
Known Bugs in ETEC Version 2.40

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V2.23B-5
(2014-Mar-
18)

internal In some cases when making a fragment call,
and the fragment is contiguous with the calling
code (i.e. jump can be eliminated), the link-
time optimizer mistakenly optimizes out code
it should not.

2 This situation, if encountered, can
be corrected by re-arranging the
code to prevent the fragment call
and fragment code from being
continguous.

V2.00A and newer TBD

V2.23B-7
(2014-Jun-6)

customer The C preprocessor is currently allowing the
same macro to be expanded in multiple
replacement passes, which causes the
preprocessor to break when such "recursion"
is encountered.

3 Avoid self-referencing
preprocessor macros.

All versions TBD

V2.40A-1
(2015-Jul-9)

customer The C preprocessor issues a false error when
a file ends with a string or character literal,
with no space or newline following the " or '
character.

4 Add a newline / carriage return to
end the file (the C99 standard
actually says a source file not
ending in such a way is
malformed).

All versions V2.40C

V2.40A-2
(2015-Jul-16)

customer The eTPU has a 1K global memory physical
limit. In certain cases when this limit is
exceeded no error message generated and
instead an internal diagnostic message is
generated or the linker can crash. An error
message is now always generated when the
limit is exceeded.

3 Reduce global memory &
scratchpad usage below the 1KB
limit.

All versions V2.40C

V2.40A-3
(2015-Jul-20)

internal In some cases having a trailing backslash on
an include path (as specified by the -I option)
was causing a crash when the C
Preprocessor was called.

4 Remove trailing slash from include
path.

All versions V2.40C

V2.40A-4
(2015-Jul-20)

internal If an include file in a different directory than
the original source references an include file
back in the original source directory, a
compiler crash could result.

3 Avoid include files in other
directories referencing include files
in the original source directory. Or
easier, add "." to the include
search path (-i=.).

V2.40A V2.40C

V2.40A-5
(2015-Jul-22)

internal Initializing a pointer variable to a non-zero
constant value was resulting in a crash.

3 Initialize the pointer value at
runtime.

All versions V2.40C

V2.40A-6
(2015-Jul-29)

customer The map file scratchpad section is listing
some scratchpad variables that have been
optimized away.

4 Ignore bad information in map file. All versions V2.40C

V2.40A-7
(2015-Aug-2)

internal A case has been found where a register used
to pass a function parameter can incorrectly
get re-used for a local variable, resulting in
incorrect code generation.

2 Should the problem manifest, the
work-around is to make use of the
parameter variable before the local
variable with which the conflict
occurs - this can be accomplished
with a dummy transfer. E.g.

void SomeFunction(int a)
{
 a = a; // make use of parameter
variable a before any other
variable usage
 // ...
}

V2.00A and newer V2.40C

V2.40C-1
(2015-Aug-
14)

internal Functions with 32-bit return values are failing
to compile by issuing a false error (32-bit int
types), or by generating incorrect code (32-bit
tag/struct type).

3 The workaround is to pass the
data back via a pointer parameter,
rather than as a return value.

All versions V2.40E

V2.40C-2
(2015-Aug-
14)

internal When a very large eTPU code base is linked,
especially if the code contains very long
identifiers and man external declarations,
there is the possibility of a linker crash due to
buffer overflow in ELF/DWARF2 file
generation.

3 Suppress ELF file output, if not
needed for simulation or debug.
Reduce unnecessary external
declarations.

All versions V2.40E

V2.40C-3
(2015-Aug-
24)

customer Under some conditions an extra space gets
added to the replacement list of macro
definitions, resulting in an extra space at each
later replacement of the macro.

4 Leave no spaces after the
replacement list in the macro
definition.

All versions V2.40E

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

