
Known Bugs in ETEC Version 2.00

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V2.00A-1
(2011-May-
11)

customer When directly accessing the mach/macl
registers after an operation, it is
recommended the operation in question be
done with an intrinsic function to ensure the
user-expected MAC/MDU operation is used.
For example, if the following code is written
assuming that the MDU is used:
x = y * z;
result = mach;
The user may or may not get the intended
code generated. If either of the y or z
parameters are actually a constant and a
multiple of 2, then the compiler may choose to
generate the operation using bit shifting for
tighter or faster code. By using an intrinsic,
the user guarantees the desired hardware
function is used. Unfortunately, some
MAC/MDU operations are not yet covered by
intrinsics - __mults, __multu and __divu
intrinsic functions will be added in the next
release to provide full support. Then the
example above should be written as:
__mults24(y, z);
result = mach;

4 When a multiply hardware
operation is required, it is best to
put a constant parameter into a
variable or register to guarantee
the desired opcode is generated
(until the proper intrinsic function is
available).

All versions (2.00A
more so)

V2.00B

V2.00A-2
(2011-Jun-1)

customer Declaring prototypes for eTPU-C functions (as
designated by the #pragma ETPU_function)
can cause symbol type conflicts in the linker.
Note that once this is fixed, it is important that
any prototype declarations and the actual
function definition come follow the #pragma
ETPU_function.

3 The work-around is to not declare
prototypes of eTPU-C functions -
they cannot be called by another
function anyways.

All versions V2.00B

V2.00A-3
(2011-May-
25)

customer Under certain conditions (e.g. scratchpad
programming model, callable C functions),
there can be cases where complex
expressions cause the compiler to run out of
temporary registers, resulting in a compilation
failure. Going forward the compiler will be
modified to use better register allocation
techniques. In scratchpad mode, rather than
error when no temporary registers are
available, the compiler will attempt to save off
a register value to scratchpad on a temporary
basis so that the register can be used in
expression processing.

3 When a compilation fails due to
running out of registers, you can
explicitly tell the compiler to to use
one less register for holding
variables by specifying "-
optDis=0x10". However, this can
affect overall optimization and thus
is generally not the best solution.
Re-arranging the source code
slightly can often overcome the
problem - in particular only
declaring local variables where
they are needed, particularly in
sub-scopes (late declaration) can
be helpful.

All versions V2.00B

V2.00B-1
(2011-Aug-
17)

customer When the const qualifier is combined with an
enumerated type in a function parameter, the
compiler will falsely declare there is a type
mismatch between prototypes/defintions of
the function.

3 For this particular case, do not use
the const qualifier.

All versions V2.01A

V2.00B-2
(2011-Aug-
17)

customer When using the #pragma
export_autodef_macro and #pragma
export_autodef_text, multiple compiled
instances of the export are not being detected
(e.g. when the export is in a multiply included
header file) and filtered.

3 Use this pragma from a once
included / once compiled .c file to
avoid multiple instances.

All versions V2.01A

V2.00B-3
(2011-Sep-1)

customer In some cases a duplicate expression
optimization is being applied where it should
not. It is related to expressions involving
structure members. For example, in some
cases a series of code such as
x = A.member1 * B.member1;
y = A.member1 * B.member2;
Could end up getting compiled as
y = x = A.member1 * B.member1;

2 Use the optimization_boundary_all
pragma between the expressions
that are being identified as
duplicates.

V2.00A-B V2.01A

V2.00B-4
(2011-Sep-1)

customer When a structure is declared that includes just
two members, one of size 16 bits and one of
size 8 bits, the members are being accessed
incorrectly for read and write operations.

2 Using bitfields works around the
problem, or adding a dummy
member.

All versions V2.01A

V2.00B-4
(2011-Sep-
29)

customer When elements of an array are of struct type,
where the the struct is larger than 4 bytes
(one memory access) in size, there are cases
where an assignment (copy) generates bad
code. For example, assuming the elements of
the arrays below are structs (or unions) of size
greater than 4 bytes, the code will fail to
compile correctly.
 struct_array_dest[i] = struct_array_src[i];

2 One way to work around this struct
copy issue is to copy them
member by member. Note that in
general it is inefficient to do struct
copies and they should be avoided
if possible.

All versions V2.01A

V2.00B-5
(2011-Oct-
21)

customer The beta auto-struct feature does not properly
pad out the host interface structures in some
cases, resulting in incorrect structure layouts
and sizes. The primary case where this could
happen is when "fastaccess" data packing is
in use. In addition, arrays of elements of
struct/union type are not supported (before
this fix), but when they are encountered an
error is thrown rather than an incorrect auto-
struct generation.

3 Avoid arrays in fastaccess mode,
accept arrays fo 24-bit or 32-bit
elements. This is not a very viable
workaround. V2.01A fixes the
issues highlighted in this bug
report.

All versions V2.01A

V2.00B-6
(2011-Nov-
29)

internal #pragma placement within code can result in
incorrect code generation. The failure case
detected involved a #pragma placed right after
an "if () {}" statement (no 'else' clause). Some
#pragmas are "code pragmas" in that they
affect code generation and thus syntactically
act very much like a C statement - these type
of pragmas must be placed in the code like C
statements. Going forward, the pragmas that
are "code pragmas" are documented in the
reference manual.

3 As can be see from the bug
description, the work-around is
often to place code above the
#pragma line inside a compound
statement - { }. Cases like that
described in the bug report - "if ()
{}" - have been fixed.

 V2.01A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

