
Known Bugs in ETEC Version 1.31

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.00D-7
(2008-Dec-
15)

internal It appears that ETEC integer promotion rules
are not correct in all cases. For example, the
code { unsigned char a = 1; unsigned char b =
2; int c = a-b; } should yield a value of -1 in c
but instead ETEC-generated code results in
255.

2 Cases such as the example shown
can be corrected through the use
of explicit typecasts, e.g. int c =
(int)a - (int)b;

All versions V2.00A

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V1.31A-1
(2010-Jun-
23)

customer When a function with an argument of enum
type is called, if the passed parameter is a
constant (including enum literals) the
compilation would fail.

3 Change the function argument
type to an "int".

All versions V1.31B

V1.31A-2
(2010-Jul-05)

customer When a scratchpad programming model is
used, there are cases where scratchpad
variable and temporary locating may be done
wrong, resulting in multiple items using the
same location with resulting data corruption.
The bug case is generally triggered by 8-bit
scratchpad variables, particularly in cases
where there are more 8-bit variables than 24-
bit, intermixed with the definition of a function
that takes parameters (a non-empty
parameter frame). Note that the .map file
displays all scratchpad variables at the
location they are supposed to be at; when the
bug occurs a variable (or variables) of stored
at a different location than that indicated in the
.map file.

2 This bug can generally be worked-
around by moving the function
definition with the conflicting
parameter frame to the very
beginning of compilation/link, or
the very end, or by reducing the
number 8-bit variables in
scratchpad memory. For example,
_Bool scratchpad variables could
be converted to unsigned int24
type. In any case, careful analysis
must be done to ensure the bug
has been completely worked-
around.

V1.25B - V1.31A V1.31B

V1.31A-3
(2010-Jul-07)

customer The ETEC linker is issuing an error when
mismatching function declarations are
encountered. An error should only occur
when a declaration and definition of a function
mismatch. Since the return type of the
absolute value intrinsic functions was changed
between V1.25B and V1.25C (return type is
unsigned ratehr than signed now), attempting
to link object files built with V1.25B and earlier
with object files built with V1.25C is incorrectly
failing due to the declaration mismatch
detected.

3 Ensure that object files being
linked are compiled with a
coherent set of declarations. With
regards to the absolute value
intrisnic function mismatch, this
may require editing the ETpu_Lib.h
or similar to get around the issue.

All versions V1.31B

V1.31A-4
(2010-Jul-07)

customer The ETEC linker issues an error and stops the
link process when .lst file output is requested
but not all underlying source files that
contribute to the executable image are
available.

3 Do not attempt to generate .lst files
when all source files are not
available, or use dummy source
files to get around the error.

All versions V1.31B

V1.31B-1
(2010-Jul-15)

internal The error/warning messages are at times
outputting source file path information
inconsistently. In some messages styles, the
path can be reported incorrectly. Compilation
and linking occurs correctly; this is a
messaging issue.

4 None needed. All versions V1.31C

V1.31B-2
(2010-Aug-
06)

internal If a function contains an intrinsic that uses the
MDU or a fixed point library call, but does not
use any other MDU operators
(multiply/divide), the code generator may
mistakenly assign a local variable to the macl
(or mach) register which may conflict with the
intrinsic or fixed point call.

2 Add a useless line of code to the
problem function such as "if (0) dc
*= dc;" where dc is a local variable
(or any variable for that matter).
The optimizer removes all code
associated with this dummy line of
code, but it is enough to cause the
code generator to avoid using the
mach/macl registers for local
variables.

All versions V1.31C

V1.31C-1
(2010-Aug-
25)

internal In the case where one operand of a binary
operation is of integer type, and the other is of
fract type the code generator may incorrectly
swap the order of the two operands which is a
problem for operations that are not
commutative. The problem happens when the
second operand is the fract. For example, the
following would compile incorrectly:
unsigned int24 i_am_uint24;
unsigned fract24 i_am_ufract24;
// ...
if (i_am_uint24 < i_am_ufract24)
{
 // ...
}
The operands get swapped so in essence a '>'
operation is done.

3 The problem is easily worked-
around by making sure the types
of operands are explicitly made the
same, such as:
unsigned int24 i_am_uint24;
unsigned fract24 i_am_ufract24;
// ...
if (i_am_uint24 < (unsigned
int24)i_am_ufract24)
{
 // ...
}

All versions V1.31E

V1.31E-1
(2010-Oct-
20)

internal The expression (x != 0) is supposed to result
in a 0 or 1, but is instead resulting in a non-
zero value rather than 1 when the expression
is true. This is fine when the expression is
used in a test such as an if () statement, but a
problem when the expression result is used in
arithmetic.

2 Change statements such as "result
+= (x != 0);" to "result += !(x == 0);"
or "result += (x ? 1 : 0);".

All versions V1.31F

V1.31E-2
(2010-Nov-2)

customer There is an optimization bug when a chan
register write is closely followed by a read of
an ert register (erta or ertb), wherein the two
operations may be incorrectly combined. For
example, in this code snippet:
 chan = chan;
 if (erta > ertb) // active time
 {
The C code above generates assembly code
similar to:
 alu chan = chan+0x0;;
 alu sr = ertA+0x0;;
 alu nil = ertB-sr, SampleFlags;;
 seq if LessThan==false then goto
ELSE_IFELSE_37, flush;;
Which optimization improperly combines into:
 alu sr = chan+0x0;;
 alu nil = ertB-sr, SampleFlags;;
 seq if LessThan==false then goto 0xD60,
flush;;

2 The workaround is to create an
optimization boundary between the
chan register write and the ert
register read, like:
 chan = chan;
#pragma
optimization_boundary_all
 if (erta > ertb) // active time
This results in correct code:
 alu chan = chan+0x0;;
 alu sr = ertA+0x0;;
 alu nil = ertB-sr,
SampleFlags;;
 seq if LessThan==false then
goto 0xD64, flush;;

All versions V1.31F

V1.31E-3
(2010-Dec-2)

internal Cases have been found where the const type
modifier has been getting misapplied to other
non-const declarations in the area of a const
declaration, which can result in undue
compilation failures. The problem may be tied
to the use of 'const' in function declarations.

3 Disable use of const when a
problem arises for now.

All versions V1.31F

V1.31E-4
(2010-Dec-2)

internal When an array that is a member of a structure
needs to be converted to a pointer type (e.g.
passing a reference to the array into a
function call), compilation is failing.

3 If compilation fails due to this bug,
rewrite the offending expression.
For example:
WAS (failing):
 struct_var.array_member
TO:
 &(struct_var.array_member[0])

All versions V1.31F

V1.31E-5
(2010-Dec-
15)

customer When using the -enginescratchpad
programming model there are cases where
the defines file output causes the linker to file,
or in some cases the defines file will process
but contain corruption in the engine variables
area.

2 No reasonable workaround. The
short-term method to move
forward until the problem is fixed is
to disable the defines file output (-
defines- link option) or not use the
-enginescratchpad programming
model.

All versions V1.31F

V1.31E-6
(2010-Dec-
19)

internal When a no-flushed conditional branch/call is
followed by a conditional ASCE, the linker's
internal diagnostics falsely detects a bug (this
case can only be generated with assembly;
the compiler qill not generate this opcode
sequence). For example:

seq if n then goto MultiCondionalAlu_Neg,
no_flush;;
alu if n then p = p + 0x32;;

Yields the error:

Fatal Bug Detected During Internal
Diagnostics:
An atom is both a fork and a join,
DiagCheckAtomMemChain();

3 The assembly must be re-coded to
work-around this.

All versions V2.00A

V1.31F-1
(2011-Apr-
11)

customer When the linker option "-idata-" is specified to
disable initialized data files, it has the side-
effect of not properly initializing the
_GLOBAL_INIT_DATA_ADDR_ macro in the
auto-defines file.

3 Do not specify -idata- if the auto-
defines macro
_GLOBAL_INIT_DATA_ADDR_ is
needed.

All versions V2.00A

V1.31F-2
(2011-May-9)

customer When the stack programming model is used,
and a function call is made that takes at least
3 24-bit parameters, a bug may occur in the
passing of the parameter values. It can come
about if the parameter variable inside the
called function is allocated to a register - the
result being that the parameter variable gets
the value of a different argument.

2 Re-arranging the function
parameters can in many cases
work-around the bug, or one of the
scratchpad programming models
should eb used if possible.

All versions V2.00A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

