
Known Bugs in ETEC Version 1.25

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected Releases Fixed
Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.00D-7
(2008-Dec-
15)

internal It appears that ETEC integer promotion
rules are not correct in all cases. For
example, the code { unsigned char a = 1;
unsigned char b = 2; int c = a-b; } should
yield a value of -1 in c but instead ETEC-
generated code results in 255.

2 Cases such as the example shown can
be corrected through the use of explicit
typecasts, e.g. int c = (int)a - (int)b;

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all if
there is concern that an interrupt may
cross a critical RAM access.

All versions TBD

V1.25A-1
(2009-Aug-
24)

customer The initialized data files (*_idata.c and
*_idata.h are including global variables
aliased to register_chan_base along with
all the eTPU classes and eTPU functions.
This is harmless, but they don't belong
there.

4 No work-around necessary. All versions V1.25B

V1.25A-2
(2009-Aug-
24)

customer When a channel frame variable is of type
struct or union, and its type is specified via
a typedef rather than directly via the tag
type, then the channel frame variable offset
is not output in the auto-defines file
(*_defines.h).

3 If the offset is needed in the auto-
defines file, then the declaration of the
channel frame variable should use the
tag type directly to ensure that an offset
is generated.

typedef struct phase Phase;

Phase P_A; // no offset generated
struct phase P_B; // offset generated

All versions V1.25B

V1.25A-3
(2009-Sep-
1)

customer When using the scratchpad programming
model, the calculated global data size (or
engine data size if using -
enginescratchpad) is incorrect. The
_GLOBAL_VAR_SIZE_ is including some
scratchpad data, and thus is greater than
or equal to the correct size. While
_GLOBAL_SCRATCHPAD_SIZE_ is
correct, _GLOBAL_DATA_SIZE_ is not as
it incorporates _GLOBAL_VAR_SIZE_.
The end result is that user host interface
code keying off of these macros may waste
some memory.

2 Examination of code, listing and map
files can reveal the exact global data
usage, but this is a manual process.

V1.25A V1.25B

V1.25A-4
(2009-Sep-
2)

internal When a code fragment is called from a
callable C function (not a thread), link fails.

2 No workaround - such calls cannot be
made with V1.25A.

All versions V1.25B

V1.25A-5
(2009-Sep-
4)

customer When scratchpad (local) _Bool variables
are used, they are being tested assuming
that the variable is the only _Bool
occupying the 8-bit unit, but being updated
in bit 0 (LSB) only. This means that is
scratchpad memory is not cleared before
use, the _Bool variable may not behave
correctly. The write of the scratchpad
_Bool should be to the whole 8-bit unit.

3 Clear scratchpad memory before
allowing eTPU code to run (if it contains
local _Bool variables).

All versions V1.25B

V1.25A-6
(2009-Sep-
6)

customer In some cases, when more code follows a
call to a fragment in a function, the object
file can be corrupted and the link can fail.

2 No well-defined work-around. Instead of
using fragments when this occurs, a
regular C function can be called that
ends with an _ExitThread() rather than a
return.

All versions V1.25B

V1.25A-7
(2009-Sep-
6)

customer The compiler is outputting a warning
message that code is being stranded by a
call to a fragment (_eTPU_fragment) when
this is not actually the case. This can
happen in switch statements, or if such a
call is followed by a return statement of a
void function.

3 Ignore warning message. All versions V1.25B

V1.25A-8
(2009-Sep-
8)

customer Channel frame and engine-relative _Bool
type variables have their bit offset macro
misnamed in the *_defines.h file that is
auto-generated. These bit offset macros
are supposed to contain
"BOOLBITOFFSET" in the name. The bit
offset macros of global _Bool variables,
and struct/union _Bool members, do not
have the problem. Additionally, the _Bool
bit offset macro name for channel frame-
related _Bool variables/members is not
including the eTPU class/function name.

3 Temporary macros can be used to
define the wrong name to the correct
name in the host interface code or
simulation scripts. Once the correct
macro names are being generated in
the _defines.h file, the the re-definition
macros can be removed and the code
will work as-is. For example, if a
channel frame variable is defined as:
_Bool _b1;
With version 1.25A the macro name for
its bit offset is generated incorrectly as:
#define _CPBA8__b1_ 0x07
The following macro can be defined
temporarily to re-name the macro
correctly:
#define
_CPBA8_BOOLBITOFFSET_Test__b1_
_CPBA8__b1_

V1.25A V1.25B

V1.25A-9
(2009-Sep-
14)

customer When a channel frame contains zero
channel variables, and does not require a
stack, the channel frame size should be 0.
The ETEC linker is sizing channel frames
at a minimum of 8 bytes, even in this case
when it should be 0 (e.g. the frame size
macro in the *_defines.h file gets a value of
8 rather than 0).

3 No real work-around, but also of very
little impact (waste of 8 bytes per
channel running the problem function).

All versions V1.25B

V1.25A-10
(2009-Sep-
15)

customer The C preprocessor ETEC_cpp.exe is
failing to process directives like #if(TEST
== 7) where there is no white space
between the "if" directive keyword and the
constant expression. As long as the start
of the expression is a new token, such as a
'(', the preprocessor should handle it
without failure.

3 Add a space after the #if. All versions V1.25B

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger
than 1 byte in size, ETEC code will
generate an incorrect result. This is
because an unsigned shift (or unsigned
divide) is applied after the pointer
arithmetic to convert from byte addressing
to object indexing.

3 Keep pointer arithmetic results in the
non-negative domain.

All versions TBD

V1.25A-12
(2009-Oct-
7)

customer In the case of back-to-back function calls, it
is possible that an opcode at the end of the
first function can get associated with the
beginning line of the next function, resulting
in a strange .lst file (and a strange mixed
source-assembly view in the Simulator)
and source line stepping issues in the
Simulator. The underlying code behaves
correctly.

4 No work-around - ignore the stepping
issue in the Simulator. To get all the
dis-assembly code at the point of the
problem, the Simulator Memory Tool
can be used.

All versions V1.25B

V1.25B-1
(2009-Oct-
20)

internal The compiler is outputting warning
message 402 that unsigned mutliplication
or division is being done even though one
operand is signed in some cases when it
should probably be suppressed. The case
is when the signed operand is a constant -
by default constants are of signed type. A
note on signed vs. unsigned multiplication
in the eTPU: the 24-bit result in the MACL
register is the same regardless of which
multiplication type is done, however, the
upper 24-bit MACH result may differ, as
well as the state of the MN condition code
flag.

4 The constant operand can be typecast
to unsigned (e.g. change "10" to
"(unsigned int24)10"), or the warning
can just be ignored as there has been
no change to how the actual code is
generated.

V1.25B V1.25C

V1.25B-2
(2009-Nov-
11)

customer The analysis file (*_and.html) output by the
linker had a problem wherein the error
handling library was not being listed in the
Source Code Information section, ands its
opcodes were mistakenly being added to
the last source file in memory, thereby
providing misleading information.

4 Look at the .map file instead - it properly
breaks down the code contributions of
all source files (translation units).

All versions V1.25C

V1.25B-3
(2009-Nov-
11)

internal Under certain conditions the linker could
fail to link when it shouldn't - specifically in
unusual cases where a channel sub-
instructions gets joined with a return sub-
instruction.

3 Bad code is not generated; rather link
fails. The work-around is to place an
optimization boundary #pragma at the
bottom (or top as necessary) of the
function to prevent link failure.

All versions V1.25C

V1.25B-4
(2009-Nov-
20)

internal Under certain conditions, a const or volatile
type qualifier on a basic type can end up
getting applied to other symbol references
in the linker, which in turn can sometimes
trigger a link failure when function
prototypes no longer match due to qualifier
differences. This is most likely to occur
when multiple object files are being linked
together, as compared to the include into
one source file approach.

2 If a linker type defintion mismatch error
occurs when it is expected that there
should not be a problem, a const or
volatile type qualifier could be causing
the problem. If possible, eliminate the
qualifier from the source code to work
around the failure. A more drastic
fallback would be to compile all source
as one collective, included source, as
this tends to avoid the multiple function
prototype issue.

All versions V1.25C

V1.25B-5
(2009-Dec-
9)

customer When a named register variable is declared
via a typedef, and is given a type other
than the default register type, the variable
is not getting correctly assigned to the
named register.
 // bug: not getting assigned to mach
unsigned register_mach mach;

3 Such a variable should be declared
directly using the named register
feature, rather than through a typedef.
// assignment of unsigned int variable
‘mach’ to register _MACH
unsigned register _MACH mach;

All versions V1.25C

V1.25B-6
(2009-Dec-
9)

internal The _STACK_SIZE_ defines macro gets
the calculated value of the worst-case
stack depth. In certain rare cases, this
value can be slightly larger than the actual
worst-case. This can occur when a stack
usage of a register save and restore (e.g.
in a called C function) is eliminated via
optimization. Such a register save requires
4 bytes of stack space, but the removal of it
is not currently getting accounted for in the
stack size calculation.

4 Care should be taken in that in some
rare cases, a _STACK_SIZE_ value that
is non-zero can still mean that no stack
is actually utilized. Another way to verify
that no stack is used is to make sure
that no <func/class
name>__STACKBASE_ macros are
defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet
support reentrant functions, whether they
be callable C functions or ETEC code
fragments. Reentrance is supposed to be
detected and cause an error, but in some
cases this detection failed, allowing for
optimization to continue. Sometimes the
result could be a linker crash, or sometimes
invalid code generation, or in some cases
working code resulted.

3 Avoid writing reentrant functions until
the ETEC optimizer/analyzer fully
supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

