
Known Bugs in ETEC Version 1.11 – 1.12

Bug

Identifier
Source Problem/Bug Description Severity Workaround Description Affected Releases Fixed Release

V1.00D-5 internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than "3".

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.00D-7 internal It appears that ETEC integer promotion rules
are not correct in all cases. For example, the
code { unsigned char a = 1; unsigned char b =
2; int c = a-b; } should yield a value of -1 in c
but instead ETEC-generated code results in
255.

2 Cases such as the example shown
can be corrected through the use
of explicit typecasts, e.g. int c =
(int)a - (int)b;

All versions TBD

V1.10A-3 customer If a channel frame (or structure) contains a
16-bit piece of data, and two 8-bit pieces of
data, packed such that the 16-bit data is at the
start of a double-even address, followed by
the two 8-bit items (thus making up an entire
4-byte word), then read access of the 8-bit
data fails due to invalid code generation.

2 Change the data types or re-
arrange the channel frame to avoid
the occurrence of such data
packing.

All versions V1.20A

V1.11A-1 internal
When a structure(union) contains a member
that is itself a structure(union), if the member
has been declared with a typedef of the
structure(union) then referencing this structure
member results in a compilation error.

3 The workaround is to declare
structure/union members of type
struct/union using their base type
rather than a typedef.

All versions V1.20A

V1.11A-2 customer Enumeration literals are not getting replaced
in #pragma write directives. For example,
#pragma write h, (#define ENUM_VAL_0
EnumVal0); where EnumVal0 has a value of 5
is output as #define ENUM_VAL_0 EnumVal0
rather than #define ENUM_VAL_0 5.

3 One workaround is when defining
the enumeration to give its
members explicit values (perhaps
via macros), which can then be
used in the #pragma write.

V1.11A V1.20A

V1.11A-3 internal ETEC_cpp.exe is only supporting 7-bit ascii
characters, and can crash when 8-bit ascii
characters are encountered.

3 Eliminate 8-bit ascii characters
from the source code.

V1.10A - V1.11A V1.20A

V1.11A-4 internal In some cases, switch statements can fail to
jump to the correct code when the value
passed to the switch is higher than any of the
cases in the switch.

2 If the problem is encountered add
a case statement with the highest
possible switch value, and have it
drop into the same code as the
default if it exists, or just break out
of the switch statement.

V1.00C - V1.11A V1.20A

V1.11A-5 internal The erta register is not being seen as a
dependency of a UDCM (eTPU2 user-defined
channel mode) write by the optimizer, which
could result UDCM getting written with an
incorrect value.

2 The synchronization capability
_SynchBoundaryAll() or #pragma
synch_boundary_all should be
used to prevent invalid
optimization from occurring.

all up to V1.11A V1.12A

V1.12B-1 customer In the C preprocessing stage, specified
relative paths are being applied to the current
source file path, rather than the original
working directory of the compilation, resulting
in incorrect source searches.

3 Use an absolute search path
instead of relative in such cases.

V1.10A - V1.12C V1.20A

V1.12B-2 customer When a MAC register (mach, macl) variable
alias is created (via syntax like "register_mach
mach;") in an inner scope, and an MDU
operation is specified in an outer scope, or
previous scope, the MAC register is being
seen as allocated and a spurious out of
temporary registers error is being thrown.

2 Move the "register_mach mach;"
(or similar) declaration to the
outermost scope of the function, or
even to the global/file scope.

all up to V1.12C V1.20A

V1.12D-1 internal When updating the channel flags directly from
the p_31_24 register (a seldom used eTPU
feature) upstream writes to the p register may
be incorrectly eliminated or modified.

2 The code that loads the flags into
the p register (p31_24), must be
protected with an atomic region;
place an _AtomicBegin(); and
_AtomicEnd(); around it. This
prevents the optimizer from
removing it.

All versions V1.20A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

