
Known Bugs in ETEC Version 2.20

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V2.20B-1
(2013-Apr-
09)

customer The linker auto-defines feature is outputting
multiple definitions for global enumeration
declarations in some cases. This occurs
when the declaration is included in multiple
source files that are compiled into separate
object files that are then linked. This problem
should not make the auto-defines file
unusable, but may lead to warnings in host
code compilation.

4 None necessary. The C
preprocessing standard is such
that re-definitions are allowed as
long as the re-definition is an exact
match.

V2.20A-B V2.21A

V2.20B-2
(2013-Jan-
20)

customer The linker reports "cna loop" in the WCTL
analysis, even though there is no code loop, in
some cases where threads or fragments are
called from other functions/threads/fragments.
This means the WCTL is unable to
automatically calculated for the thread in
question.

3 None in general. An optimization
boundary placed right after the
offending call to a fragment may
work around the issue.

All versions V2.21A

V2.20B-3
(2013-Feb-
13)

customer When the eTPU2 interrupt-from-current-
channel feature is used, the optimizer may
move it across a channel change boundary
which is incorrect. The correct behavior is for
a channel register change to block the
optimization movement of this sub-instruction.

2 Use an optimization boundary to
prevent instruction movement
across a channel change
boundary.

All versions V2.21A

V2.20B-4
(2013-Aug-
19)

customer If a parameter to a function call is invalid (e.g.
an undeclared symbol), the compiler can
crash instead of reporting the compiler error.

3 Fix the non-compilable code. All versions V2.21A

V2.20B-5
(2013-Sep-
19)

internal If a cast to void* is used on a constant value,
the compiler will lock-up.
 g_ptr = (void *)0x11;
E.g. the above line of code triggers the
problem.

3 Do not use a (void *) cast on a
constant value.

All versions V2.21A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

