Known Bugs in ETEC Version 2.61

Bug Source Problem/Bug Description Severity Workaround Description Affected Fixed Release
Identifier Releases
V1.00D-5 internal When the sizeof operator is applied to a 2 Take the sizeof the desired type All versions TBD
(2009-Dec- constant the wrong size may result, e.g. instead: sizeof(int)
15) sizeof(1) may result in "1" rather than the
expected "3" bytes.
V1.20A-14 internal Chan interrupt opcodes may be moved 3 Use _OptimizationBoundaryAll() or | All versions TBD
(2009-May- relative to adjacent RAM instructions by the #pragma opimization_boundary_all
20) optimizer. This may cause unexpected if there is concern that an interrupt
results, particularly in the case of a DMA may cross a critical RAM access.
interrupt.
V1.25A-11 internal If pointer arithmetic generates a negative 3 Keep pointer arithmetic results in All versions TBD
(2009-Sep- result, and the object pointed to is larger than the non-negative domain.
28) 1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.
V1.25B-6 internal The _STACK_SIZE_ defines macro gets the 4 Care should be taken in that in All versions TBD

(2009-Dec-9)

calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__ STACKBASE_ macros
are defined.

V1.25B-7 internal & | The optimizer/analyzer does not yet support Avoid writing reentrant functions All versions V1.25C
(2009-Dec- customer | reentrant functions, whether they be callable until the ETEC optimizer/analyzer (reentrance
11) C functions or ETEC code fragments. fully supports them. detection),

Reentrance is supposed to be detected and TBD (support

cause an error, but in some cases this reentrance)

detection failed, allowing for optimization to

continue. Sometimes the result could be a

linker crash, or sometimes invalid code

generation, or in some cases working code

resulted.
V2.23B-5 internal In some cases when making a fragment call, This situation, if encountered, can V2.00A and newer | TBD
(2014-Mar- and the fragment is contiguous with the calling be corrected by re-arranging the
18) code (i.e. jump can be eliminated), the link- code to prevent the fragment call

time optimizer mistakenly optimizes out code and fragment code from being

it should not. contiguous.
V2.23B-7 customer | The C preprocessor is currently allowing the Avoid self-referencing All versions TBD
(2014-Jun-6) same macro to be expanded in multiple preprocessor macros.

replacement passes, which causes the

preprocessor to break when such "recursion”

is encountered.
V2.61A-1 customer | Symbols with a type of pointer to array are not The main workaround is to typedef | All versions V2.62A
(2019-Mar-5) transferring properly from compiler to linker, the array type and then create the

resulting in incorrect symbolic debug symbol as a pointer to this typdef.

information being output, and possible If Autostruct is not being used, it

resulting in a linker crash when the Autostruct can be disabled, which stops the

file is being generated. linker crash.
V2.61A-2 customer | Inline function definitions that result in the The best current workaround isto | All versions V2.62A
(2019-Jun- linker seeing multiple concrete instances of not declare the function as inline,
23) the function are causing link failures (duplicate and thus define it in a source file

symbol). and only put the external

declaration in a header file.

V2.61B-1 internal If an argument expression of a call to an inline Avoid performing a call to an inline | V2.62A and newer | TBD

(2019-Dec-1)

function contains a call to another inline
function, compilation will not be correct.

function from within the argument
list of an inline function.

Bug Severity Level Descriptions:

1 — Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will
typically trigger a new release or patch in a short time frame.

2 — A difficult problem to track down, such as incorrectly generated code. Typically, there is a work-around available for this kind of bug.
3 — A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 — Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

