes, 

another (8 * 0x40) = 0x200 (512) bytes are used for entry table support.  

4.7.2. Data Memory 

The channel frame sizes for an I2C master and slave instance are shown below. 

#define _FRAME_SIZE_I2C_master_                  0x40 

#define _FRAME_SIZE_I2C_slave_                   0x40 

Additional data space must be allocated for command (master only), write and read 

buffers. 


