
Known Bugs in ETEC Version 2.22

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V2.22A-1
(2013-Dec-4)

internal Win 7 users may experience issues with some
demos due to the demo installation location
and file access permissions.

4 The work-around is to either (1)
change the permissions on the
demo directories located under the
main program installation directory
to full access for all users, or (2)
copy the demos to a location that
does not have access issues; the
compiler demo Mk.bat build scripts
will need to be adjusted to properly
find the tools.

All versions V2.22B

V2.22A-2
(2013-Dec-
10)

customer C preprocessing of the same files from the
same working directory simultaneously (i.e.
running multiple processes at the same time)
can in some cases result in a conflict that
crashes the C preprocess task.

4 Do not simultaneously run
compilations in the same working
directory that acess the same
source files, or simulations in the
same working directory that acess
the same script files.

All versions V2.22B

V2.22B-1
(2014-Jan-
30)

customer A class of compilation optimizations that look
for duplicate expressions can have a problem
across function calls in some cases, if the
expression in question is a function parameter
and used just following the function call. An
example of potential problem code is:
 array[index] = some_func(array[index]);
The address of 'array[index]' gets computed
just once but in some cases is not saved
properly across the function call. A function
call was being treated as an immediate block
rather than an after block (after its children -
its parameters - were processed).

2 Adding the command line option "-
optDis=0x20" to the compilation
command of the affected file
disables all duplicate expression
optimizations. Contact Ashware as
disabling just a single optimization
type with values 0x21, 0x22 or
0x23 is likely to be a better
approach.

V2.00A - V2.22B V2.23A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

