
Known Bugs in ETEC Version 1.20

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected Releases Fixed Release

V1.00D-5 internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type instead:
sizeof(int)

All versions TBD

V1.00D-7 internal It appears that ETEC integer promotion
rules are not correct in all cases. For
example, the code { unsigned char a = 1;
unsigned char b = 2; int c = a-b; } should
yield a value of -1 in c but instead ETEC-
generated code results in 255.

2 Cases such as the example shown can
be corrected through the use of explicit
typecasts, e.g. int c = (int)a - (int)b;

All versions TBD

V1.20A-1 customer When inline assembly is used to create
function calls within inline assembly, the
function call boundaries must be
delineated in order for the
optimizer/linker to properly deal with the
code. However, at the current time the
#pragmas necessary to do this are not
supported in inline assembly.

3 Re-write the code to avoid this - use real
functions, or in some cases switching to
the ETEC eTPU class paradigm can help
avoid the issue.

All versions V1.20C

V1.20A-2 customer When using ETEC mode, when the
definition of a class function or entry
table is found, but the function/table if not
declared in the class, the compiler/linker
does not issue an error until much further
down the processing pipeline, making it
hard to debug. Error dtection and
reporting must be improved for this type
of case.

4 None needed. All versions V1.20C

V1.20A-3 internal The 'ram #0' sub-instruction to zero ram
does not currently allow symbolic
references for the address.

3 Use 'prm<addr>' rather then a symbol
name to reference the proper address to
be zeroed.

All versions V1.20C

V1.20A-4 internal Loading an address constant from a
symbol requires use of the '&' token
before the symbol name, which does not
match existing assembly syntaxes. The
requirement for the '&' token needs to be
removed.

4 Use the '&' token for now. All versions V1.20C

V1.20A-5 internal When an assembly jump or call dispatch
sub-instruction is used with the 'seq'
keyword, the assembly process fails.
The 'seq' keyword should be optional.
[Note: dispatch sub-instructions are of
the form 'jump pc+p31_24, flush.' or
similar.]

3 Make sure the 'seq' keyword precedes
dispatch sub-instructions.

All versions V1.20C

V1.20A-6 customer The MAC/MDU intrinsic functions
(__macs, __macu, __fmults8,
__fmults16, __fmultu8, __fmultu16) do
not incorporate a spin loop that waits for
the operation to complete, potentially
introducing optimization errors. Going
forward these intrinsic will incorporate a
spin loop. Note that the optimizer will
potentially move non-dependent code
between the MAC/MDU operation and if
possible, eliminate the spin loop.

3 Always follow MAC/MDU intrinsic
functions with a check-for-busy spin loop
("while (CC.MB) ;"). If users want full
control of MAC/MDU and parallelization,
inline assembly can be used instead of
an intrinsic function.

All versions V1.20C

V1.20A-7 customer The auto defines file is not providing the
size of tag types (struct, union, enum).
Additionally, anonymous type listings in
the auto defines file are not inheriting
their typedef name, if it exists.

3 The size of tag types must be found
through manual means and hardcoded in
host interface code for the time being.

All versions V1.20C

V1.20A-8 customer The testing of _Bool type variables
against constants using '==' and '!='
operators is generating sub-optimal (but
functional) code. Additionally, _Bool
variables under logical operations (&&, ||)
are generating sub-optimal code (no
work-around).

3 Convert tests such as (BoolVar == 0) to
(!BoolVar), or (BoolVar == 1) to (BoolVar)
- the compiler is properly optimizing these
expressions.

All versions V1.20C

V1.20A-9 customer When code accesses an extern array
variable, the stride size may not be
computed correctly.

2 Instead of making an access directly, like
"x = extern_array[i];", access it via pointer
arithmetic: "x = *(extern_array + i);"

All versions V1.20C

V1.20A-10 customer In the ETEC C preprocessor, when
running in ETPUC mode, #asm passes
through as is even though if found in a
function-like macro replacement list it
should per the standard generate an
error. However, the matching #endasm
is not being treated in the same way.
Additionally, the ETEC C compiler is only
recognizing the #asm, #endasm, and
#asm() directives when they are the first
non-white space characters on a line.

3 For V1.20A-B, macros must be written in
such a way that "#asm" are the first non-
white space characters on a source line.
Also, when a series of inline assembly
instuctions are concatenated in a macro,
they should all use the #asm() format for
now. When fixed in the V1.20C release,
#asm, #endasm, and #asm() will no
longer need to be the first non-white
space characters on a line to be
recognized.

All versions V1.20C

V1.20A-11 customer In the auto defines file, the bit offset from
the most significant bit of the _Bool unit
to the actual bit location is output in a
macro containing the BOOLBITOFFSET
keyword. It has been found that these
offsets are actually too big by 1.

3 As a temporary measure, when the
BOOLBITOFFSET macro variables are
used they can be adjusted down by 1
(subtract 1 from them).

All versions V1.20C

V1.20A-12 internal Function-like macros are failing to be
replaced in the text following a #pragma
directive.

3 Avoid the use of function-like macros in
#pragma text.

V1.20A-B V1.20C

V1.20A-13 customer Channel instructions may get illegally re-
ordered when atomic (see
_AtomicBegin(), _AtomicEnd()) Note
that several of the provided channel
macros are atomic (see ETpu_Std.h).

2 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all to
prevent chan sub-instructions from
moving across boundaries they should
not.

All versions V1.20C

V1.20A-14 internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by
the optimizer. This may cause
unexpected results, particularly in the
case of a DMA interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all if
there is concern that an interrupt may
cross a critical RAM access.

All versions TBD

V1.20A-15 internal In the past users could access the built-in
error handler from user code by
generating a function prototype for the
error handler label
(_Error_handler_entry). One problem
with this approach is that the compiler
generates a call opcode rather than the
more correct jump opcode. The standard
error handler entry points will be added
to the eTpu_Lib.h header file and given a
"return" type of _eTPU_thread which
causes the compiler to generate a jump
rather than a call. These new prototypes
may cause conflicts with existing code
that used the old technique.

3 None needed. All versions V1.20C

V1.20C-1
(2009-Jun-
1)

internal If a label is placed at the very end of a C
function that has a return value, the
compiler can crash (note that legal C
syntax at least requires a ';' after the
label, but that does not fix the crash).

3 Either eliminate the label if it is not
needed, or place it inside inline assembly
to work-around the problem : #asm(
SomeLabel:)

All versions V1.25A

V1.20C-2
(2009-Jun-
3)

customer When using ETEC mode, the compiler is
not in the correct state after processing
an entry table defintion (done via the
DEFINE_ENTRY_TABLE macro).
Depending upon what constructs come
after an entry table definition, either bad
code can be generated, or with the new
enhanced _eTPU_class error checking
an invalid error can be thrown, or in
many cases the bug is masked and no
problems occur.

2 There are two work-arounds available for
this problem. One is to make sure that
every entry table definition is the very last
construct in a translation unit. Note that
this is very difficult to do when all code is
included into one c file for compilation
(i.e. one big translation unit). In this
case, the second work-around is
recommended. If the entry table
definition is directly followed by an eTPU
thread definition (e.g. _eTPU_thread
Class::Thread(_eTPU_matches_enabled)
{ /* ... */ }), the processing of the thread
definition resets the compiler state and
any problematic code generation is
avoided.

All versions V1.25A

V1.20C-3
(2009-Jun-
3)

customer When structs/unions are larger than 4
bytes, the ETEC auto defines file is
reporting the internal size of the structure
rather than the "stride size" which may
include extra padding. For example,
"struct S1 { int x; int y; };" is reporting a
size of 7 rather than 8 (#define
_GLOB_TAG_TYPE_SIZE_S1_ 0x07).
Note: the sizeof() operator within eTPU C
code is working properly (it would return
8).

3 The size macro can be corrected with
some extra code that rounds up to the
nearest 4-byte boundary :
((_GLOB_TAG_TYPE_SIZE_S1_ + 3) &
~3). Such code will remain correct even
once this bug is fixed.

All versions V1.25A

V1.20C-4
(2009-Jun-
15)

internal When a switch statement's sub-
statement is not a compound statement,
compilation is failing.

3 Always make the switch sub-statement a
compund statement. E.g. switch (var) { /*
… */ }

V1.20C V1.25A

V1.20C-5
(2009-Jun-
23)

internal A for loop of the following syntax is
compiling incorrectly: for (x = 0; x < 4;
x++) if (var[x]) { boolvar = 1; /* … */ } The
problem lies in having the if statement
directly be the for loop's sub-statement.

2 Place the 'if' statement inside { }
compound statement markers.

All versions V1.25A

V1.20C-6
(2009-Jun-
29)

internal _Bool variables that are stored in
registers do not get read properly when
they are the right-hand expression in a
_Bool assignment. E.g. _globalBoolVar
= _registerBoolVar fails to generate the
proper code, assuming _globalBoolVar is
global and _registerBoolVar is stored in a
register (e.g. sr).

2 Make sure _Bool variables are not stored
in registers if they are used in such a way
that the bug manifests itself. In such
cases, one work-around is to make the
variable static so that it gets stored as
part of global memory.

All versions V1.25A

V1.20C-7
(2009-Jun-
29)

customer When an _eTPU_thread function is the
target of a function call (generates a
"goto" rather than a "call" under the
hood), the optimizer can mistakenly
remove opcodes upstream from the
_eTPU_thread function that it thinks are
uneeded, yet actually are required,
resulting in buggy code.

2 All versions V1.25A

V1.20C-8
(2009-Jul-
8)

customer When two non-constant expressions of
type _Bool are compared against each
other with either equality or relational
operators, invalid code is generated.
Such a compare also results in a
spurious warning regarding an
assignment, even though there is no
assignment in the expression.

2 The bug can be worked around by
converting the equality/relational
operation expression to a series of logical
operations; see example below.

_Bool b1;
_Bool b[16];

// ...

// below C code results in invalid machine
code
if (b1 == b[i]) // ...

// the below C code works around the
problem
if ((b1 && b[i]) || (!b1 && !b[i])) // ...

All versions V1.25A

V1.20C-9
(2009-Jul-
13)

customer When a variable of type specified below
is declared and used under the
conditions stated below, the compiler is
falsely throwing a diagnostics error "A
32-bit access must be double even (0, 4,
8, ...)", causing compilation to fail.

- array of chars (8-bit type) of length 2, or
struct of 2 8-bit types
- variable is in a channel (function) frame
(i.e. not a global or local variable)
- if an array, the error occurs if element 1
is read, e.g. if (SomeArray[1] == 7)...
- if a struct, the error occurs if the 2nd
member is read, e.g. if (SomeStruct.b ==
7) ...

3 The work-around if the problem is an
array, is to increase the array length from
2 to 3 (or perhaps better, 4, as it may
result in better overall packing of the
channel frame). If the problem is
triggered by a structure, then the struct
type needs to have a dummy member
added of size 8-bits (or 16-bits).

All versions V1.25A

V1.20C-10
(2009-Jun-
29)

internal When a reference is made through a
pointer that is a member of a structure,
the code generated incorrectly adds an
offset to the pointer resulting in incorrect
operation.

2 No good work-around exists - if possible,
move the pointer out of the structure.

All versions V1.25A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

