
Known Bugs in ETEC Version 2.42 
 

Bug 
Identifier 

Source Problem/Bug Description Severity Workaround Description Affected 
Releases 

Fixed Release 

V1.00D-5 
(2009-Dec-
15) 

internal When the sizeof operator is applied to a 
constant the wrong size may result, e.g. 
sizeof(1) may result in "1" rather than the 
expected "3" bytes. 

2 Take the sizeof the desired type 
instead: sizeof(int) 

All versions TBD 

V1.20A-14 
(2009-May-
20) 

internal Chan interrupt opcodes may be moved 
relative to adjacent RAM instructions by the 
optimizer.  This may cause unexpected 
results, particularly in the case of a DMA 
interrupt. 

3 Use _OptimizationBoundaryAll() or 
#pragma opimization_boundary_all 
if there is concern that an interrupt 
may cross a critical RAM access. 

All versions TBD 

V1.25A-11 
(2009-Sep-
28) 

internal If pointer arithmetic generates a negative 
result, and the object pointed to is larger than 
1 byte in size, ETEC code will generate an 
incorrect result.  This is because an unsigned 
shift (or unsigned divide) is applied after the 
pointer arithmetic to convert from byte 
addressing to object indexing. 

3 Keep pointer arithmetic results in 
the non-negative domain. 

All versions TBD 

V1.25B-6 
(2009-Dec-9) 

internal The _STACK_SIZE_ defines macro gets the 
calculated value of the worst-case stack 
depth.  In certain rare cases, this value can be 
slightly larger than the actual worst-case.  This 
can occur when a stack usage of a register 
save and restore (e.g. in a called C function) 
is eliminated via optimization.  Such a register 
save requires 4 bytes of stack space, but the 
removal of it is not currently getting accounted 
for in the stack size calculation. 

4 Care should be taken in that in 
some rare cases, a 
_STACK_SIZE_ value that is non-
zero can still mean that no stack is 
actually utilized.  Another way to 
verify that no stack is used is to 
make sure that no <func/class 
name>__STACKBASE_ macros 
are defined. 

All versions TBD 



V1.25B-7 
(2009-Dec-
11) 

internal & 
customer 

The optimizer/analyzer does not yet support 
reentrant functions, whether they be callable 
C functions or ETEC code fragments.  
Reentrance is supposed to be detected and 
cause an error, but in some cases this 
detection failed, allowing for optimization to 
continue.  Sometimes the result could be a 
linker crash, or sometimes invalid code 
generation, or in some cases working code 
resulted. 

3 Avoid writing reentrant functions 
until the ETEC optimizer/analyzer 
fully supports them. 

All versions V1.25C 
(reentrance 
detection), 
TBD (support 
reentrance) 

V2.23B-5 
(2014-Mar-
18) 

internal In some cases when making a fragment call, 
and the fragment is contiguous with the calling 
code (i.e. jump can be eliminated), the link-
time optimizer mistakenly optimizes out code 
it should not. 

2 This situation, if encountered, can 
be corrected by re-arranging the 
code to prevent the fragment call 
and fragment code from being 
continguous.  

V2.00A and newer TBD 

V2.23B-7 
(2014-Jun-6) 

customer The C preprocessor is currently allowing the 
same macro to be expanded in multiple 
replacement passes, which causes the 
preprocessor to break when such "recursion" 
is encountered. 

3 Avoid self-referencing 
preprocessor macros. 

All versions TBD 

V2.42A-1 
(2016-Feb-
19) 

customer A case has been seen where a memory 
location (variable) is written twice in the code, 
with an intervening read of the variable inside 
a loop, the initial write gets optimized away 
mistakenly.  This leads to an incorrect value 
being read in the intervening loop. 

2 Use "#pragma 
optimization_boundary_all" to 
block the problem from occurring. 

All versions V2.42D 



V2.42A-2 
(2016-Apr-
07) 

customer There is a case where when a branch (if) is 
taken based upon a channel hardware state, 
and both branches first action is to change the 
chan register in the same manner, that 
opimization may incorrectly move than chan 
change before the channel hardware state 
query. E.g. 
    if (channel.PSTI == 1) 
    { 
        chan += 1; 
        // ... 
    } 
    else 
    { 
        chan += 1; 
    } 
In general, the problem is that in rare cases, a 
chan register update can cross a test of input 
or output pin states. 

3 Use "#pragma 
optimization_boundary_all" to 
block the problem from occurring. 

All versions V2.42D 

V2.42A-3 
(2016-Apr-
25) 

internal If a duplicate expression optimization ends 
with a function call parameter, the register 
used for the optimization can be left marked 
as in-use, and thus can lead to a running out 
of registers error downstream (compile error). 

3 Disable the duplicate expression 
optimization in the compiler with 
the "-optDis=0x20" option. 

V2.00A and newer V2.42D 

V2.42J-1 
(2016-Aug-
15) 

internal _Bool bit array initializers are not parsing 
correctly, leading to incorrect initial values 
when such initializers were used. 

3 Do not use _Bool bit array 
initializers; initialize at runtime. 

All versions V2.43A 

 

Bug Severity Level Descriptions: 

 

1 – Problem causes complete work stoppage.  No work-around is possible.  The problem is likely to be hit by most users.  This level of bug will 

typically trigger a new release or patch in a short time frame. 

 

2 – A difficult problem to track down, such as incorrectly generated code.  Typically there is a work-around available for this kind of bug. 

 



3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact. 

 

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability.  Work-arounds available. 

 


