MC33816 Assembler

Reference Manual

by

John Diener and Andy Klumpp

ASH WARE, Inc.

Version 2.75 A aﬂ
6/8/2024

(C) 2012-2024 ASH WARE, Inc. ASH WARE Inc.

MC33816 Assembler

ASH WARE, Inc. Saturday, June 8, 2024

Table of Contents

Foreword

Part 1 Introduction

1.1 Installation
1.2 System ReqUIreMENtScccuiiiiiiiiiii e

1.3 High-Level Programming Features..........cccccoeevvveivnennnns

Variables e

Part 2 Command Line Options

2.1 File Naming ConventionSccoovvviiiiiineiiiieineee e
2.2 The Build ProCesscocoiiiiiiiiii e

Part 3 Pragmas

3.1 Disabling the 'Unused Label' Warning
3.2 Disabling the 'Unused Variable' Warning

Part 4 Notation and Syntax
Part 5 Auto-Header File
Part 6 Code RAM Files
Part 7 Data RAM Files
Part 8 Listing Files

Part9 Label Tags

Part 10 Variables

10.1 Immediate/Global Variables...........ccocoviiiiiiiiiiinin.
10.2 Enabling Initialized Data in the Simulator
10.3 Data Banks Variablesccocoiiiiiiiiiiieee,

Part 11 Extended Instructions

23

26

29

32

34

MC33816 Assembler, page 3 Table of Contents

(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

Part 12 Instruction Set 42
Part 13 Wait 44
13.1 CWEF - create wait table entry far ... 45
13.2 CWER - create wait table entry relative ... 48
13.3 Fill a 'Wait Table' row with an event and an event-handling thread's code-address (extended instruction)
13.4 WAIT - wait until @ condition iS Verified ... 53
Part 14 Call/Return 55
14.1 JTSF - Jump far t0 SUDTOULINE ...iieeii e e 56
14.2 JTSR - Jump relative to SUBIOULINGcooiii e 57
14.3 Call a subroutine (extended iNSIIUCLION)iiiiii i 57
14.4 RFS - Return from SUDFOULINGou.iiiiiii e e 58
Part 15 Program Flow 59
15.1 LDJRI - LOoAd JUMP FEGISIET L ooouiiiiiiii ettt ettt et e e e e e 60
15.2 LDJIR2 - LOAd JUMP FEGISIET 2 ..euiiiiiiiii ettt et e r e e 60
15.3 JMPF - Unconditional JUMP far ... 61
15.4 JMPR - Unconditional Jump relatiVecooiiiiiiii e e e 61
15.5 Unconditionally jump (extended iNStrUCtiON)couuiiiiiiiiiii e 62
15.6 JARF - Jump on arithmetic register farooviiiii e 62
15.7 JARR - Jump on arithmetic register relativecocoviiiiiiiii e 63
15.8 Conditionally jump on ALU and related flags (extended instruction)ccooveveeiennnnns 64
15.9 JCRF - Jump 0N CONErol regiSter faroiee i e 65
15.10 JCRR -Jump on coNntrol register relatiVecouoiiiiiiiiiei e 66
15.11 Conditionally jump on 'Control Register' bit values (hi/lo) (extended instruction) 67
15.12 JSRF - Jump 0N StatuS regiSter far ... 68
15.13 JSRR -Jump on status register relative ... 69
15.14 Conditionally jump on 'Status Register' bit values (hi/lo) (extended instruction) 70
15.15 JOSLF - Jump on start-latCh far ... 71
15.16 JOSLR - Jump on start-latch relative ..o 73
15.17 Conditionally jump based on the state of the start pins latched states (extended instruction)
15.18 JOCF - Jump 0N CONAITION TAI .ouuiiiiiiii et e 77
15.19 JOCR - Jump 0N cONition FEIAtIVEcuuiiiii e 79
15.20 Conditionally jump based on a variety of conditions such as Flag state, Start state, above/below a Current S
15.21 JFBKF - Jump on feedback farcooouiiiiii e 84
15.22 JFBKR -Jump on feedback relatiVecooieiiiiiii e 85

15.23 Conditionally jump based on the state of a '‘Diagnostic Feedback Comparator' output (extended instruction)

MC33816 Assembler, page 4 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler ASH WARE, Inc. Saturday, June 8, 2024

15.24 JOIDF - JUMP ON CUTITENT COTE FAI oiuuniiiiiii et e 87

15.25 JOIDR - Jump ONn CUrrent COre relative ... 88

15.26 Conditionally jump based on the ID of the currently-executing core (extended instruction)

15.27 JUMP<_type> - Jump on specified CONditioNScoviiiiiiiiii e 89
Part 16 Interrupts 91

16.1 ICONF - Configure automatic iNterrupt FEIUINcooviiiiiei e 92

16.2 REQI - Request SOftWare INTEITUDTieueiiiieii e 93

16.3 IRET - RetUIN frOmM INEeITUPT ..o e e e e 94

16.4 STIRQ - Write IRQB OULPUL PIN ooieiiiiiiiii s e e e e e e e e e e e e e e e e s e aneaanees 95
Part 17 Data RAM Accesses 96

17.1 SLAB - Selects the register to be used in Indexed addressing modecccoeveevneennnn. 97

17.2 STAB - Write the 'base_add’ regiStercoiieiiiiiii e 98

17.3 LOAD - Load a register with a 16-bit value from the Data RAMccocoveiiiiiiiiiineeins 98

17.4 STORE - Store a value from an ALU register into the Data RAMccoooiviiiiiiiineinns 100

17.5 STDRM - Set data RAM read MOAecc.iiiniiiiiiiiii e e e e e eae e 102
Part 18 Math 103

18.1 STAL -set arithmetiC 10GIC «.uuu i e 104

18.2 CP - Copy 0Ne register t0 anOther ... 105

18.3 LDIRH - Load immediate regiSter's MSBcc.oiiiiiiiiiii e 107

18.4 LDIRL - Load immediate register's LSB ... 108

18.5 Load the full 16-bit IR register (extended iNStrUCLION)cc.viiiiiiiiiiii e 108

18.6 ADD - Addition Of tWO FEOISIEIS Luiiviiiiii e e e e e e e e ea s 109

18.7 ADDI - Addition of a register with a 4-bit unsigned immediateccooeiviiiiiinens 110

18.8 SUB - SUDSLraction Of tWO FEQISIEIS .. ceuuiiii et 110

18.9 SUBI - Subtraction by a 4-bit unsigned immediateccoovieviiiiiiiiiin e 111

18.10 MUL - Multiplication of two registers, result goesin 'mh'and 'ml'cooeinins 112

18.11 MULI - Multiplication with 4-bit immediate, result goesin 'mh'and 'ml' 113

18.12 SWAP - Swap a register's high and low DYtescoiviiiiiiiiii e 114

18.13 TOC2 - Conditional conversion to 2's complement format with sign enforcement 114

18.14 TOINT - Convert from 2's COMPIEMENT ...iiiiiii e 115
Part 19 Bitwise 117

19.1 AND - Bitwise AND With "I FEQISIEI c.uuiieii i e e e 118

19.2 OR - Bitwise OR With the "Ir' T@QISIEriiei e 119

19.3 XOR - Bitwise XOR With the "I registerocveuiiiii e 120

19.4 NOT = BIitWisSe NOT Loiiiiiiiiiiiie ettt e e e et e e e e e e e e e e et e e e e st e e e eaa e eeesan e 120

MC33816 Assembler, page 5 Table of Contents (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

Part 20 Shifts 122
20.1 SHR - Shift right DY FeQiSter oo 123
20.2 SHRS - Shift right by register, Signedccooiiii 124
20.3 SHRI - Shift right By immMediatecoouiiiii e 125
20.4 SHRSI - Shift right by immediate, Signedcc..oiiiiiiii 126
20.5 SHRB8 - Shift FIght DY 8 e e e 127
20.6 SH32R - Shift right 'mh" and 'ml" DY register ... 127
20.7 SH32RI - Shift right 'mh' and 'ml' by 4-bit immediateccooooiiiiiiii . 128
20.8 SHL - Shift left DY FeQISter ovniie i e 128
20.9 SHLS - Shift left by register, SIgNed ..o 129

20.10 SHLI - Shift left DY immMediateo 130
20.11 SHLSI - Shift left by immediate, Signed ..o 131
20.12 SHLB8 - Shift I&ft DY 8 .eeiiiii et 132
20.13 SH32L - Shift left 'mh" and 'ml" by registercooiiiiii e 132
20.14 SH32LI - Shift left ‘'mh’ and 'ml' by 4-bit immediateccooooiiiiii 133

Part 21 Control, Status, Flags, and the Inter Core

Communications 'rxtx' register 134

21.1 STCRB - Write control register Ditcoouiiii e 135

21.2 STSRB - Write Status register Ditviiiiiiii e 136

21.3 STF - Write flag register Dit ... 137

21.4 STCRT - Configure which cores' 'rxtx' register getsreadccocoovviieiiiiiiii e, 138

21.5 RSTREG - RESEE FEQISIEIS . iiiiitiieiiiii ettt e et e e et e e et e e e e et e e eentaeaees 139

21.6 RSTSL - Reset the start-latCh register ... 139
Part 22 Shortcuts 140

22.1 DFCSCT - Define the core's current sense block shortcutooooiiiiiiiin, 141

22.2 DFSCT - Define the core's three output driver ShOrtCUtScoevviiiiiiiiiieec e, 142

22.3 STOS - Synchrounously control three output drivers using shortCutsccooeeevveennnn. 144
Part 23 Current Sense Blocks 146

23.1 STADC - Select '‘Analog to Digital' or 'Digital to Analog' modeccooeveviiiiiiniiineennnn. 147

23.2 STDCCTL - Set the DC to DC Converter's Control modecocoeoviiiiiiiiiiiiiiieiee e, 148

23.3 STDM - Set DAC register aCCeSS MOUEuivuiieiii i e e e e eans 149

23.4 STGN - Set amplifier gain of a Current Sense BIoCK ..., 150

23.5 STOC - Set offset compensation of a Current Sense BlOCKccooiiiiiiiiiiiiiiiin, 151
Part 24 Output Drivers 153

MC33816 Assembler, page 6 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler ASH WARE, Inc. Saturday, June 8, 2024

24.1 BIAS - Setload CUITENt DIas ..o e 154
24.2 STEOA - Set end of actuation MOAec.uiiiiii e 155
24.3 STFW - Set freewheeling mode between a pair of output driversccocvoeeiieineennnn. 156
24.4 STO - SEt 0NE OULPUL AFIVET oiieiii e e e e e e e e e e aeans 157
24.5 STSLEW - Set output drivers' SIEW Fatesvciiiiiiiiiiii e 158
Part 25 Diagnostics 159
25.1 CHTH - Change diagnostic comparator'sthresholdccoooiii, 160
25.2 ENDIAG - Enable or disable output driver diagnostics, ONEccoocciviiiiiiieiineiineen, 161
25.3 ENDIAGA - Enable or disable output driver diagnostics, ALLcoccovviiiiiiiiciinciece, 162
25.4 ENDIAGS - Enable or disable output driver diagnostics, SHORTCUTSccccoeevvnennn. 163
25.5 SLFBK - Select the power source to monitor for Vds DiagnoStiCScovvevviirineiennennnn. 164
Part 26 Timers 165

26.1 LDCA - Load a counter's 'Terminal Count' from a register and write two output drivers 166
26.2 LDCD - Load a counter's 'Terminal Count' from data RAM and write two output Drivers 167

Part 27 SPIBackdoor 170
27.1 SLSA - SPI backdoor set address regiSteruiiuu i 171
27.2 RDSPI - SPI DACKAOOr @Aceiiiiiii e e e 172
27.3 WRSPI - SPI BACKAOOT WIITE .euuiiiiiiii ettt e e e e eeeens 172

MC33816 Assembler, page 7 Table of Contents (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

MC33816 Assembler, page 9 (0) 2012-202 Y RETHOLIRERBIR D92

Introduction

Part

MC33816 Assembler, page 10 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

1. Introduction ASH WARE, Inc. 6/8/2024

1.1

1.2

1.3

1

Introduction

The ASH WARE MC33816 Assembler supports NXP's MC33816 device. The MC33816 Assembler is a
command line tool so it can be invoked from a Windows console window. The MC33816 Assembler is also
designed to support integrated builds from within DevTool as well as being called as part of DevTool's
integrated graphical state machine.

Installation

The MC33816 assembler is installed as an integrated part of DevTool. The environment variable shown
below can be used to locate the last-installed version.

DEV_TOOL_MC33816_BI N
In the following example the assembler 'help' is envoked.
YDEV_TOOL_MC33816_BI N%asnB16. exe -h

System Requirements

The MC33816 assembler is a command line tool that runs under in any Windows operating system such as
Windows XP, Windows 7, or Windows 8.

High-Level Programming Features

The ASH WARE %PRODUCT%> has several features above and beyond the basic assembler
functionality that ease the development process.

¢ auto-generation of a header file for inclusion in the host processor code, that simplifies initialization and
interaction with the MC33816.

e variable declarations that provide enhanced address space checking at build-time, and a better debug
experience at run-time. Additionally the variables are auto-located at ideal addresses with all location
information output into the auto-generated header file.

MC33816 Assembler, page 11 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

1. Introduction

e instruction extensions provide a concise method of building a series of instruction that, in many cases,
can be more efficiently generated by the assembler. For instance, a function call extension can be used
in which the assembler chooses either a far, or the more effecient relative jump instruction based on the
actual distance from the caller to the called function.

1.3.1 Variables

Symboalic variables can be used to allocate and specify data locations in the MC33816 Data RAM. The
symbolic declarations allow the assembler to auto-locate data items and output their location information in
the auto-header for proper host/simulator access. Using the variable symbols in the load/store/ldcd
instructions in user assembly make the code more readable and ensure that the proper address space is
accessed by the instruction. The MC33816 architecture supports two address space types :
immediate/global space, and indexed/banked space. Multiple "data banks" can declared and used via
indexed addressing, as the base address of this space can be changed on the fly.

See the Immediate/Global V ariables section for a description on how to declare and use global variables.

See the Auto-Header section for an example of the macros that are output for data addresses for use in
host code and simulator scripts. Note that due to the auto-locating capabilities of assembler, if using
variables then all data locations should be declared using variables as otherwise there is the possibility of
conflict between auto-located data and user-located data. The auto-locating algorithm is described in the
Data Banks section.

MC33816 Assembler, page 12 High-Level Programming Featuré&3 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Command Line Options

Part

MC33816 Assembler, page 13 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options

2

Command Line Options

Type the executable name with the -h command line parameter to generate a list of the available options.
AsnB16. exe —h

The assembler is called Asm816.exe, and it has the following format:
AsnmB16. exe <options> <Assenbl yFil e>

The following table is a complete listing of all supported command line options.

Display Help -h Off -h

This option overrides all
others and when it exists no
assembly is actually done.

Open Manual -man Off -man

Opens the electronic version
of this Assembler
Reference Manual.

Display Version -version Off -version

Displays the tool name and
version number and exits
with a non-zero exit code
without assembling.

Console Message V erbosity -verb=<N> 5 -verb=9
Control the verbosity of the |\vhere N can be in the range
message outpLi. of 0 (no console output) to 9
(verbose message output).

MC33816 Assembler, page 14 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options

ASH WARE, Inc. 6/8/2024

Cipher File -key=<FileName> none -
Controls which file is Used | Fijename is the name of the key=CipherDinlKey4.k
to generate the ciphered | Giper file ey
binary file. '
Global Mnemonic -GM=<Text> -GM=_FS_
The specified mnemonic
gets pre-pended to all
names in the auto-generated
header file and executable
image array C file. Thisis
useful when multiple images
are to be used at host load
time, thereby avoiding
naming conflicts.
Source File Search Paths -I=<PATH> -1=.\Include
Specifies any directories, | \yhere PATH is a text string | None
after the current one, tobe | rerresenting either a relative
searched for included files. | o apsolute directory path.
Multiple paths can be The entire option must be in
specified and they are quotes if the path contains
searched in the order of spaces
their appearance in the '
command line.
Disable a specific warning -warnDis=<ID> where ID | Off -WarnDis=41065
is the warning's
identification number.
Console Message Suppression | -verbSuppress=<TY PE> Off -verbSuppress=
Suppress console Messages | \vhere TY PE can be: SUMMARY

by their type/class. Multiple

types can be specified with
multiple —verbSuppress
options.

BANNER : the ETEC
version & copyright
banner.

SUMMARY :the
success/failure
warning/error count
summary line
WARNING : all warning
messages

INFO: all info messages

MC33816 Assembler, page 15

(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options

ERROR : all error
messages (does not
affect the tool exit code)

Console Message Style -msgStyle=<STYLE> ETEC -msgStyle=MSDV
Contrals the style of the where STYLE can be:
error/warning output
messages, primarily for - ETEC : default ETEC
integration with IDEs message style.

- GNU : output messages in
GNU-style. This allows
the default error parsers
of tools such as Eclipse to
parse ETEC output and
allow users to click on an
error message and go to
the offending source line.

- DIAB : output messages
in the style used by Diab
(WindRiver) compilers.

- MSDV : output in
Microsoft Developer
Studio format so that
when using the DevStudio
IDE errors/warnings can
be clicked on to bring
focus to the problem
source code line.

Console Message Path Style | -msgPath=<STY LE> ASIS -msgPath=ABS
Controls how the path and |y here STY LE can be:
filename are displayed on _ _
any warning/error messages | - AS_lS_._output the filename
that contain filename as it is input on the
information. c_ommand line (or found

via #include or search).

- ABS: output the filename
with its full absolute path.

Warning Disable -warnDis=<WARNID> Off (all -warnDis=33243
Disable a specific assembly warnings
warning via its numerical enabled)
identifier. Note that if a
warning is disabled and the -

MC33816 Assembler, page 16 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options ASH WARE, Inc. 6/8/2024

2.1

2.2

strict option is set, then the
warning will NOT cause the
return code to be non-zero.

Error on Warning -strict Off -strict
Turn any warning into an
assembly error.
<AsmFile> Name of the assembly file | None -
to assemble

File Naming Conventions

.DFlI Direct Fuel Injection assenbly file suffix
.ELF EI f/Dwarf file suffix
.h "C" | anguage style header file suffix

The Build Process

A single assembly file is assembled to create an elf file.

AsnB16. exe MyAsntFi | e. df i
Because the name of the output file was not specified, and because only a single input assembly file was
specified, the output file that is produced is named ‘MyAsmFile.elf' which is the same base name but with
the 'elf' suffix.
Multiple assembly files are assembled to create an elf file.

AsnB16. exe MyAsnti | el. dfi MyAsnFi |l e2.dfi -out=MyQutputFile.elf

The assembler returns zero upon success and a non-zero return code on failure. The return code can be
tested as follows can be tested as follows.

AsnB16. exe MyAsnti | e. df i
if 9ERRORLEVEL% EQU O (goto errors)

.errors

MC33816 Assembler, page 17 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Pragmas

Part

MC33816 Assembler, page 18 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

3. Pragmas ASH WARE, Inc. 6/8/2024

3

Pragmas

The ASH WARE MC33816 assembler supports various pragmas as described in this section.

3.1 Disabling the 'Unused Label' Warning

There are several reasons why a label might be unused. One reason is that a label can be used to help self-
document code. Ancther reason is that a label's address may be injected from the Host-CPU into a ram
location that the core can then load and jump to using an indirect call. A third reason is that a label might be
an entry or interrupt handler though the ISR label tag might (see the 'L abel Tags' section) be a more
appropriate method for disabling the warning in this case.

The following is an example of the use of the pragma for disabling the 'Unused Label' warning.
#pragma unused_| abel ok StocOnSsscTest StocOnGCsocTest

Note that multiple labels can be disabled with this pragma. Also note that multiple instance of this pragma
can be used.

The following example shows the code for loading a label's address from a variable and then calling the
label's address. Note that the label is only called when the variable is not zero so this essentially forms a
polling loop.
Wai t For Test Func:
| oad Test FuncAddr ir _ofs;
subi ir 0 ir;
jarr \WaitForTest Func zero;

cpir jri;
jtsf jri;
LOAD_ I R 0;

store ir TestFuncAddr _ofs;
j mpr Wi t For Test Func;

In order for a label to be called, the variable 'TestFuncAddr' must loaded with the label's address. In a real
system this would be done from the host MCU by writing a label's address acrass the SPI bus. Inthe ASH
WA RE scripting language this can be done using the following script command.

/'l Include the code's auto-define's file

MC33816 Assembler, page 19 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

3. Pragmas

/1 Note that this provides

#include "InstrStoc2 defines. h”

/'l Load the variable 'Test FuncAddr' with | abe
" del ayed_save_current _dacs' address.
write_spi_datal6(_AWB16DA | MM Test FuncAddr _,
_AWB16CL_del ayed_save_current _dacs_>>1);

3.2 Disabling the 'Unused Variable' Warning

If avariable is declared but is not used a message similar to the following will be generated.

AsnmB16 WARNI NG [193] file "InstrStocSi nOnly.psc" |ine 10: Unused
vari abl e: ' SomeUnusedVari abl e’

To disable this message the following pragma can be used.
#pragma unused_vari abl e_ok SomeUnusedVari abl e Anot her UnusedVari abl e

Note that multiple variables can be disabled with this pragma. Also note that multiple instance of this
pragma can be used.

MC33816 Assembler, page 20 Disabling the 'Unused Label' Warri{ig012-2024 ASHWARE, Inc. ASH WARE, Inc.

Notation and Syntax

Part

MC33816 Assembler, page 21 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

4. Notation and Syntax

A

Notation and Syntax

Decimal, hexadecimal, and binary notations are supported, as follows. All of the numbers shown below
yield the same weighting of 157 decimal in their load of the ‘mh’ register.

Decimal format:
I dirh 157 _rst;
Standard hexadecimal format:
[dirh Ox9D _rst;
Alternate hexadecimal format:
I dirh 9Dh _rst;
Binary format:

I dirh 10011101b _rst;

MC33816 Assembler, page 22 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Auto-Header File

Part

MC33816 Assembler, page 23 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

5. Auto-Header File

5

Auto-Header File

The auto-generated header file, or auto-header (or ‘defines)) file is output by the assembler for inclusion in
the host processor software build. 1t is also meant for inclusion into simulator script files. Itisa'C'
language compatible file with all information provided as a set of pre-processor macro #defines. It
contains

e code size and CRC checksum

o label address information for programming of entry points and interrupt vectors. Note that if the
_ENTRY and _ISR tags are used, those label address macros are broken out into their own sections.

e data (variable) location information, if symbolic variables are being used.
e databank member offset information, if databanks are being used
o the total data memory used

An example auto-header file looks like

/1 ASH WARE GENERATED MC33816 AUTO HEADER FI LE. COPYRI GHT ASH WARE | NC
2013-2014

/1 Wite this to 'Code_wi dth’
#define _AWB16AH CODE W DTH_ 0x0009

/1 Wite this to ' Checksum h'
#define _AWB16AH CHECKSUM HI GH_ 0xB9F4

/1 Wite this to ' Checksum|I'
#define _AWB16AH CHECKSUM LOW. 0x7226

/1 LABEL ADDRESSES
/1 Label addresses initialize entry points (UcX_ entry_point)
/1 and the follow ng Interrupt Service Routine address regisers:

/1 - Diag_routine_addr
/1 - Driver _disabled routine_addr
/1 - Sw_interrupt_routine_addr

MC33816 Assembler, page 24 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

5. Auto-Header File

ASH WARE, Inc. 6/8/2024

/1 NOTEL1:

/1

/| THEREFORE:
/1

/] NOTE2:
defi ne'

/1

| abel s addresses use BYTE addressing
whereas the regi sters use WORD addresses!

right shift the addrss one bit position

to formthe word address as foll ows:

/1 *(Ucl_entry_point_pnt) = AWB16CL_My_entry_point >> 1

Interrupt addresses are specified with just 6 bits!
/1 THEREFORE: It is recomrended to check the size of the 'l abe

as follows:

/1 #if _AWB16CL_My_software_interrupt_handl er _ >= 0x80
/1 #error The | SR address is beyond the valid (first 64 instructions)

range

/1 #endif

/1 ALTERNATI VELY (Sinul ator):
/1 verify pd816_isr_valid(_AWB16CL_My_software_i nterrupt_handl er_);

#def i

ne

_AWB16CL_START_

/1 VARl ABLE/ DATA ADDRESSES

11

/1 This section provides BYTE addresses for
/1 and indexed (banked or

0x0000

all the gl oba

data franme) variables declared in the code

/1

/1 d obal (inmrediate) variables (BYTE addresses)

#define _AWB16DA | MM M nCurrent _ 0x0020
#define _AWB16DA | MM MaxCurrent _ 0x0022
#define _AWB16DA | MM Vboost Hi gh_ 0x0024
#define _AWB16DA | MM Vboost Low_ 0x0026
/1

/1 I ndex variable (data bank) offsets (BYTE offsets)

/1 Data Bank declaration 'Injector’

#define _AWB16DA | DX | _boost _ 0x0000
#define _AWB16DA | DX | _peak_ 0x0002
#define _AWB16DA I DX | _hol d_ 0x0004
#define _AWB16DA | DX Tpeak_ tot 0x0006
#define _AWB16DA | DX Tpeak_off _ 0x0008
#define _AWB16DA | DX Tof f _ O0x000A
#define _AWB16DA | DX Thol d_tot _ 0x000C
#define _AWB16DA | DX Thol d_off _ 0x000E
#define _AWB16DB_SI ZE | nj ector _ 0x0010
/1

/1 Data bank base addresses (BYTE addresses)

#define _AWB16DA DB Injector_Inj1l_ 0x0000
#define _AWB16DA DB Injector_Inj2_ 0x0010
/1

/1 Total Data RAM All ocated

#define _AWB16AH DATA SI ZE 0x0028

MC33816 Assembler, page 25

(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Code RAM Files

Part

MC33816 Assembler, page 26 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

6. Code RAM Files ASH WARE, Inc. 6/8/2024

6

Code RAM Files

The assembler automatically generates files that contain the executable code (ciphered) in the form of aC

initialized array. The data and array definition are split into two files in order to provide enhanced flexibility
for the user in case they want to create their own array definition. The file names use the base output file

name, extended with "_code_ram.c,h". Below is an example of the two files (.h first, then .c):

/1 Code RAM opcode data

/1 Data packaged for inclusion into an array initializer

/ *0x000*/ Ox97CE, OxAF54, OxF788, 0x67BC, 0x280A, 0x088F, 0xC939,
0x3BC1,

/*0x010*/ OxE378, 0OxCBBO, 0x97D6, 0x7125, 0xC990, OxEOF6, 0x90C1,
OxCE5D,

/*0x020*/ 0x9241, Ox1DBC, O0xA445, O0x23ED, 0x65F2, 0x8775, 0x8309,
OxACA9,

/*0x030*/ 0Ox7771, 0x8313, OxF429, 0x53D7, 0x8171, OxE846, Ox9EO06,
Ox5E4D,

/*0x040*/ Ox5E99, OxF57B, OxClEA, 0x722B, 0x3756, 0x6217, 0x777B
OxE9B3,

/ *0x050*/ 0xC837, 0x2B92, 0Ox4BF4, O0xAA30, 0x168C, 0x848D, 0x04A4,
0x1C56,

/*0x060*/ OxA946, O0x7563, Ox7A84, O0xDA97, 0x49DB, 0x2B39, OxEEBE
0x20D0,

/*0x070*/ OxC9CC, 0x2602, OxF582, 0x3157, OxAE34, OxDF17, OxA9BF
OxFAF8,

/ *0x080*/ 0x5975, 0x67BB, 0x934D, OxA4FC, 0x4AB9, 0x8833, 0x6CD7,
0xD735,

/*0x090*/ Ox8D7A, 0x1D1B, O0x546E, O0xF24B, 0x1B80, 0x62B3, 0x9458,
0x9375,

/ *0x0A0*/ Ox17CE, OxCl1C, Ox3DCA, 0x7929, 0xCD53, OxE102, OxFAE3,
Ox27E8,

/*0x0B0*/ Ox3EBD, Ox7F49, Ox2FD8, 0xB28A, 0x7A2D, 0xD885, 0x303B
0x10CF,

/*0x0C0*/ 0x4180, OxA704, O0x7D15, 0x4773, 0xC89D, 0xC861, OxE2El
0xC06B,

/*0x0D0*/ 0xCB32, Ox7FB4, 0x8886, 0x1435, 0xBC3B, 0x1ABO, O0x3FDC
0xCAC1,

MC33816 Assembler, page 27 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

6. Code RAM Files

/ *OxOEO*/ O0x42E3, 0x1388, 0x26F5, 0x9D7C, 0Ox7B7A, 0xD362, OxAlA7,
0xC444,

/ *OxOF0*/ 0x6147, OxC88A, OxE94F, OxF636, OxA7ED, 0x4BCA, 0xA002,
0xAB60,

/*0x100*/ Ox1FFO, Ox2A61, Ox4ECO, OxCA52, OxE221, Ox60A0, 0x4121,
0xCALC,

/*0x110*/ Ox85ED,

And the auto-generated C code that defines the array by including the above file):

/1 Code RAM opcode data

/1 NOTE: this auto-generated code assunes the type 'uintl6_t' has been
defi ned

uintl6_t AN Diag chl code ramarray[] = {

#i ncl ude "AN _Di ag_chl _code_ram h"

b

int AN Diag _chl code ramarray_size =

si zeof (AN _Di ag_chl code ram array) / sizeof(uintl6_t);

Users can include this in their host MCU software in order to spin through when initializing the MC33816
viathe SPI bus.

MC33816 Assembler, page 28 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Data RAM Files

Part

MC33816 Assembler, page 29 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

7. Data RAM Files

v

Data RAM Files

The assembler automatically generates files that contain data RAM initial value data in the form of a C
initialized array. The data and array definition are split into two files in order to provide enhanced flexibility
for the user in case they want to create their own array definition. The file names use the base output file
name, extended with *_data_ram.c,h". Below is an example of the two files (.h first, then .c):

/1 Data RAM opcode data
/1 Data packaged for inclusion into an array initializer
/1 1t contains macros containing data initialization information

#i fndef __DATA_RAM I NI T16

#define _ DATA RAM I NI T16(addr, val)
#endi f

/1 macro nanme (address_or_offset , data_val ue)
__DATA RAM I NI T16(0x0000 , 0x0000
__DATA RAM I NI T16(0x0001 , 0x0000
__DATA RAM I NI T16(0x0002 , 0x0000
__DATA RAM I NI T16(0x0003 , 0x0000
__DATA RAM I NI T16(0x0004 , 0x0000
__DATA RAM I NI T16(0x0005 , 0x0000
__DATA RAM I NI T16(0x0006 , 0x0000
__DATA RAM I NI T16(0x0007 , 0x0000
__DATA RAM I NI T16(0x0008 , 0x0001
__DATA RAM I NI T16(0x0009 , OxFFFE
__DATA RAM I NI T16(OxO00A , 0x0003
__DATA RAM I NI T16(0x000B , 0x0004
__DATA RAM I NI T16(0x000C , 0x0005
__DATA RAM I NI T16(0x000D , 0x0006
__DATA RAM I NI T16(OxO00E , 0x0007
__DATA RAM I NI T16(OxO00F , 0x0008
__DATA RAM I NI T16(0x0010 , 0x0000
__DATA RAM I NI T16(0x0011 , OxFF85
__DATA RAM I NI T16(0x0012 , 0x1800
__DATA RAM I NI T16(0x0013 , 0x0000

N e N N N N e N N N N N N N N N N N N N

MC33816 Assembler, page 30 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

7. Data RAM Files ASH WARE, Inc. 6/8/2024

And the auto-generated C code that defines the array by including the above file):

/1 Data RAM opcode data
/1 NOTE: this auto-generated code assunes the type 'uintl6_t' has been

defi ned
/1 1t contains a data array with initialization information.
/1 The data array is created using data initialization macros.

uint1l6_t Variables data_ramarray[] = {

#undef _ DATA RAM I NI T16

#define _ DATA RAM I NI T16(addr, val) val,

#i ncl ude "Vari abl es_data_ram h"

#undef _ DATA RAM I NI T16

}

int Variables_data ram array_size = sizeof(Variables data ram array) /
sizeof (uint16_t);

Users can include this in their host MCU software in order to spin through when initializing the MC33816
data RAM viathe SPI bus.

The data is packaged in macro form so that it can also be included into simulator script files - use the
following macro definition to make it work:

#define _ DATA RAM I NI T16(waddr, val) wite_spi_datal6(waddr<<1,
val) ;

See the variable and databank sections for information on the syntax for specifying initialization data.

MC33816 Assembler, page 31 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Listing Files

Part

MC33816 Assembler, page 32 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

8. Listing Files ASH WARE, Inc. 6/8/2024

8

Listing Files

The assembler generates a listing file for each source file that contains opcodes. The name of each listing
file is the base name of the original source file, with"_listing.dfi" added. The extension "dfi" is used to
indicate the file is uses original NXP assembler format (and can thus be assembled by those tools). The
output listing files are created as read-only as they should not be edited.

MC33816 Assembler, page 33 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Label Tags

Part

MC33816 Assembler, page 34 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

9. Label Tags ASH WARE, Inc. 6/8/2024

9

Label Tags

Labels can be marked with the "_ISR" tag to alert the assembler that the label represents an interrupt
service routine entry point. This serves the following purposes. First, it allows the assembler to perform a
check on the label address to make sure it is within the valid range (first 64 opcode addresses). Second, it
automatically disables the "unused label" warning as it is unlikely this label is the destination of any code
jumps. Third, the label address it output into a special section of the defines file that makes it easy to find.

ISR chO_auto_di ag_i sr:
stos off off off; // disable all drivers
/1

Similar tothe " _ISR" tagisthe " ENTRY" tag - used to denote a label that will get used as a microcore
entry point. The main purpose for this tag is to prevent the "unused label" warning, as typically these labels
will not have a jump to them from anywhere in the code. They are also broken out into their own area of
the auto-defines file.

_ENTRY entry_ucl:

MC33816 Assembler, page 35 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Variables

Part

MC33816 Assembler, page 36 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

10. Variables ASH WARE, Inc. 6/8/2024

10

Variables

V ariables can be used to bring some structure to the assembly language.

10.1 Immediate/Global Variables

Declaration syntax for immediate (global) variables is
<type> <vari abl eNane>;

All data in the MC33816 is 16-bit. Two types are currently supported - 'sint16' and 'uintl6' - the former a
signed 16-hit integer and the latter an unsigned 16-bit integer. The type does not affect the assembly
process, and is only used when working with the variable in the simulator debug environment. Variable
names must conform to 'C' naming conventions - *_* and alphanumeric characters, must not start with a
digit.

/'l current threshold paraneters

uint16 | _boost;

uint 16 | _peak;

sint16 | _hol d;

Although the address space, immediate vs. indexed, is built into the variable declaration, when variables are
referenced in load/store/ldcd instructions the offset field still needs to be specified, and will be cross-
checked against the variable's address space.

BOOST: | oad | _boost dac_sssc _ofs;

The immediate and global variable locations are exported into an auto-header file which is appropriate for
use by the host processor.

Initial values for the variables can be specified with C-like initializers - the values specified are output into
the auto-generated _data_ram,.[c,h] files.

/'l current threshold paraneters
uint16 | _boost = 0x1234;

uint16 | _peak 536;

sint1l6 | _hold -67;

MC33816 Assembler, page 37 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

10. Variables

10.2

10.3

Enabling Initialized Data in the Simulator

In the host CPU files <BaseFileName>_data.h and <BaseFileName>_data.c generate a data array that
gets copied across the SPI bus to perform the global and databank initialization.

The mechanism used in the simulator is to include the .h version of the initialized data files after defining the
macro that initializes these values. The code below can be copied into your script command file to perform
this initialization. Note that the following code works when the .elf file's name is ‘MyCode.elf'.

#define _ DATA RAM I NI T16(addr, val) *((MC33816_SPI _SPACE Ul6 *)
(addr<<1)) = val;
#i ncl ude "MyCode_data_ram h"

Data Banks Variables

Indexed variables are declared in a two step process. First, a data bank structure is declared, followed by
defining one or more instances of the data bank. A data bank structure is used to define a cohesive set of
indexed data, and has a syntax similar to a C struct declaration.

/'l Declare a databank
dat abank | njector {
uint16 | _peak;
uintl16 | _hol d;
b
Once a databank has been declared, instances of it can be created. These instance symbols can then be
used in the code to set the index base address.

/1 Allocate two databanks of type 'lInjector’

dat abank Injector _injectorl;

dat abank I njector _injector?2;

/1

/1 set the index base address to the _injectorl databank address
stab _injectorl;

/1

/1 Fromthe active databank (currently ' _injectorl')

/1 load variable "I _peak' into register 'rQ'

| oad | _peak r0 ofs;

Note that immediate/global variables and databank instances must be defined before being referenced in
code.

The auto-locating algorithm is straightforward. Globals/immediates and databank instances get located in
the order they are traversed in the source code.

The data bank locations and member variable offsets within the databank are exported into an auto-header
file which is appropriate for use by the host processor.

Initial values for the databank instances can be specified with C-like initializers - the values specified are
output into the auto-generated _data_ram,.[c,h] files. The number of initializers must match the number of
databank members.

/'l Allocate two dat abanks of type 'lInjector’

MC33816 Assembler, page 38 Enabling Initialized Data in the Sim(#829¥2-2024 ASHWARE, Inc. ASHWARE, Inc.

10. Variables ASH WARE, Inc. 6/8/2024

dat abank Injector _injectorl
dat abank I njector _injector2

{ 0x440, 123 };
{ 500, 0x230, };

The address of the databank can be loaded into the IR register as follows:
LOAD IR @i njectorl;
Be sure to set the set the IR register as the index register before accessing databank variables.

stab ir; // Set the "ir' register as the index register
| oad | _peak r0 ofs;

The address of a databank variable can also be loaded directly. When accessing databank variables, do so
directly with the address set to zero.

LOAD IR @injectorl.l_hold;
load 0 r0 ofs; [// Load the I_hold paraneter into register 'r0

MC33816 Assembler, page 39 Data Banks Variables (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Extended Instructions

Part

MC33816 Assembler, page 40 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

11. Extended Instructions ASH WARE, Inc. 6/8/2024

11

Extended Instructions

Extended instructions have been provided in cases where the assembler can generally choose better
opcodes than a human. Consider the case of a jump. The are are two versions; 'far' and 'near’.
Depending on the situation, one of these is always going to be optimal over the other. However, it is
difficult for humans to track (as code is added/subtracted from a design and as coders arrive/leave on a
project) which opcode choice is optimal. So this choice is best left to the assembler and the use of
extended instructions provides a mechanism for doing so.

The following extended instructions are supported. Note that these are documented alongside their native
instructions.

e CALL

o CREATE WAIT _ENTRY
e LOAD_IR

e JUMP

e JUMP ARITHMETIC
e JUMP_CONDITION
e JUMP CONTROL

e JUMP _CORE ID

e JUMP_FEEDBACK

e JUMP START

e JUMP _STATUS

MC33816 Assembler, page 41 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Instruction Set

Part

MC33816 Assembler, page 42 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

12. Instruction Set ASH WARE, Inc. 6/8/2024

12

Instruction Set

This section covers the MC33816 I nstruction Set.

MC33816 Assembler, page 43 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Walit

Part

MC33816 Assembler, page 44 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait ASH WARE, Inc. 6/8/2024

13

Walit

The MC33816 is an event/response machine. An event occurs and then code executes that handles that
event.

The wait instructions are the key to this behavior. The core waits at a 'wait' instruction for an event to
occur.

Although there are many possible event sources, such as sense current to reach a threshold or a timer to
reach its terminal count, the core can only be waiting for up to five different events to occur at any one wait
instruction.

These pending events are configured as rows in a five-row wait table. Each of the five rows the the wait
table must be configured with the 'cwef' and 'cwer" instructions.

Once arow is configured with the 'cwef' or ‘cwer' instruction the row is 'sticky" in that it will not change
until re-configured with a future ‘cwef' or "‘cwer" instruction.

13.1 CWEF - create wait table entry far

Initializes or changes one of the five rows in the wait table used by the ‘wait' instruction.

The address of the code that will execute in response to the row's event is is in either the 'jr1’ or jr2' register
as specified by the 'IrSel' parameter.

The event type is specified by the 'Cond' parameter.

Note that once the wait table row is stickky such that once the jump register's address is loaded into the
wait table, the jump register is free to be used for other purposes.

Syntax
cwef JrSel Cond Entry;

Example

/1l Set the wait table's row 2 event
/1 to be the VBoost voltage reaching t's threshold
cwer vboost _hit_threshold vb row2;

MC33816 Assembler, page 45 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

// Set the wait table's row 3 event

// to be when the core's own current sense threshold is reached

/1 Note that if the destination is over 16 opcodes away
/1 then this 2-instruction 'far' opcode pair is required
ldjrl own_current _hit_threshol d;

cwef jrl ocur row3;

/1l Set the wait table's row 5 event

/1 to be the counter 1 reaching it's term nal count

/1 NOTE: This is the extended instruction that

/1 automatically selects the nore opti nal

/1 of either cwer or cwef

CREATE_WAI T_ENTRY counter3_termnal jrl tc3 rowb;

/| Cease execution until row 2's, 3's, or 5 s event occurs

wait row235;
vboost _hit _threshol d:

/'l ... More code here ..
own_current _hit_threshol d:
/'l ... More code here ..
counter3_term nal

/'l ... More code here ..

JrSel - Specifies which jump register with which to load the wait table row.

jrl
jr2

Jump Register 1
Jump Register 2

Cond - The event or condition that will envoke the row's event-handling code.

fo
f
7
13
4
15
16
f7
18
19
10
f11
f12
113
114
115
fo
f1
2
3
f4
5
6

FlagO (internal flag and pin) is low

Flagl (internal flag and pin) is low

Flag2 (internal flag and pin) is low

Flag3 (possibly also the 'Start1' pin) is low
Flag4 (possibly also the 'Start2' pin) is low
Fagb (possibly also the 'Start3' pin) is low
Flagb6 (possibly also the 'Start4' pin) is low
Flag7 (possibly also the 'Start5' pin) is low
Flag8 (possibly also the 'Start6' pin) is low
Flag9 (possibly also the 'IRQB' pin) is low
Flag10 (possibly also the 'OA_1' pin) is low
Flagl1 (possibly also the 'OA_2' pin) is low
Flag12 (possibly also the '‘DBG pin) is low
Hagl3is low

Flagl4 is low

Flagl5is low

FlagO (internal flag and pin) is high

Flagl (internal flag and pin) is high

Flag2 (internal flag and pin) is high

Flag3 (possibly also the 'Start1' pin) is high
Flag4 (possibly also the 'Start2' pin) is high
Fagb (possibly also the 'Start3' pin) is high
Flagb6 (possibly also the 'Start4’ pin) is high

MC33816 Assembler, page 46

CWEF - create wait table entry fé® 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

13. Wait ASH WARE, Inc. 6/8/2024

f7 Flag7 (possibly also the 'Start5' pin) is high

f8 Flag8 (possibly also the 'Start6' pin) is high

f9 Flag9 (possibly also the 'IRQB' pin) is high

f10 Flag10 (possibly also the 'OA_1' pin) is high

f11 Flagl1 (possibly also the 'OA_2' pin) is high

f12 Flag12 (possibly also the 'DBG ' pin) is high

f13 Flag13 is high

f14 Flagl4 is high

f15 Flagl5 is high

tcl Counterl has reached it's terminal count

tc2 Counter?2 has reached it's terminal count

tc3 Counter3 has reached it's terminal count

tca Counter4 has reached it's terminal count

_start Core's own configured start pin combination not met

start Core's own configured start pin combination is met

_sclv Core's own output driver shortcut 1 below Drain-Source
voltage threshold

_sc2v Core's own output driver shortcut 2 below Drain-Source
voltage threshold

_sc3v Core's own output driver shortcut 3 below Drain-Source
voltage threshold

_scls Core's own output driver shortcut 1 below Source voltage
threshold

_sc2s Core's own output driver shortcut 2 below Source voltage
threshold

_sc3s Core's own output driver shortcut 3 below Source voltage
threshold

sclv Core's own output driver shortcut 1 above Drain-Source
voltage threshold

sc2v Core's own output driver shortcut 2 above Drain-Source
voltage threshold

sc3v Core's own output driver shortcut 3 above Drain-Source
voltage threshold

opd Multi-cycle instruction (mul/shift,etc) has completed

vb boost voltage is above threshold

_vb boost voltage is below threshold

curl Channel 1, core 0 sense resistor current above threshold

cur2 Channel 1, core 1 sense resistor current above threshold

cur3 Channel 2, core 0 sense resistor current above threshold

curdl Channel 2, core 1 sense resistor current above 'low' threshold

curdh Channel 2, core 1 sense resistor current above 'high' threshold

curdn Channel 2, core 1 sense resistor current above 'negative’
threshold

_curl Channel 1, core 0 sense resistor current below threshold

_cur2 Channel 1, core 1 sense resistor current below threshold

_cur3 Channel 2, core 0 sense resistor current below threshold

_curdl Channel 2, core 1 sense resistor current below 'low' threshold

_curdh Channel 2, core 1 sense resistor current below 'high' threshold

_curdn Channel 2, core 1 sense resistor current below 'negative’
threshold

MC33816 Assembler, page 47 CWEF - create wait table entry f&# 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

13. Wait

ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

Entry - Sets the wait table's row that gets written

rowl Write row1's event and event-handling code address
row2 Write row2's event and event-handling code address
row3 Write row3's event and event-handling code address
row4 Write row4's event and event-handling code address
rows Write row5's event and event-handling code address

13.2 CWER - create wait table entry relative

Initializes or changes one of the five rows in the wait table used by the ‘wait' instruction.

The 'Dest’ parameter specifies the address of the event-handling code that will execute in response to the
event.

The event type is specified by the 'Cond' parameter.

Syntax
cwer Dest Cond Entry;

Example

/1 Set the wait table's row 2 event

/1l to be the flag register's bit9 being | ow

cwer flag bit_9 is 1 f9 rowz;

/1 Set the wait table's row 3 event

/1 to be when the core's own current sense threshold is reached
/1 Note that if the destination is over 16 opcodes away
/1 then this 2-instruction 'far' opcode pair is required
Idjrl own_current_hit_I|ow_threshol d;

cwef jrl _ocur rows;

/1l Set the wait table's row 5 event

/1 to be the counter 1 reaching it's term nal count

/1 NOTE: This is the extended instruction that

/1 automatically selects the nore opti nal

/1 of either cwer or cwef

CREATE_WAI T_ENTRY counter2_ternminal jrl tc2 rows;

/| Cease execution until row 2's, 3's, or 5's event occurs

wait row235;

flag_bit_9 is_ 1:

/1 ... More code here ..
own_current _hit_|ow_threshol d:
/1 ... More code here ..
counter2_term nal

/1 ... More code here ..

Dest - The address of the row's event-handling code.

MC33816 Assembler, page 48 CWEF - create wait table entry fé&F 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait ASH WARE, Inc. 6/8/2024

Cond - The event or condition that will envoke the row's event-handling code.

_fo FlagO (internal flag and pin) is low

_f1 Flagl (internal flag and pin) is low

_f2 Flag2 (internal flag and pin) is low

_f3 Flag3 (possibly also the 'Start1' pin) is low

_f4 Flag4 (possibly also the 'Start2' pin) is low

5 Flagb (possibly also the 'Start3' pin) is low

_f6 Flag6 (possibly also the 'Start4' pin) is low

_f7 Flag7 (possibly also the 'Start5' pin) is low

_f8 Flag8 (possibly also the 'Start6' pin) is low

_f9 Flag9 (possibly also the 'IRQB' pin) is low

_f10 Flag10 (possibly also the 'OA_1' pin) is low

_fl1 Flagll (possibly also the 'OA_2' pin) is low

_f12 Flag12 (possibly also the '‘DBG pin) is low

_f13 Flagl3 is low

_f14 Flagl4 is low

_f15 Flagl5is low

fO FlagO (internal flag and pin) is high

fl Flagl (internal flag and pin) is high

f2 Flag2 (internal flag and pin) is high

f3 Flag3 (possibly also the 'Start1' pin) is high

f4 Flag4 (possibly also the 'Start2' pin) is high

f5 Flagb (possibly also the 'Start3' pin) is high

f6 Flag6 (possibly also the 'Start4’ pin) is high

f7 Flag7 (possibly also the 'Start5' pin) is high

f8 Flag8 (possibly also the 'Start6' pin) is high

f9 Flag9 (possibly also the 'ITRQB' pin) is high

f10 Flag10 (possibly also the ‘OA_1' pin) is high

f11 Flagl1 (possibly also the 'OA_2' pin) is high

f12 Flag12 (possibly also the '‘DBG' pin) is high

f13 Flag13 is high

f14 Flagl4 is high

f15 Flagl5 is high

tcl Counter1 has reached it's terminal count

tc2 Counter2 has reached it's terminal count

tc3 Counter3 has reached it's terminal count

tca Counter4 has reached it's terminal count

_start Core's own configured start pin combination not met

start Core's own configured start pin combination is met

_sclv Core's own output driver shortcut 1 below Drain-Source
voltage threshold

_Sc2v Core's own output driver shortcut 2 below Drain-Source
voltage threshold

_sc3v Core's own output driver shortcut 3 below Drain-Source
voltage threshold

_scls Core's own output driver shortcut 1 below Source voltage
threshold

_sc2s Core's own output driver shortcut 2 below Source voltage
threshold

MC33816 Assembler, page 49 CWER - create wait table entry rel&&h912-2024 ASHWARE, Inc. ASH WARE, Inc.

13. Wait

_SC3s
sclv
Ssc2v
sc3v

opd
vb
_Vvb
curl
cur?2
cur3
curdl
curdh
curdn

_curl
_cur2
_cur3
_curdl
_curdh
_curdn

ocur
_ocur

Core's own output driver shortcut 3 below Source voltage
threshold

Core's own output driver shortcut 1 above Drain-Source
voltage threshold

Core's own output driver shortcut 2 above Drain-Source
voltage threshold

Core's own output driver shortcut 3 above Drain-Source
voltage threshold

Multi-cycle instruction (mul/shift,etc) has completed

boost voltage is above threshold

boost voltage is below threshold

Channel 1, core 0 sense resistor current above threshold
Channel 1, core 1 sense resistor current above threshold
Channel 2, core 0 sense resistor current above threshold
Channel 2, core 1 sense resistor current above 'low' threshold
Channel 2, core 1 sense resistor current above 'high' threshold
Channel 2, core 1 sense resistor current above 'negative’
threshold

Channel 1, core 0 sense resistor current below threshold
Channel 1, core 1 sense resistor current below threshold
Channel 2, core 0 sense resistor current below threshold
Channel 2, core 1 sense resistor current below 'low' threshold
Channel 2, core 1 sense resistor current below 'high' threshold
Channel 2, core 1 sense resistor current below 'negative’
threshold

Core's own current sense above threshold

Core's own current sense below threshold

Entry - Specifies which wait table row gets written

rowl
row2
row3
rowd
rows

Write row1's event and event-handling code address
Write row2's event and event-handling code address
Write row3's event and event-handling code address
Write row4's event and event-handling code address
Write row5's event and event-handling code address

13.3 Filla'Wait Table' row with an event and an event-handling thread's
code-address (extended instruction)

Call to the label, loading/using the specified jump register only if a far jump is required.

Syntax

CREATE_WAI T_ENTRY Dest JrSel Cond Entry;

Example

/1l Set the wait table's row 2 event

MC33816 Assembler, page 50

CWER - create wait table entry rel &@\#912-2024 ASHWARE, Inc. ASH WARE, Inc.

13. Wait ASH WARE, Inc. 6/8/2024

/1 to be the flag register's bit 13 being | ow

/1 NOTE: This is the extended instruction that

/1 automatically selects the nore opti nal

/1 of either cwer or cwef

CREATE_WAI T_ENTRY flag_reg_bit_13 low jrl 13 row2;
/1l Set the wait table's row 5 event

/1 to be the counter 1 reaching it's term nal count
CREATE_WAI T_ENTRY counter1l termnal jrl tcl rowb;

/| Cease execution until row 2's, 3's, or 5 s event occurs
wait row2s;

flag_reg_bit_13 | ow

/'l ... More code here ...

counterl termnal:

/'l ... More code here ...

Dest - The destination label of the wait entry.
JrSel - Specifies which jump register to use if a far address load is required.

jrl Jump Register 1
jr2 Jump Register 2

Cond - The event or condition that will envoke the row's event-handling code.

_fo FlagO (internal flag and pin) is low

f1 Flagl (internal flag and pin) is low

_f2 Flag2 (internal flag and pin) is low

_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flagb (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flagl1 (possibly also the 'OA_2 pin) is low
_f12 Flag12 (possibly also the '‘DBG ' pin) is low
_f13 Flagl3is low

_f14 Flagl4 is low

_f15 Flagl5is low

fo FlagO (internal flag and pin) is high

fl Flagl (internal flag and pin) is high

f2 Flag2 (internal flag and pin) is high

f3 Flag3 (possibly also the 'Start1' pin) is high
fa4 Flag4 (possibly also the 'Start2' pin) is high
5 Flagb (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high
f7 Flag7 (possibly also the 'Start5' pin) is high
f8 Flag8 (possibly also the 'Start6' pin) is high
f9 Flag9 (possibly also the 'ITRQB' pin) is high
f10 Flag10 (possibly also the 'OA_1' pin) is high

MC33Bil6 & sdaibleappaigeoBl with an event and an event-handling thread'6Ct 8efle-3erdraSH @AREN MR & THSMWARS tha)

13. Wait

f11
f12
f13
f14
f15
tcl
tc2
tc3
tca
_start
start
_sclv

_sc2v
_Sc3v
_scls
_sc2s
_sc3s
sclv
sc2v
sc3v

opd
vb

curl
cur?2
cur3
curdl
curdh
curdn

_curl
_cur2
_cur3
_curdl
_curdh
_curdn

ocur
_ocur

Flagl1 (possibly also the 'OA_2' pin) is high

Flag12 (possibly also the ‘DBG' pin) is high

Flagl3 is high

Flagl4 is high

Flagl5s is high

Counter1 has reached it's terminal count

Counter2 has reached it's terminal count

Counter3 has reached it's terminal count

Counter4 has reached it's terminal count

Core's own configured start pin combination not met
Core's own configured start pin combination is met
Core's own output driver shortcut 1 below Drain-Source
voltage threshold

Core's own output driver shortcut 2 below Drain-Source
voltage threshold

Core's own output driver shortcut 3 below Drain-Source
voltage threshold

Core's own output driver shortcut 1 below Source voltage
threshold

Core's own output driver shortcut 2 below Source voltage
threshold

Core's own output driver shortcut 3 below Source voltage
threshold

Core's own output driver shortcut 1 above Drain-Source
voltage threshold

Core's own output driver shortcut 2 above Drain-Source
voltage threshold

Core's own output driver shortcut 3 above Drain-Source
voltage threshold

Multi-cycle instruction (mul/shift,etc) has completed

boost voltage is above threshold

boost voltage is below threshold

Channel 1, core 0 sense resistor current above threshold
Channel 1, core 1 sense resistor current above threshold
Channel 2, core 0 sense resistor current above threshold
Channel 2, core 1 sense resistor current above 'low' threshold
Channel 2, core 1 sense resistor current above 'high' threshold
Channel 2, core 1 sense resistor current above 'negative’
threshold

Channel 1, core 0 sense resistor current below threshold
Channel 1, core 1 sense resistor current below threshold
Channel 2, core 0 sense resistor current below threshold
Channel 2, core 1 sense resistor current below 'low' threshold
Channel 2, core 1 sense resistor current below 'high' threshold
Channel 2, core 1 sense resistor current below 'negative’
threshold

Core's own current sense above threshold

Core's own current sense below threshold

MC33Bil6 & sdaibleappaigeoB2with an event and an event-handling thread'6Ct 8efle-3erdraSH @AREN MR & FHSWARS tha)

13. Wait ASH WARE, Inc. 6/8/2024

13.4

Entry - Specifies which wait table row gets written

rowl Write row1's event and event-handling code address
row2 Write row2's event and event-handling code address
row3 Write row3's event and event-handling code address
rowd Write row4's event and event-handling code address
rows Write row5's event and event-handling code address

WAIT - wait until a condition is verified

stop the program counter and wait until at least one of the enabled wait conditions is met; when one of the
conditions is met, the program counter is moved to the corresponding destination

the possible wait conditions, along with the corresponding destinations, are stored in the wait table (please
refer to the cwer and cwef instructions for further details)

not all wait table rows are enabled during a wait

- waitmask is a 5-bit mask; each bit identifies a row in the wait table; if the bit is set to 1 then the
correspondent condition is tested during the wait

Syntax

wai t Wi t Mask;

Example

/1 Map the wait table's rowl

// to the HOLD OFF thread

/1 when the core's Om Current Sense conparator
/1 becomes high (occur)

cwer HOLD_OFF ocur rowl;

/1

/1 Map the wait table's row3

/1 to the IDLE thread

/1 on Term nal Count 2 (TC2)

cwer |DLE tc2 row3;

/1

/1 Enable rows 1 and 3, disable the others.
/'l Cease core's execution until the

/1l event in either 1 or 3 are true

wait rowl3;

/1

/1 Thread: |DLE

| DLE:

/1 ... (nore code here)

/1

/'l Thread: HOLD OFF

HOLD_OFF:

/1 ... (nore code here)
WaitM ask

MC33Bil6 & sdaibleappaigoBBwith an event and an event-handling thread'6Ct 8efle-3erdraSH EAREN MR & FHSMARS thn)

13. Wait

always MISSING DESCRIPTION STRING
rowl MISSING DESCRIPTION STRING
row2 MISSING DESCRIPTION STRING
rowl2 MISSING DESCRIPTION STRING
row3 MISSING DESCRIPTION STRING
rowl3 MISSING DESCRIPTION STRING
row23 MISSING DESCRIPTION STRING
rowl23 MISSING DESCRIPTION STRING
row4 MISSING DESCRIPTION STRING
rowls MISSING DESCRIPTION STRING
row24 MISSING DESCRIPTION STRING
rowl24 MISSING DESCRIPTION STRING
row34 MISSING DESCRIPTION STRING
rowl34 MISSING DESCRIPTION STRING
row234 MISSING DESCRIPTION STRING
rowl234 MISSING DESCRIPTION STRING
rows MISSING DESCRIPTION STRING
rowls MISSING DESCRIPTION STRING
row25 MISSING DESCRIPTION STRING
rowl25s MISSING DESCRIPTION STRING
row35 MISSING DESCRIPTION STRING
rowl3s MISSING DESCRIPTION STRING
row235 MISSING DESCRIPTION STRING
rowl235 MISSING DESCRIPTION STRING
row4s MISSING DESCRIPTION STRING
rowl4s MISSING DESCRIPTION STRING
row245 MISSING DESCRIPTION STRING
rowl245 MISSING DESCRIPTION STRING
row345 MISSING DESCRIPTION STRING
rowl34s MISSING DESCRIPTION STRING
row2345 MISSING DESCRIPTION STRING
rowl2345 MISSING DESCRIPTION STRING

MC33816 Assembler, page 54 WAIT - wait until a condition is ver{f)e212-2024 ASHWARE, Inc. ASH WARE, Inc.

Call/Return

Part

MC33816 Assembler, page 55 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

14. Call/Return

14

Call/Return

This section covers the instructions that support calling and returning from subroutines.

14.1 JTSF -Jump far to subroutine

Jump to the subroutine specified by one of the jump registers, 'jrl' or 'jr2' as specified by the 'JrSel
parameter. The subroutine's address must have been previously loaded into either ‘jrl’ or 'jr2.

The return address is loaded into the auxiliary register (aux.)

Following subroutine execution the return from subroutine instruction 'rfs' is used to return to the point at
which the subroutine was called.

Syntax
jtsf JrSel;

Example

/1 Load the subroutine address

/1 into junp register 1 '"jrl'" and call it
Idjrl my_far_subroutine;

jtsf jri;

/1 ... (nore code here)

/1 Start of subroutine

my_far_subroutine:

/1 ... (nore code here)
/1 Return from subrouting
rfs;

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
CALL ny_far_subroutine jri,

JrSel - The subroutine's start address

jrl Jump Register 1
jr2 Jump Register 2

MC33816 Assembler, page 56 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

14. Call/Return ASH WARE, Inc. 6/8/2024

14.2 JTSR-Jump relative to subroutine

Jump to a subroutine. The subroutine must be within -16 to +15 instructions of the address of the jump
instruction.

The return address is loaded into the auxiliary register (aux.)

Following subroutine execution the return from subroutine instruction 'rfs' is used to return to the point at
which the subroutine was called.

Syntax

jtsr Dest;
Example

/1 call subroutine 'my_near_subroutine'
jtsr ny_near_subroutine;

/1 ... (nore code here)

/1l Start of subroutine

my_near _subrouti ne:

/1 ... (nore code here)
/1 Return from subrouting
rfs;

Il

/1 SUGGESTI ON: use this equival ent extended instruction instead:
CALL ny_near_subroutine jr1;

Dest - The jump destination code address.

14.3 Call a subroutine (extended instruction)
Call to the label, loading/using the specified jump register only if a far jump is required.
Syntax
CALL Dest Jr Sel;

Example

/1 Call destination |abel 'nmy_subroutine', using jrl if necessary
CALL my_subroutine jri;

/1 ... (nore code here)

/1 Start of subroutine

my_subrouti ne:

/1 ... (nore code here)
/1 Return from subrouting
rfs;

Dest - The call destination label.

JrSel - Specifies which jump register to use if a far call is required.

MC33816 Assembler, page 57 JTSF - Jump far to subroutine(C) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

14. Call/Return

jrl Jump Register 1
jr2 Jump Register 2

14.4 RFS - Return from subroutine

Ends a subroutine. The program counter (pc) is loaded with the value from the auxiliary register (aux). The
‘aux’ register should have been loaded with the calling address using either the 'jtsf' or 'jtsr* instruction.

Syntax

rfs;
Example

/'l Save the address of the caller

/1 and call a two-deep subroutine
one_deep_subrouti ne:

cp aux rl;

Idjrl two_deep_subroutine;

jtsf jri;

/'l ... (nmore code here)

/'l Restore the original caller's address
/1 and return

cp rl aux;

rfs;

/1

two_deep_subrouti ne:

/'l ... (nmore code here)
/1l return from subroutine
rfs;

MC33816 Assembler, page 58 Call a subroutine (extended instrudfbh?dl2-2024 ASHWARE, Inc. ASH WARE, Inc.

Program Flow

Part

MC33816 Assembler, page 59 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

15

Program Flow

This section covers conditional and unconditional jumps as well as loading the jump registers which is
required for ‘far' jumps.

15.1 LDJR1-Load jump register 1

Loads a code address into jump register 1 (jrl.)

Syntax
I dj r1 Dest Val ue;
Example
Idjrl clear_results_subroutine;
jtsf jra;
/1

clear _results_subroutine:
DestValue - The code address.

15.2 LDJR2-Load jump register 2

Loads a code address into jump register 2 (jr2.)

Syntax
I dj r2 Dest Val ue;
Example
Idjr2 my_sub_routine;
jtst jrz;
/1

my_sub_routi ne:

MC33816 Assembler, page 60 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

DestValue - The code address.

15.3 JMPF - Unconditional jump far

Jump to the code address specified by one of the jump registers, 'jrl' or 'jr2' as specified by the 'IrSel
parameter. The destination code address must have been previously loaded into either 'jr1' or 'jr2'.
Syntax

j mpf Jr Sel ;
Example

/1 Junmp to | abel 'far_dest | abel’
Idjrl far_dest _I abel;

jmpf jri;

/'l ... (nmore code here)
far_dest | abel:

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUWP far_dest | abel jri;

JrSel - Specifies which jump register contains the jump destination.

jrl Jump Register 1
jr2 Jump Register 2

15.4 JMPR -Unconditional jump relative

Jump to a code address. The destination must be within -16 to +15 instructions of the address of the jump
instruction.
Syntax
j mpr Dest;
Example

/1 Junmp to |abel 'junp_dest | abel"
j npr near _junp_dest | abel;

/'l ... (nmore code here)
near _junp_dest | abel:
/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP near _junp_dest | abel jr1;

Dest - The jump destination code address.

MC33816 Assembler, page 61 LDJR2 - Load jump register 2(C) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow

15.5 Unconditionally jump (extended instruction)
Jump to the label, loading/using the specified jump register only if a far jump is required.

Syntax
JUWP Dest JrSel;
Example

/1 Unconditionally junp to ' DEST_LABELO'
/1 using jrl if necessary

JUMP DEST_LABELO jr1;

/1 ... (nore code here)

DEST_LABELO:

Dest - The jump destination label.
JrSel - Specifies which jump register to use if a far jump is required.

jrl Jump Register 1
jr2 Jump Register 2

15.6 JARF -Jump on arithmetic register far

If the condition being tested is true, jump to the code address specified by one of the jump registers, 'jrl' or
'Ir2 as specified by the 'IrSel' parameter. The code address must have been previously loaded into either
jrl or 'jr2.

Syntax
jarf JrSel BitSel;

Example

/1 1f register 'rQ" contains a '7'
/1 then goto |abel 'result_is_zero'
subi r0 7 r1,

ldjrl result_is_zero;

jarf jril sgn;

/1 ... (nore code here)
result _is_zero:
/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUVP_ARI THVETI C result _is_zero jrl sgn;

JrSel - Specifies which jump register contains the jump destination.

jrl Jump Register 1
jr2 Jump Register 2

BitSel - The condition being tested.

MC33816 Assembler, page 62 Unconditionally jump (extended instri¢:8@¥2)2024 ASH WARE, Inc. ASHWARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

opd OD - Multi-cycle instruction (mul/shift,etc) has completed
ovs SO - Overflow with signed operands

uns SU - Underflow with signed operands
ovu UO - Overflow with unsigned operands
unu UU - Underflow with unsigned operands
sgn CS- Sign of result

zero RZ - Result is zero

mloss ML - Multiply precision loss

mover MO - Multiply overflow

all MM - Result of mask operation is OxFFFF
alo MN - Result of mask operation is 0x0000
aritl A0 - Arithmetic Logic Mode bit O

arith A1l - Arithmetic Logic Mode hit 1

carry C- Carry

conv CS - Conversion sign

csh SB - Carry on shift operation

15.7 JARR-Jump on arithmetic register relative

If the condition being tested is true, jump to the specified code address. The destination must be within -16

to +15 instructions of the address of the jump instruction.

Syntax
jarr Dest BitSel;

Example

/1 1f register 'r0" contains a '7
/1 then goto label 'r0O_is_7'

subi r0 7 ri;

jarr r0_is_7 sgn;

/1 ... (nore code here)

ro_is_7:

/1l

/1 SUGGESTI ON: use this equival ent extended instruction instead:

JUMP_ARI THMETIC result _is_zero jrl sgn;
Dest - The jump destination code address.

BitSel - Specifies which bit to test.

opd OD - Multi-cycle instruction (mul/shift,etc) has completed
ovs SO - Overflow with signed operands

uns SU - Underflow with signed operands

ovu UO - Overflow with unsigned operands

unu UU - Underflow with unsigned operands

sgn CS- Sign of result

zero RZ - Result is zero

MC33816 Assembler, page 63 JARF - Jump on arithmetic registetGa012-2024 ASH WARE, Inc. ASHWARE, Inc.

15. Program Flow

mloss ML - Multiply precision loss

mover MO - Multiply overflow

all MM - Result of mask operation is OxFFFF
alo MN - Result of mask operation is 0x0000
aritl AO - Arithmetic Logic Mode hit 0

arith A1 - Arithmetic Logic Mode bit 1

carry C - Carry

conv CS - Conversion sign

csh SB - Carry on shift operation

15.8 Conditionally jump on ALU and related flags (extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax
JUWP_ARI THMVETI C Dest JrSel Bit Sel;

Example

/'l Test bits 3-7 of register '"r0".

/1 1f all set, junmp to label "bits_3 to_7_set'’
LOAD | R 0xO0O0FS8;

and r0;

JUMP_ARI THMETIC bits_3 to 7 _set jrl1 allil;

/1 ... (nmore code here)

bits_3 to_7_set:

Dest - The jump destination label.
JrSel - Specifies which jump register to use if a far jump is required.

jrl Jump Register 1
jr2 Jump Register 2

BitSel - The condition being tested.

opd OD - Multi-cycle instruction (mul/shift,etc) has completed
ovs SO - Overflow with signed operands

uns SU - Underflow with signed operands
ovu UO - Overflow with unsigned operands
unu UU - Underflow with unsigned operands
sgn CS- Sign of result

zero RZ - Result is zero

mloss ML - Multiply precision loss

mover MO - Multiply overflow

all MM - Result of mask operation is OxFFFF
alo MN - Result of mask operation is 0x0000
aritl A0 - Arithmetic Logic Mode bit O

MC33816 Assembler, page 64 JARR - Jump on arithmetic register r&ta2ié-2024 ASHWARE, Inc. ASHWARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

arith A1l - Arithmetic Logic Mode hit 1
carry C - Carry

conv CS- Conversion sign

csh SB - Carry on shift operation

15.9 JCRF -Jump on control register far

Conditionally jump on a control register bit. The destination code address is specified by one of the jump
registers, 'jrl or 'jr2 as specified by the 'JrSel' parameter. The code address must have been previously
loaded into either 'jr1 or 'jr2'.

The jump can occur when the control bit is set, or when the control bit is cleared which is specified by the
'Pol’ parameter.

Note that each core has its own control register so the control register that is tested is that core's own
control register.

Syntax
jerf JrSel BitSel Pol;

Example

/1 Junmp to | abel ' Dest3'

// if Control Register's bit 12 is a '0

I djrl Dest3;

jerf jrl bl2 high;

/1 ... (nmore code here)

Dest 3:

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUVMP_CONTROL Dest3 jr1 bl2 high;

JrSel - Specifies which jump register contains the jump destination.

jrl Jump Register 1
jr2 Jump Register 2

BitSel - Specifies which bit to test.

b0 Control register bit O
bl Control register bit 1
b2 Control register bit 2
b3 Control register bit 3
b4 Contral register bit 4
b5 Control register bit 5
b6 Control register bit 6
b7 Control register bit 7
b8 Control register bit 8
b9 Control register bit 9

MC33816 Assembler, pageCéhiditionally jump on ALU and related flags (ex{en2fde-202tAysiti BHARE, Inc. ASH WARE, Inc.

15. Program Flow

b10 Control register hit 10
b1l Control register bit 11
b12 Control register bit 12
b13 Control register bit 13
bl14 Control register bit 14
b15 Control register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on control bit low
high Jump on control bit high

15.10 JCRR -Jump on control register relative

Conditionally jump on a control register bit. The destination must be within -16 to +15 instructions of the
address of the jump instruction.

The jump can occur when the control bit is set, or when the control bit is cleared which is specified by the
'Pol’ parameter.

Note that each core has its own control register so the control register that is tested is that core's own
control register.

Syntax
jcrr Dest BitSel Pol;

Example

/1 Junmp to ' Dest?2'

/1 if Control Register's bit 5is a 'l

jcrr Dest2 b5 high;

/1 ... (nore code here)

Dest 2:

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_CONTROL Dest?2 jrl1 b5 high;

Dest - The jump destination code address.
BitSel - Specifies which contral bit to test.

b0 Control register hit O
bl Control register bit 1
b2 Control register bit 2
b3 Control register bit 3
b4 Control register bit 4
b5 Control register bit 5
b6 Control register hit 6

MC33816 Assembler, page 66 JCRF - Jump on control register f&r2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow

ASH WARE, Inc. 6/8/2024

b7
b8
b9
b10
b1l
b12
b13
b14
b15

Control register hit 7
Control register bit 8
Control register bit 9
Control register bit 10
Contral register bit 11
Control register bit 12
Control register bit 13
Control register bit 14
Control register hit 15

Pol - Specifies jump on bit low or on bit high.

low
high

Jump on control bit low
Jump on control bit high

15.11 Conditionally jump on 'Control Register' bit values (hi/lo) (extended
instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is

required.
Syntax

Example

JUMP_CONTROL Dest JrSel BitSel Pol;

/1 Junp to ' DEST_LABEL1'

/1 if control register bit 11 is a '1'
/1 using jrl if necessary
JUMP_CONTROL DEST_LABEL1 jr1 bll high;
/1 ... (nore code here)

DEST_LABEL1:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

jrl
jr2

Jump Register 1
Jump Register 2

BitSel - Specifies which bit to test.

b0
bl
b2
b3
b4

Contral register hit O
Control register bit 1
Contral register bit 2
Contral register bit 3
Control register bit 4

MC33816 Assembler, page 67

JCRR - Jump on control register rel@&di¢@12-2024 ASHWARE, Inc. ASHWARE, Inc.

15. Program Flow

b5 Control register hit 5
b6 Contral register bit 6
b7 Control register bit 7
b8 Control register bit 8
b9 Control register bit 9
b10 Control register bit 10
bl1 Control register bit 11
b12 Control register bit 12
b13 Control register hit 13
b14 Contral register bit 14
b15 Control register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on control bit low
high Jump on control bit high

15.12 JSRF - Jump on status register far

Conditionally jump on a status register bit. The destination code address is specified by one of the jump
registers, 'jrl or 'jr2 as specified by the 'JrSel' parameter. The code address must have been previously
loaded into either 'jr1 or 'jr2'.

The jump can occur when the status bit is set, or when the status bit is cleared which is specified by the

'Pol’ parameter.
Note that each core has its own status register so the status register that is tested is that core's own control
register.
Syntax
jsrf JrSel BitSel Pol;
Example

/1 Jump to label "bit_12 is_|ow

/'l if Status Register's bit 12 is a '0'

Idjrl bit_12 is_|ow

jsrf jrl bl2 | ow,

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_STATUS bit_12 is_low jrl bl2 | ow,

JrSel - Specifies which jump register contains the jump destination.

jrl Jump Register 1
jr2 Jump Register 2

BitSel - Specifies which bit to test.

MC33816 AssembleGaratj¢i6éBally jump on 'Control Register' bit values (hi/l€) 28k2e28@e4Sin WA ba)ASH WARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

b0 Status register bit O
bl Status register bit 1
b2 Status register bit 2
b3 Status register bit 3
b4 Status register bit 4
b5 Status register bit 5
b6 Status register bit 6
b7 Status register bit 7
b8 Status register bit 8
b9 Status register bit 9
b10 Status register bit 10
b1l Status register bit 11
b12 Status register bit 12
b13 Status register bit 13
b14 Status register bit 14
b15 Status register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on status bit low
high Jump on status bit high

15.13 JSRR - Jump on status register relative

Conditionally jump on a status register bit. The destination code address must be within -16 to +15
instructions of the address of the jump instruction.

The jump can occur when the status bit is set, or when the status bit is cleared which is specified by the
'Pol' parameter.

Note that each core has its own status register so the status register that is tested is that core's own control
register.

Syntax
jsrr Dest BitSel Pol;

Example

/1 Junmp to label "bit_12 is_|ow

/1 if Status Registera€™ bit 12 is a '0'

jsrr bit_12 is_low bl2 | ow

/'l ... (nmore code here)

bit 12 is_|ow

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_STATUS bit_12 is_low jrl bl2 |ow,

MC33816 Assembler, page 69 JSRF - Jump on status register féF 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

15. Program Flow

Dest - The jump destination code address.
BitSel - Specifies which bit to test.

b0 Status register bit O
bl Status register bit 1
b2 Status register hit 2
b3 Status register hit 3
b4 Status register bit 4
b5 Status register bit 5
b6 Status register bit 6
b7 Status register bit 7
b8 Status register bit 8
b9 Status register bit 9
b10 Status register bit 10
bl1 Status register bit 11
b12 Status register bit 12
b13 Status register bit 13
b14 Status register bit 14
b15 Status register bit 15
Pol - Specifies jump on bit low or on bit high.
low Jump on status bit low
high Jump on status bit high

15.14 Conditionally jump on 'Status Register' bit values (hi/lo) (extended
instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_STATUS Dest JrSel BitSel Pol;

Example

/1 Junp to ' DEST_LABEL2'

/'l if bit 7 of the status register is |ow
/'l using jr2 if necessary

JUMP_STATUS DEST_LABEL2 jr2 b7 |ow

/'l ... (nmore code here)

DEST LABEL2:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

MC33816 Assembler, page 70 JSRR - Jump on status register rel&h\a912-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

ASH WARE, Inc. 6/8/2024

jrl
jr2

Jump Register 1
Jump Register 2

BitSel - Specifies which bit to test.

b0
bl
b2
b3
b4
b5
b6
b7
b8
b9
b10
b1l
b12
b13
b14
b15

Status register bit O
Status register bit 1
Status register bit 2
Status register bit 3
Status register bit 4
Status register hbit 5
Status register bit 6
Status register bit 7
Status register bit 8
Status register bit 9
Status register bit 10
Status register bit 11
Status register bit 12
Status register bit 13
Status register bit 14
Status register bit 15

Pol - Specifies jump on bit low or on bit high.

low
high

Jump on status bit low
Jump on status bit high

15.15 JOSLF - Jump on start-latch far

Conditionally jump on bits in the start-latch register. The destination code address is specified by one of the
jump registers, 'jrl' or 'jr2' as specified by the 'JrSel’ parameter. The destination code address must have
been previously loaded into either 'jr1' or 'jr2.

Syntax
joslf JrSel Cond;

Example
// Test pins "1', "2', and '5'
/Il to see if they are all "1's

/1 1f so, junp to | abel

Idjrl Pinsl25AlI One;

joslf jrl1 start125;

/1l
/1 SUGGESTI ON:

" Pins125Al | One’

JUMP_START Pins125Al 1 One jrl start125;

use this equival ent extended instruction instead:

MC33816 AssembleCpadéithally jump on 'Status Register’ bit values (hi/l §§) (@0t AePddh BhistyBE 1) ASH WARE, Inc.

15. Program Flow

jrl
jr2

none
startl
start2
start12
start3
start13
start23
start123
start4
start14
start24
start124
start34
start134
start234
start1234
startb
start15
start25
start125
start35
start135
start235
start1235
start45
start145
start245
start1245
start345
start1345
start2345
start12345
start6
start16
start26
start126
start36
start136
start236
start1236
start46
start146

JrSel - Specifies which jump register contains the jump destination.

Jump Register 1
Jump Register 2

Cond - The jump condition.

jump false

jump on start latch bit 1

jump on start latch bits 2

jump on start latch bits 1 and 2
jump on start latch bit 3

jump on start latch bits 1 and 3
jump on start latch bits 2 and 3
jump on start latch bits 1, 2 and 3
jump on start latch bit 4

jump on start latch bits 1 and 4
jump on start latch bits 2 and 4
jump on start latch bits 1, 2 and 4
jump on start latch bits 3 and 4
jump on start latch bits 1, 3and 4
jump on start latch bits 2, 3and 4
jump on start latch bits 1, 2, 3, and 4
jump on start latch bit 5

jump on start latch bits 1 and 5
jump on start latch bits 2 and 5
jump on start latch bits 1, 2 and 5
jump on start latch bits 3and 5
jump on start latch bits 1, 3and 5
jump on start latch bits 2, 3and 5
jump on start latch bits 1, 2, 3and 5
jump on start latch bits 4 and 5
jump on start latch bits 1, 4 and 5
jump on start latch bits 2, 4 and 5
jump on start latch bits 1, 2, 4 and 5
jump on start latch bits 3,4 and 5
jump on start latch bits 1, 3, 4 and 5
jump on start latch bits 2, 3,4 and 5
jump on start latch bits 1, 2, 3,4 and 5
jump on start latch bit 6

jump on start latch bits 1 and 6
jump on start latch bits 2 and 6
jump on start latch bits 1, 2 and 6
jump on start latch bits 3 and 6
jump on start latch bits 1, 3 and 6
jump on start latch bits 2, 3and 6
jump on start latch bits 1, 2, 3and 6
jump on start latch bits 4 and 6
jump on start latch bits 1, 4 and 6

MC33816 Assembler, page 72

JOSLF - Jump on start-latch fakC) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

ASH WARE, Inc. 6/8/2024

start246 jump on start latch bits 2, 4 and 6
start1246 jump on start latch bits 1, 2, 4 and 6
start346 jump on start latch bits 3, 4 and 6
start1346 jump on start latch bits 1, 3, 4 and 6
start2346 jump on start latch bits 2, 3, 4 and 6
start12346 jump on start latch bits 1, 2, 3,4 and 6
start56 jump on start latch bits 5 and 6
start156 jump on start latch bits 1, 5 and 6
start256 jump on start latch bits 2, 5 and 6
start1256 jump on start latch bits 1, 2, 5 and 6
start356 jump on start latch bits 3, 5 and 6
start1356 jump on start latch bits 1, 3, 5 and 6
start2356 jump on start latch bits 2, 3, 5and 6
start12356 jump on start latch bits 1, 2, 3, 5and 6
start456 jump on start latch bits 4, 5 and 6
start1456 jump on start latch bits 1, 4, 5 and 6
start2456 jump on start latch bits 2, 4, 5 and 6
start12456 jump on start latch bits 1, 2, 4, 5and 6
start3456 jump on start latch bits 3, 4, 5 and 6
start13456 jump on start latch bits 1, 3,4, 5and 6
start23456 jump on start latch bits 2, 3, 4, 5 and 6
start123456 jump on any start-latch bits

15.16 JOSLR - Jump on start-latch relative

Conditionally jump on hits in the start-latch register. The destination code address must be within -16 to +15

instructions of the address of the jump instruction.

Syntax

Example

joslr Dest Cond,

// Test pins "1', "2', and '5'
/Il to see if they are all "1's
/1 1f so, junp to | abel 'Pinsl25Al1 One'

joslr Pinsl25Al1 One start 125;
/!l ... More code here ...

Pi ns125AI | One:

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:

JUMP_START Pins125Al 1 One jrl start125;

Dest - The jump destination code address.

Cond-T

none

he jump condition.

jump false

MC33816 Assembler, page 73

JOSLF - Jump on start-latch fafC) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow

startl
start2
start12
start3
start13
start23
start123
start4
start14
start24
start124
start34
start134
start234
start1234
startb
start15
start25
start125
start35
start135
start235
start1235
start45
start145
start245
start1245
start345
start1345
start2345
start12345
start6
start16
start26
start126
start36
start136
start236
start1236
start46
start146
start246
start1246
start346
start1346
start2346
start12346
start56
start156
start256

jump on start latch bit 1

jump on start latch bits 2

jump on start latch bits 1 and 2
jump on start latch bit 3

jump on start latch bits 1 and 3
jump on start latch bits 2 and 3
jump on start latch bits 1, 2 and 3
jump on start latch bit 4

jump on start latch bits 1 and 4
jump on start latch bits 2 and 4
jump on start latch bits 1, 2 and 4
jump on start latch bits 3 and 4
jump on start latch bits 1, 3and 4
jump on start latch bits 2, 3and 4
jump on start latch bits 1, 2, 3, and 4
jump on start latch bit 5

jump on start latch bits 1 and 5
jump on start latch bits 2 and 5
jump on start latch bits 1, 2 and 5
jump on start latch bits 3and 5
jump on start latch bits 1, 3and 5
jump on start latch bits 2, 3and 5
jump on start latch bits 1, 2, 3and 5
jump on start latch bits 4 and 5
jump on start latch bits 1, 4 and 5
jump on start latch bits 2, 4 and 5
jump on start latch bits 1, 2, 4 and 5
jump on start latch bits 3,4 and 5
jump on start latch bits 1, 3, 4 and 5
jump on start latch bits 2, 3,4 and 5
jump on start latch bits 1, 2, 3,4 and 5
jump on start latch bit 6

jump on start latch bits 1 and 6
jump on start latch bits 2 and 6
jump on start latch bits 1, 2 and 6
jump on start latch bits 3 and 6
jump on start latch bits 1, 3 and 6
jump on start latch bits 2, 3and 6
jump on start latch bits 1, 2, 3and 6
jump on start latch bits 4 and 6
jump on start latch bits 1, 4 and 6
jump on start latch bits 2, 4 and 6
jump on start latch bits 1, 2, 4 and 6
jump on start latch bits 3, 4 and 6
jump on start latch bits 1, 3, 4 and 6
jump on start latch bits 2, 3, 4 and 6
jump on start latch bits 1, 2, 3,4 and 6
jump on start latch bits 5 and 6
jump on start latch bits 1, 5 and 6
jump on start latch bits 2, 5 and 6

MC33816 Assembler, page 74

JOSLR - Jump on start-latch relat{®g2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow

ASH WARE, Inc. 6/8/2024

start1256 jump on start latch bits 1, 2, 5 and 6
start356 jump on start latch bits 3, 5 and 6
start1356 jump on start latch bits 1, 3, 5 and 6
start2356 jump on start latch bits 2, 3,5 and 6
start12356 jump on start latch bits 1, 2, 3, 5and 6
start456 jump on start latch bits 4, 5 and 6
start1456 jump on start latch bits 1, 4, 5 and 6
start2456 jump on start latch bits 2, 4, 5 and 6
start12456 jump on start latch bits 1, 2, 4, 5and 6
start3456 jump on start latch bits 3, 4, 5 and 6
start13456 jump on start latch bits 1, 3, 4, 5and 6
start23456 jump on start latch bits 2, 3,4, 5and 6
start123456 jump on any start-latch bits

15.17 Conditionally jump based on the state of the start pins latched states
(extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jumpis
required.

Syntax
JUWMP_START Dest JrSel Cond;
Example

/1 Junp to ' DEST_LABEL3'

/'l if start bits 1 and 2 are high
/'l using jrl if necessary
JUMP_START DEST LABEL3 jrl startl12;
/'l ... (nmore code here)
DEST_LABELS:

Dest - The jump destination label.
JrSel - Specifies which jump register to use if a far jump is required.

jrl Jump Register 1
jr2 Jump Register 2

Cond - The jump condition.

none jump false

startl jump on start latch bit 1

start2 jump on start latch bits 2
start12 jump on start latch bits 1 and 2
start3 jump on start latch bit 3
start13 jump on start latch bits 1 and 3
start23 jump on start latch bits 2 and 3

MC33816 Assembler, page 75 JOSLR - Jump on start-latch relat{®g2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow

start123
start4
start14
start24
start124
start34
start134
start234
start1234
startb
start15
start25
start125
start35
start135
start235
start1235
start45
start145
start245
start1245
start345
start1345
start2345
start12345
start6
start16
start26
start126
start36
start136
start236
start1236
start46
start146
start246
start1246
start346
start1346
start2346
start12346
start56
start156
start256
start1256
start356
start1356
start2356
start12356
start456

jump on start latch bits 1, 2 and 3
jump on start latch bit 4

jump on start latch bits 1 and 4
jump on start latch bits 2 and 4
jump on start latch bits 1, 2 and 4
jump on start latch bits 3 and 4
jump on start latch bits 1, 3and 4
jump on start latch bits 2, 3 and 4
jump on start latch bits 1, 2, 3, and 4
jump on start latch bit 5

jump on start latch bits 1 and 5
jump on start latch bits 2 and 5
jump on start latch bits 1, 2 and 5
jump on start latch bits 3and 5
jump on start latch bits 1, 3and 5
jump on start latch bits 2, 3and 5
jump on start latch bits 1, 2, 3and 5
jump on start latch bits 4 and 5
jump on start latch bits 1, 4 and 5
jump on start latch bits 2, 4 and 5
jump on start latch bits 1, 2, 4 and 5
jump on start latch bits 3,4 and 5
jump on start latch bits 1, 3,4 and 5
jump on start latch bits 2, 3,4 and 5
jump on start latch bits 1, 2, 3,4 and 5
jump on start latch bit 6

jump on start latch bits 1 and 6
jump on start latch bits 2 and 6
jump on start latch bits 1, 2 and 6
jump on start latch bits 3 and 6
jump on start latch bits 1, 3and 6
jump on start latch bits 2, 3 and 6
jump on start latch bits 1, 2, 3and 6
jump on start latch bits 4 and 6
jump on start latch bits 1, 4 and 6
jump on start latch bits 2, 4 and 6
jump on start latch bits 1, 2, 4 and 6
jump on start latch bits 3, 4 and 6
jump on start latch bits 1, 3, 4 and 6
jump on start latch bits 2, 3, 4 and 6
jump on start latch bits 1, 2, 3, 4 and 6
jump on start latch bits 5 and 6
jump on start latch bits 1, 5 and 6
jump on start latch bits 2, 5 and 6
jump on start latch bits 1, 2, 5and 6
jump on start latch bits 3, 5 and 6
jump on start latch bits 1, 3, 5 and 6
jump on start latch bits 2, 3, 5 and 6
jump on start latch bits 1, 2, 3, 5and 6
jump on start latch bits 4, 5 and 6

MC33816 As<zmnbletippadby/76mp based on the state of the start pins latche@) st@2-2q2kAShid¢ R big LABbWARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

start1456 jump on start latch bits 1, 4, 5 and 6
start2456 jump on start latch bits 2, 4, 5 and 6
start12456 jump on start latch bits 1, 2, 4, 5and 6
start3456 jump on start latch bits 3, 4, 5 and 6
start13456 jump on start latch bits 1, 3, 4, 5 and 6
start23456 jump on start latch bits 2, 3,4, 5and 6
start123456 jump on any start-latch bits

15.18 JOCF - Jump on condition far

Conditionally jump on one of the conditions listed below. The destination code address is specified by one of
the jump registers, 'jrl' or 'jr2' as specified by the 'IrSel' parameter. The destination code address must have
been previously loaded into either 'jr1' or 'jr2'.

Bitsin the 'flag_bus' are tested usingthe _f0, f1, ..., f0, f1, ... syntax. The 'flag_bus' depending on how it is
configured can be the flag input pins 'FLAGO', 'FLAGL', and 'FLAG2' as well as pins such as the DBG pin
when configured to be a generic input pin rather than it's normal Debug function. Pins that can be
configured as generic input pins also include DBG, OA_2, OA_1, and START1 through START®6.

The configured START condition can be tested (_start or start).

The ALU's completion of multi-cycle multiply and shift operations can be tested using the OPD flag (opd).
The boost voltage threshold comparator can be tested (_vb or vb).

The various core-specific current threshold comparators can be tested.

The core's own current threshold comparator can be tested (ocur, _ocur). This helps make code run
independent of the core.

The core's own voltage various voltage threshold comparators can be tested. That is to say, the voltages
associated Shortcuts 1, 2, (high side drivers) and 3 (low side driver.) By using shortcut-relative tests, code
can be made core-independent.

Syntax
jocf JrSel Cond,

Example

/1l Set the shortcut2 to LS5

/1 Jump if LS3's

/1 Vds Threshol d conparator is high

df sct hsl | s3 hsb5;

Idjrl shortcut2_vds_is_high;

jocf jrl sc2v;

/1 ... (nmore code here)

shortcut2_vds_is_high:

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_CONDI TI ON shortcut2_vds_is_high jrl sc2yv;

JrSel - Specifies which jump register contains the jump destination.

MC33816 Asszmnbletippadby/7dmp based on the state of the start pins latche@) st@2-2q@kAShid¢ R big LABbWARE, Inc.

15. Program Flow

jrl
jr2

Jump Register 1
Jump Register 2

Cond - The jump condition.

_fo
f1
_f2
_f3
_f4
_f5
_fe
_f7
_f8
_f9
_fi10
_f11
_f12
_f13
_f14
_fi5
fo

f1

f2

f3

f4
f5

f6

f7

f8

fo
f10
f11
f12
f13
f14
f15
tcl
tc2
tc3
tcd
_start
start
_sclv

_Sc2v

_sc3v

FlagO (internal flag and pin) is low

Flagl (internal flag and pin) is low

Flag2 (internal flag and pin) is low

Fag3 (possibly also the 'Startl' pin) is low

Flag4 (possibly also the 'Start2' pin) is low

Flagb (possibly also the 'Start3' pin) is low

Flagb6 (possibly also the 'Start4' pin) is low

Flag7 (possibly also the 'Start5' pin) is low

Flag8 (possibly also the 'Start6' pin) is low

Flag9 (possibly also the 'IRQB' pin) is low

Flag10 (possibly also the 'OA_1' pin) is low

Hagll (possibly also the 'OA_2' pin) is low

Flag12 (possibly also the 'DBG ' pin) is low
Flagl3is low

Flagl4 is low

Flagl5 is low

FlagO (internal flag and pin) is high

Flagl (internal flag and pin) is high

Flag2 (internal flag and pin) is high

Fag3 (possibly also the 'Startl' pin) is high

Flag4 (possibly also the 'Start2' pin) is high

Flagb (possibly also the 'Start3' pin) is high

Flag6 (possibly also the 'Start4' pin) is high

Flag7 (possibly also the 'Start5' pin) is high

Flag8 (possibly also the 'Start6' pin) is high

Flag9 (possibly also the 'IRQB' pin) is high

Flag10 (possibly also the 'OA_1' pin) is high
Flagll (possibly also the 'OA_2' pin) is high
Flag12 (possibly also the '‘DBG' pin) is high

Flagl3 is high

Flagl4 is high

Flagl5 is high

Counterl has reached it's terminal count

Counter?2 has reached it's terminal count

Counter3 has reached it's terminal count

Counter4 has reached it's terminal count

Core's own configured start pin combination not met
Core's own configured start pin combination is met
Core's own output driver shortcut 1 below Drain-Source
voltage threshold

Core's own output driver shortcut 2 below Drain-Source
voltage threshold

Core's own output driver shortcut 3 below Drain-Source
voltage threshold

MC33816 Assembler, page 78

JOCEF - Jump on condition far(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

ASH WARE, Inc. 6/8/2024

_scls
_sc2s
_sc3s
sclv
sc2v
sc3v

opd
vb
~vb
curl
cur?2
cur3
curdl
curdh
cur4n

_curl
_cur2
_cur3
_curdl
_curdh
_curdn

ocur
_ocur

Core's own output driver shortcut 1 below Source voltage
threshold

Core's own output driver shortcut 2 below Source voltage
threshold

Core's own output driver shortcut 3 below Source voltage
threshold

Core's own output driver shortcut 1 above Drain-Source
voltage threshold

Core's own output driver shortcut 2 above Drain-Source
voltage threshold

Core's own output driver shortcut 3 above Drain-Source
voltage threshold

Multi-cycle instruction (mul/shift,etc) has completed

boost voltage is above threshold

boost voltage is below threshold

Channel 1, core 0 sense resistor current above threshold
Channel 1, core 1 sense resistor current above threshold
Channel 2, core 0 sense resistor current above threshold
Channel 2, core 1 sense resistor current above 'low' threshold
Channel 2, core 1 sense resistor current above 'high' threshold
Channel 2, core 1 sense resistor current above 'negative’
threshold

Channel 1, core 0 sense resistor current below threshold
Channel 1, core 1 sense resistor current below threshold
Channel 2, core 0 sense resistor current below threshold
Channel 2, core 1 sense resistor current below 'low' threshold
Channel 2, core 1 sense resistor current below 'high' threshold
Channel 2, core 1 sense resistor current below 'negative’
threshold

Core's own current sense above threshold

Core's own current sense below threshold

15.19 JOCR -Jump on condition relative

Conditionally jump on one of the conditions listed below. The destination must be within -16 to +15
instructions of the address of the jump instruction.

Bits in the 'flag_bus' are tested using the _f0, _f1, ..., f0, f1, ... syntax. The 'flag_bus' depending on how it is
configured can be the flag input pins 'FLAGO, 'FLAGL', and 'FLAGZ2 as well as pins such as the DBG pin
when configured to be a generic input pin rather than it's normal Debug function. Pins that can be
configured as generic input pins also include DBG, OA_2, OA_1, and START1 through START®.

The configured START condition can be tested.

The ALU's completion of multi-cycle multiply and shift operations can be tested using the OPD flag.

MC33816 Assembler, page 79

JOCEF - Jump on condition far(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

The boost voltage threshold comparator can be tested (_vb or vb).
The various core-specific current threshold comparators can be tested.

The core's own current threshold comparator can be tested. This helps make code run independent of the
core.

The core's own voltage various voltage threshold comparators can be tested. That is to say, the voltages
associated Shortcuts 1, 2, (high side drivers) and 3 (low side driver.) By using shortcut-relative tests, code
can be made core-independent.

Syntax
jocr Dest Cond;

Example

/1 Set the shortcut2 to LS5

/1 Jump if LS3's

/1 Vds Threshol d conparator is high

df sct hsl | s3 hsb;

jocr shortcut3_vds_is_high sc3v;

/1 ... (nore code here) ..

shortcut 3_vds_i s_hi gh:

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_CONDI TI ON shortcut3_vds_is_high jrl sc3v;

Dest - The jump destination code address.

Cond - The jump condition.

_fo FlagO (internal flag and pin) is low

f1 Flagl (internal flag and pin) is low

_f2 Flag2 (internal flag and pin) is low

_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flagb (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flagl1 (possibly also the ‘OA_2 pin) is low
_f12 Flag12 (possibly also the '‘DBG ' pin) is low
_f13 Flagl3is low

_f14 Flagl4 is low

_f15 Flagl5is low

fo FlagO (internal flag and pin) is high

fl Flagl (internal flag and pin) is high

f2 Flag2 (internal flag and pin) is high

f3 Flag3 (possibly also the 'Start1' pin) is high
fa4 Flag4 (possibly also the 'Start2' pin) is high
5 Flagb (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high

MC33816 Assembler, page 80 JOCR - Jump on condition relati(@ 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

f7 Flag7 (possibly also the 'Start5' pin) is high

f8 Flag8 (possibly also the 'Start6' pin) is high

f9 Flag9 (possibly also the 'IRQB' pin) is high

f10 Flag10 (possibly also the 'OA_1' pin) is high

f11 Flagl1 (possibly also the 'OA_2' pin) is high

f12 Flag12 (possibly also the 'DBG ' pin) is high

f13 Flag13 is high

f14 Flagl4 is high

f15 Flagl5 is high

tcl Counterl has reached it's terminal count

tc2 Counter?2 has reached it's terminal count

tc3 Counter3 has reached it's terminal count

tca Counter4 has reached it's terminal count

_start Core's own configured start pin combination not met

start Core's own configured start pin combination is met

_sclv Core's own output driver shortcut 1 below Drain-Source
voltage threshold

_sc2v Core's own output driver shortcut 2 below Drain-Source
voltage threshold

_sc3v Core's own output driver shortcut 3 below Drain-Source
voltage threshold

_scls Core's own output driver shortcut 1 below Source voltage
threshold

_sc2s Core's own output driver shortcut 2 below Source voltage
threshold

_sc3s Core's own output driver shortcut 3 below Source voltage
threshold

sclv Core's own output driver shortcut 1 above Drain-Source
voltage threshold

sc2v Core's own output driver shortcut 2 above Drain-Source
voltage threshold

sc3v Core's own output driver shortcut 3 above Drain-Source
voltage threshold

opd Multi-cycle instruction (mul/shift,etc) has completed

vb boost voltage is above threshold

_vb boost voltage is below threshold

curl Channel 1, core 0 sense resistor current above threshold

cur2 Channel 1, core 1 sense resistor current above threshold

cur3 Channel 2, core 0 sense resistor current above threshold

curdl Channel 2, core 1 sense resistor current above 'low' threshold

curdh Channel 2, core 1 sense resistor current above 'high' threshold

curdn Channel 2, core 1 sense resistor current above 'negative’
threshold

_curl Channel 1, core 0 sense resistor current below threshold

_cur2 Channel 1, core 1 sense resistor current below threshold

_cur3 Channel 2, core 0 sense resistor current below threshold

_curdl Channel 2, core 1 sense resistor current below 'low' threshold

_curdh Channel 2, core 1 sense resistor current below 'high' threshold

_curdn Channel 2, core 1 sense resistor current below 'negative’
threshold

MC33816 Assembler, page 81 JOCR - Jump on condition relati(@ 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow

ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

15.20 Conditionally jump based on a variety of conditions such as Flag state,
Start state, above/below a Current Sense Threshold, ... (extended
instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax
JUVMP_CONDI TI ON Dest JrSel Cond;

Example

/1 Junp to ' DEST_LABEL4'

/1 if the Current Sense Block 3's sense current
/1 is above the programed threshold

/1 using jr2 if necessary

JUMP_CONDI TI ON DEST_LABEL4 jr2 cur3;

/1 ... (nore code here)

DEST_LABELA4:

Dest - The jump destination label.
JrSel - Specifies which jump register to use if a far jump is required.

jrl Jump Register 1
jr2 Jump Register 2

Cond - The jump condition.

_fo FlagO (internal flag and pin) is low

f1 Flagl (internal flag and pin) is low

_f2 Flag2 (internal flag and pin) is low

_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flag5 (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_fi1 Flagll (possibly also the 'OA_2' pin) is low
_f12 Flag12 (possibly also the 'DBG pin) is low
_f13 Flagl3is low

_f14 Flagl4 is low

_f15 Flagl5is low

MC33816 Assembler, page 82 JOCR - Jump on condition relati(@ 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

fO FlagO (internal flag and pin) is high

fl Flagl (internal flag and pin) is high

f2 Flag2 (internal flag and pin) is high

f3 Flag3 (possibly also the 'Start1' pin) is high

f4 Flag4 (possibly also the 'Start2' pin) is high

f5 Flagb (possibly also the 'Start3' pin) is high

f6 Flag6 (possibly also the 'Start4' pin) is high

f7 Flag7 (possibly also the 'Start5' pin) is high

f8 Flag8 (possibly also the 'Start6' pin) is high

f9 Flag9 (possibly also the 'ITRQB' pin) is high

f10 Flag10 (possibly also the 'OA_1' pin) is high

f11 Flagl1 (possibly also the 'OA_2' pin) is high

f12 Flag12 (possibly also the 'DBG' pin) is high

f13 Flag13 is high

f14 Flagl4 is high

f15 Flagl5 is high

tcl Counter1 has reached it's terminal count

tc2 Counter?2 has reached it's terminal count

tc3 Counter3 has reached it's terminal count

tca Counter4 has reached it's terminal count

_start Core's own configured start pin combination not met

start Core's own configured start pin combination is met

_sclv Core's own output driver shortcut 1 below Drain-Source
voltage threshold

_sc2v Core's own output driver shortcut 2 below Drain-Source
voltage threshold

_Sc3v Core's own output driver shortcut 3 below Drain-Source
voltage threshold

_scls Core's own output driver shortcut 1 below Source voltage
threshold

_sc2s Core's own output driver shortcut 2 below Source voltage
threshold

_sc3s Core's own output driver shortcut 3 below Source voltage
threshold

sclv Core's own output driver shortcut 1 above Drain-Source
voltage threshold

sc2v Core's own output driver shortcut 2 above Drain-Source
voltage threshold

sc3v Core's own output driver shortcut 3 above Drain-Source
voltage threshold

opd Multi-cycle instruction (mul/shift,etc) has completed

vb boost voltage is above threshold

_Vvb boost voltage is below threshold

curl Channel 1, core 0 sense resistor current above threshold

cur2 Channel 1, core 1 sense resistor current above threshold

cur3 Channel 2, core 0 sense resistor current above threshold

curdl Channel 2, core 1 sense resistor current above 'low' threshold

curdh Channel 2, core 1 sense resistor current above 'high' threshold

cur4dn Channel 2, core 1 sense resistor current above 'negative’
threshold

itionally jumydG88846 Avssendoliegtypade88ditions such as Flag state, Start state, above/B52 104224 A8 VB &R Jec ThBEIMBRE, Inc. (exten

15. Program Flow

_curl Channel 1, core 0 sense resistor current below threshold
_cur2 Channel 1, core 1 sense resistor current below threshold
_cur3 Channel 2, core 0 sense resistor current below threshold
_curdl Channel 2, core 1 sense resistor current below ‘low' threshold
_curdh Channel 2, core 1 sense resistor current below 'high' threshold
_curdn Channel 2, core 1 sense resistor current below 'negative'
threshold
ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

15.21 JFBKF - Jump on feedback far

Tests diagnostic voltage feedback to see if the selected diagnostic node is above or below a threshold.

The destination code address is specified by one of the jump registers, 'jrl' or 'jr2, as specified by the 'JrSel
parameter. The destination code address must have been previously loaded into either 'jrl' or 'jr2'.

Parameter 'Pol' determines if the jump is taken when the voltage is below or above the threshold.

Syntax
j fbkf JrSel Sel Fbk Pol ;

Example
/1 Jump if HS3's
/'l Vsrc Threshold conparator is |ow
Idjrl hs3 vsrc_is_|ow,
jfbkf jrl1 hs3s | ow,
/'l ... (nmore code here)
hs3 vsrc_is_| ow
/1
/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_FEEDBACK hs3 vsrc_is low jrl hs3s |ow

JrSel - Specifies which jump register contains the jump destination.

jrl Jump Register 1
jr2 Jump Register 2

SelFbk - Feedback threshold.

hslv High side pre-driver 1 VDS feedback above threshold
hsls High side pre-driver 1 V SRC feedback above threshold
hs2v High side pre-driver 2 VDS feedback above threshold
hs2s High side pre-driver 2 V SRC feedback above threshold
hs3v High side pre-driver 3 VDS feedback above threshold
hs3s High side pre-driver 3 V SRC feedback above threshold
hsdv High side pre-driver 4 VDS feedback above threshold
hs4s High side pre-driver 4 V SRC feedback above threshold

itionally jumydG88846 dvssendoliegtypade8aditions such as Flag state, Start state, above/B52 104224 A8 VB &R Jac ThBEIMARE, Inc. (exten

15. Program Flow ASH WARE, Inc. 6/8/2024

hsbv High side pre-driver 5 VDS feedback above threshold
hsbs High side pre-driver 5V SRC feedback above threshold
Islv Low side pre-driver 1 VDS feedback above threshold
Is2v Low side pre-driver 2 VDS feedback above threshold
Is3v Low side pre-driver 3 VDS feedback above threshold
Is4v Low side pre-driver 4 VDS feedback above threshold
Is5v Low side pre-driver 5 VDS feedback above threshold
Is6v Low side pre-driver 6 VDS feedback above threshold

Pol - Specifies jump on feedback low or on feedbakc high.

low Jump on feedback low
high Jump on feedback high

15.22 JFBKR - Jump on feedback relative

Tests diagnostic voltage feedback to see if the selected diagnostic node is above or below a threshold.
The destination must be within -16 to +15 instructions of the address of the jump instruction.
Parameter 'Pol' determines if the jump is taken when the voltage is below or above the threshold.

Syntax
j fbkr Dest Sel Fbk Pol ;

Example

/1 Jump if HS4's

/1 Vsrc Threshold conparator is |ow

j fbkr hs4_vsrc_is_|ow hs4ds | ow;

/1 ... (nore code here)

hs4 _vsrc_is_| ow

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_FEEDBACK hs4_vsrc_is_low jrl hs4ds | ow,

Dest - The jump destination code address.

SelFbk
hslv High side pre-driver 1 VDS feedback above threshold
hsls High side pre-driver 1 V SRC feedback above threshold
hs2v High side pre-driver 2 VDS feedback above threshold
hs2s High side pre-driver 2 V SRC feedback above threshold
hs3v High side pre-driver 3 VDS feedback above threshold
hs3s High side pre-driver 3 V SRC feedback above threshold
hsdv High side pre-driver 4 VDS feedback above threshold
hs4s High side pre-driver 4 V SRC feedback above threshold

MC33816 Assembler, page 85 JFBKF - Jump on feedback far(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

hsbv High side pre-driver 5 VDS feedback above threshold
hsbs High side pre-driver 5V SRC feedback above threshold
Islv Low side pre-driver 1 VDS feedback above threshold
Is2v Low side pre-driver 2 VDS feedback above threshold
Is3v Low side pre-driver 3 VDS feedback above threshold
Is4v Low side pre-driver 4 VDS feedback above threshold
Is5v Low side pre-driver 5 VDS feedback above threshold
Is6v Low side pre-driver 6 VDS feedback above threshold

Pol - Specifies jump on feedback low or on feedback high.

low Jump on feedback low
high Jump on feedback high

15.23 Conditionally jump based on the state of a '‘Diagnostic Feedback
Comparator' output (extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jumpis
required.

Syntax
JUMP_FEEDBACK Dest JrSel Sel Fbk Pol ;

Example

/1 Junp to ' DEST_LABELS5'

/1 if HS2's Vsrc Threshold conparator is |ow
/1 using jrl if necessary

JUMP_FEEDBACK DEST_LABELS5 jr1 hs2v | ow,

/1 ... (nore code here) ...

DEST_LABELS:

Dest - The jump destination label.
JrSel - Specifies which jump register to use if a far jump is required.

jirl Jump Register 1
jr2 Jump Register 2

SelFbk - Feedback threshold.

hslv High side pre-driver 1 VDS feedback above threshold
hsls High side pre-driver 1 V SRC feedback above threshold
hs2v High side pre-driver 2 VDS feedback above threshold
hs2s High side pre-driver 2 V SRC feedback above threshold
hs3v High side pre-driver 3 VDS feedback above threshold
hs3s High side pre-driver 3 V SRC feedback above threshold

MC33816 Assembler, page 86 JFBKR - Jump on feedback relati¢®2012-2024 ASHWARE, Inc. ASHWARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

hsdv High side pre-driver 4 VDS feedback above threshold
hs4s High side pre-driver 4 V SRC feedback above threshold
hsbv High side pre-driver 5 VDS feedback above threshold
hsbs High side pre-driver 5V SRC feedback above threshold
Islv Low side pre-driver 1 VDS feedback above threshold
Is2v Low side pre-driver 2 VDS feedback above threshold
Is3v Low side pre-driver 3 VDS feedback above threshold
Isdv Low side pre-driver 4 VDS feedback above threshold
Is5v Low side pre-driver 5 VDS feedback above threshold
Is6v Low side pre-driver 6 VDS feedback above threshold

Pol - Specifies jump on feedback low or on feedbakc high.

low Jump on feedback low
high Jump on feedback high

15.24 JOIDF - Jump on current core far

Determines which of the two cores within a channel are executing. The destination code address is
specified by one of the jump registers, 'jr1' or 'jr2' as specified by the 'IrSel' parameter. The code address
must have been previously loaded into either 'jr1' or 'jr2'.

Syntax
joidf JrSel Cond;

Example

/1 Junp to label 'is_core_0

/1 if the core executing this instruction

/1l is core0

ldjrl is_core_O;

joidf jrl seqO;

/1 ... (nore code here)

is core_ O:

/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUW_CORE ID is _core_ 0 jrl seqO;

JrSel - Specifies which jump register contains the jump destination.

jrl Jump Register 1
jr2 Jump Register 2

Cond - The core to test for

seq0 The current core is Core O
seql The current core is Core 1

MC3gettlAEseaiblgn maged3ed on the state of a 'Diagnostic Feedback Corti 24262028 tPid YWeREent AGHNGNRECTioN)

15. Program Flow

15.25 JOIDR - Jump on current core relative

15.26

Determines which of the two cores within a channel are executing. The destination code address must be
within -16 to +15 instructions of the address of the jump instruction.

Syntax
j oi dr Dest Cond;

Example

/1 Jump to label "is_core_1'

/'l if the core executing this instruction
/'l is corel

joidr is_core_1 seql;

/1 ... (nmore code here)
is_core_1:
/1

/1 SUGGESTI ON: use this equival ent extended instruction instead:
JUMP_CORE ID is_core_1 jrl1 seqO;

Dest - The jump destination code address.
Cond - The core to test for

seq0 The current core is Core 0
seql The current core is Core 1

Conditionally jump based on the ID of the currently-executing core
(extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax
JUMP_CORE_I D Dest JrSel Cond;

Example

/1 Junp to ' DEST_LABEL6',

/'l if the core executing this instruction is core0
/'l using jr2 if necessary

JUMP_CORE_| D DEST_LABEL6 jr2 seqO;

/1 ... (nmore code here)

DEST_LABELG6:

Dest - The jump destination label.

MC33816 Assembler, page 88

JOIDF - Jump on current core fdf) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow ASH WARE, Inc. 6/8/2024

JrSel - Specifies which jump register to use if a far jump is required.

jrl Jump Register 1
jr2 Jump Register 2

Cond - The core to test for

seq0 The current core is Core O
seql The current core is Core 1

15.27 JUMP< type>-Jump on specified conditions

This extended instruction allows programmers to write jump instructions without having to figure out
whether a far or relative jump is required. There is an extended JUMP instruction for each type of jump
opcode, and take that same parameters except that they also take both a label and jump register parameter,
rather than one or the other. When assembling, the assembler will generate a relative jump instruction if
possible, but if the jump is outside of relative range an opcode to load the specified jump register plus a jump
opcode using that jump register will be generated. This makes it much easier for the developer to focus on
creating functional code, rather than worrying about the no-value-add far vs. relative.

Syntax
JUWP Dest Jr Sel;
JUMP_ARI THMETI C Dest JrSel Bit Sel; /'l see jarf/jarr for paraneter
details
JUMP_CONTROL Dest JrSel BitSel Pol; /'l see jcrfljcrr for paraneter
details
JUMP_STATUS Dest JrSel BitSel Pol; /'l see jsrfljsrr for paraneter
details
JUMP_START Dest Jr Sel Cond; /'l see joslf/joslr for
paraneter details
JUMP_CONDI TI ON Dest Jr Sel Cond; /'l see jocf/jocr for paraneter
details
JUMP_FEEDBACK Dest Jr Sel Sel Fbk Pol ; /'l see jfbkf/jfbkr for
paraneter details
JUMP_CORE | D Dest JrSel Cond; /'l see joidf/joidr for

paraneter details
Dest - The jump destination code address label.

JrSel - Specifies which jump register to use if a far jump is required.

jrl Jump Register 1
jr2 Jump Register 2

The following shows an example of mixed source/assembly code for this instruction extension.

MC33816 AssEubliiti pagd BPump based on the ID of the currently-executif@ 8k 2@24tefid v REsha AFbHYARE, Inc.

15. Program Flow

Lamrll

JUMP ARTTHMETIC FAE LABEL jrl mover;

jarf jrl mowver; Jump far on arithmetic condition [2]

S/0004; O=x251E jarr mover 0x000; Jump relative on arithmetic condition [2]

MC33816 Assembler, page 90 JUMP<_type> - Jump on specified cot@ig@as2024 ASHWARE, Inc. ASHWARE, Inc.

Interrupts

Part

MC33816 Assembler, page 91 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

16. Interrupts

16

Interrupts

This section covers interrupts within the MC33816 device.

There are a number of possible interrupt sources including diagnostic interrupts, start interrupts, and
software interrupts. A software interrupt is envoked by the ‘reqi* instruction.

Most devices will only return from interrupt when an interrupt return instruction is executed. The MC33816
supports this industry-standard behavior with it's ‘iret’ behavior. However, the mc33816 also has an
‘automatic interrupt return' mode in which a core's interrupt service routine automatically terminates when
the interrupting source goes away. This mode allows a very quick response time to the resolution of
condition that caused the interrupt. Picture being released from jail by a catapullt.

When most devices return from an interrupt they go back to the location where the interrupt occurred
thereby allowing the core to pickup doing what it was doing when the original interrupt occurred.

However,, the MC33816 as a special interrupt return mode in which the return from interrupt behavior is to
resume execution at the location pointed to by the reset vector. This allows the interrupt return behavior to
mimic the reset behavior. This s like getting in trouble in fourth grade and going to the principals office and
the principal gives you a big lecture and then, instead of you going back to fourth grade, makes you start
school over and by going back to kindergarten instead.

Interestingly, this curious interrupt return behavior is available both when the interrupt return is caused by
the normal "iret’ instruction, and also when in ‘automatic interrupt return’ mode and the interrupting source
goes away.

Note that interrupts are one-deep such that an interrupt service routine will not be interrupted by another
interrupt source, even if the other interrupt source is at a higher priority level.

16.1 ICONF - Configure automatic interrupt return

Determines the behavior of the core when the interrupting source goes away.

This setting is "sticky' such that once configured it retains its setting until changed by a future ‘iconf
instruction.

MC33816 Assembler, page 92 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

16. Interrupts ASH WARE, Inc. 6/8/2024

The default behavior is ‘none’ which means that "automatic interrupt return' is disabled. This is similar to the
the behavior for similar controllers in that there is no automatic interrupt return. Instead, the 'interrupt
return’ (iret) instruction must be executed in order to return from an interrupt.

However, this instruction can be used to configure the core to immediately return to the point in code that
was interrupted. Alternatively, the core interrupt return behavior can be configured to return through the
reset vector.

Syntax
i conf Conf;

Example

/1 Handl e interrupt recovery
/1l simlarly to com ng out of reset
iconf restart;

Conf - Interrupt return behavior

none disable 'Automatic Return From Interrupt' for the core

NA N/A

continue continue code execution at the point where execution was
interrupted

restart determined by the 'Ucx_entry point' register ... the location

where the execution begins coming out of reset

16.2 REQI - Request software interrupt

This instruction requests a software interrupt.

Two deep interrupts are not supported. In other words, an interrupt routine cannot itself be interrupted.
Therefore, this 'reqgi’ instruction is ignored if it is executed within an interrupt service routine.

The effects of this software interrupt is similar to that of other interrupting source (such as a diagnostic or
start interrupt) in that the return address is loaded with the next address after the 'reqi* instruction.
However, unlike other interrupt sources, there is no way for an ‘automatic interrupt return' to occur for
software interrupts so a software interrupt must be terminated by the 'iret' instruction.

This instruction provides an 'id' which can be used within the interrupt service routine. The core can read
it's irq register which contains a field named 'irq_source.' This 'irg_source' field contains the id of the
interrupting source.

Interestingly, all four cores' 'irg' registers can be read by the host MCU acrass the SPI bus by reading the
four 'irq_status' registers. This provides the host MCU with the ability to determine the software interrupt

Sources.

Syntax
reqi 1d;

Example
/1l Force a software interrupt within the core
reqi 2;

MC33816 Assembler, page 93 ICONF - Configure automatic interrupt@®e@i212024 ASHWARE, Inc. ASH WARE, Inc.

16. Interrupts

16.3

Id - The interrupt source ID

IRET - Return from interrupt

Ends the the interrupt service routine (isr) and clears the sequencer interrupt status register.

Execution normally continues at the address in the irq register's ‘iret_address' field. This behavior is
specified by selecting 'continue’ in the 'Type' parameter as show below. The ‘iret_address' field gets written
when the interrupt occurred and contains the appropriate return address. For instance, if an interrupt
occurred while waiting at a 'wait' instruction, execution continues at the 'wait" instruction. However, if the
interrupting source was a software interrupt ('iret' instruction) then execution resumes at the instruction
following the 'iret' instruction.

Alternatively, instruction execution will resume at the address specified by the reset vector by selecting
'restart’ in the 'Type' parameter as shown below. This allows interrupt return behavior to be identical to the
reset behavior.

The 'Rst' parameter allows any pending interrupt sources to be cleared from the interrupt queue following
execution of this interrupt instruction.

Syntax

iret Type Rst;

Example

/'l Standard interrupt term nation
// using the "iret' instruction.
/'l retain pending interrupts.
iret continue _rst;

Type

continue Resume program execution at the address specifed in the irq
register's 'iret_address' field which contains the address that
was active when the originating interrupt occured

restart Resume program execution a address specified by the core's
reset vector thereby mimicing the core's reset behavior

Rst

_rst The pending interrupt queue is not cleared
rst Clear the pending interrupt queue

MC33816 Assembler, page 94 REQI - Request software interruf®) 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

16. Interrupts ASH WARE, Inc. 6/8/2024

16.4 STIRQ - Write IRQB output pin

Write the IRQB output pin. This pin is normally connected to the host MCU's interrupt input pin thereby
allowing the MC33816 to interrupt the MCU.

The pin's logic level is determined by the "Value' parameter.
Syntax

stirqg Val ue;
Example

/1 Interrupt the MCU

/'l by putting the IR pin | ow
stirg | ow;

Value - The IRQB output pin's logic level

low Write the IRQB ouput pin to a low logic level
high Write the IRQB ouput pin to a high logic level

MC33816 Assembler, page 95 STIRQ - Write IRQB output pin(C) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

Data RAM Accesses

Part

MC33816 Assembler, page 96 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses ASH WARE, Inc. 6/8/2024

17

Data RAM Accesses

The Data RAM access instructions are used to load and store data memory. These instructions also set
the access mode which can be set to either 'Immediate’ mode or 'Indexed’ mode. ‘Indexed mode is when
an offset from the Base Address register is applied to the access's address.

17.1 SLAB - Selects the register to be used in Indexed addressing mode

Selects which register (‘base_add' or 'ir') is to be used when accessing data RAM in 'Indexed’ addressing
mode (XM).

This setting is "sticky" in that once programmed it remains until changed by a future 'slab’ instruction.
The reset value of SelBase is reg.

Note that when using databanks, register ‘base_add' must be the active index register when any databank
member variables are accessed.
Syntax
sl ab Sel;
Example

/1 Use indexed addressing
/1l and the "ir' register
/1 to store OxCC to address 0x20

slab ir;
Idirl CCh rst;
cp ir r0;
Idirl 20h rst;

store r0O My_Count _ofs;
Sel - Specifies which register is to be used for future 'Indexed' data memory accesses.

reg Use the 'base_add' register for 'Indexed’ data memory
accesses
ir Use the 'ir' register for 'Indexed’ data memory accesses

MC33816 Assembler, page 97 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

17.2

17.3

STAB - Write the 'base_add' register

This instruction writes the address in the 6-bit 'base_add' register.

The 'base_add' register is used in 'Indexed' addressing mode, but only if it is configured to be the Base
Address register by a previously-executed 'slab’ instruction.

Note that the 'ir' register can (alternatively) be used as the Base Address for indexed addresses.

See the 'slab’ instruction which configures either the 'base_add' register or the 'ir' register to be used for
indexed addresses.

Note that the 'base_add' register can be written but not read.

This instruction is also used to set the active databank and in fact must be used prior to accessing any
databank member variables. See the example below.

Syntax
st ab Addr Base;

Example

/1 Declare a databank

dat abank I njector {

uint16 | _peak;

uint16 | _hol d;

b

/1

/1 Al'locate two databanks of type 'Injector’
dat abank Injector _injectorl;

dat abank I njector _injector?2;

/1

/1 set the index base address to the _injectorl databank address
stab _injectorl;

/1
/1 Fromthe active databank (currently ' _injectorl")
/1 load variable "I _peak' into register 'rQ'

| oad | _peak r0 ofs;
AddrBase - Sets the data RAM address

LOAD - Load aregister with a 16-bit value from the Data RAM

Load an ALU register with a 16-bit value from the Data RAM.

The DRAM address from which the register is loaded is defined by 'AddSrc’ which is a 6-bit Data RAM
address. Optionally, a base address can be applied to form a fully qualified address.

Note that the read value can be affected by the 'Set Data RAM Read Mode ' instruction (stdrm) which
supports swapping the bytes, reading just the upper byte, and reading just the lower byte.

MC33816 Assembler, pag&BaB - Selects the register to be used in Indexed@defi228P4d BioMAERE, Inc. ASH WARE, Inc.

17. Data RAM Accesses ASH WARE, Inc. 6/8/2024

'Ofs' determines whether the 'Base Address' register is applied.
Syntax

| oad Addr Src RegDest O fset;

Example

/'l Declare a 16-bit variable nanmed 'engi ne_speed3’

sint16 engi ne_speed3;

/1

/1 Load gl obal variable 'engine_speed3 into register 'r0
| oad engi ne_speed3 r0 _ofs;

/1

/'l Load a value from hard-coded address 55 (yuck)

/'l into register 'r1'

load 55 rl1 _ofs;

AddrSrc - Sets the data RAM address

RegDest - The destination register

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register

mi ALU LSB Multiplication Result Register

ar The "arith_reg' (ar) is read-only. ALU condition register (Z,

C,N,V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar' register is often refered to as the 'arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jirl Register 'Jump Destination 1'

jr2 Register 'Jump Destination 2

cntl Counter 1's 'count’ register

cnt2 Counter 2's "count’ register

cnt3 Counter 3's 'count’ register

cnt4 Counter 4's 'count’ register

eocl Counter 1's "Terminal Count' register

eoc2 Counter 2's "Terminal Count' register

eoc3 Counter 3's "Terminal Count' register

eocd Counter 4's "Terminal Count' register

flag Flag output from the microcore

cr Control inputs from the controlling MCU

sr Status register for the controlling MCU

spi_data The SPI Bus's DATA Register

dac_sssc 'Same Core Same Channel' current sense threshold DAC
Register

dac_ossc 'Other Core, Same Channel' current sense threshold DAC
Register

MC33816 Assembler, page 92 OAD - Load a register with a 16-bit value frof#)tAel D224 RANWARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

dac_ssoc 'Same Core Other Channel' current sense threshold DAC
Register

dac_osoc 'Other Core, Other Channel' current sense threshold DAC
Register

dac4h4n Accesses either core 4's second current sense threshold

DAC register (used for DC/DC Contral,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DA C access mode. See instruction
'stdm' for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Regjister
irg Interrupt status register
rxtx Inter core communication register

Offset - Sets the addressing mode.

_ofs Immediate addressing, address = AddSrc
ofs Indexed addressing, address = AddSrc + Base Address
register

17.4 STORE - Store avalue from an ALU register into the Data RAM

Store a 16-bit value from an ALU register into the Data RAM.

The DRAM address where the value stored is defined by 'AddSrc’ which is a 6-bit Data RAM address.
Optionally, a base address can be applied to form a fully qualified address.

'Ofs' determines whether the 'Base Address' register is applied.
Syntax

store RegSrc AddrDest O fset;

Example

/1 Declare a 16-bit variable nanmed 'engi ne_speed4
sint16 engi ne_speed4;

...

/1 Load the "ir' register with 0x1234

/1 and store into variable 'engi ne_speed4;
LOAD I R 0x1234;

store ir engine_speed4 _ofs;

/1l

/1l Store a value fromregister 'r2

/1 Into the hard-coded data ram address 23 (yuck)
store r2 23 _ofs;

RegSrc - The source register

MC33816 Assembler, page 1Q00AD - Load a register with a 16-bit value frof®)tRe D224 RANWARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses ASH WARE, Inc. 6/8/2024

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register

ml ALU LSB Multiplication Result Register

ar The ‘arith_reg' (ar) is read-only. ALU condition register (Z,

C,N, V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar' register is often refered to as the "arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jirl Register 'Jump Destination 1'

jr2 Register 'Jump Destination 2

cntl Counter 1's 'count’ register

cnt2 Counter 2's 'count’ register

cnt3 Counter 3's 'count’ register

cnt4 Counter 4's "count’ register

eocl Counter 1's "Terminal Count' register

eoc2 Counter 2's "Terminal Count' register

eoc3 Counter 3's 'Terminal Count' register

eocd Counter 4's "Terminal Count' register

flag Flag output from the microcore

cr Contral inputs from the controlling MCU

sr Status register for the controlling MCU

spi_data The SPI Bus's DATA Register

dac_sssc 'Same Core Same Channel' current sense threshold DAC
Register

dac_ossc 'Other Core, Same Channel' current sense threshold DAC
Register

dac_ssoc 'Same Core Other Channel' current sense threshold DAC
Register

dac_osoc 'Other Core, Other Channel' current sense threshold DAC
Register

dac4h4n Accesses either core 4's second current sense threshold

DAC register (used for DC/DC Contral,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DAC access mode. See instruction
'stdm'’ for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Register
irg Interrupt status register
rxtx Inter core communication register

AddrDest - Sets the data RAM address
Offset - Sets the addressing mode.

MC33816 Assembler, page 18TORE - Store a value from an ALU register int@) 89¢2E3884 REMVARE, Inc. ASHWARE, Inc.

17. Data RAM Accesses

_ofs Immediate addressing, address = AddSrc
ofs Indexed addressing, address = AddSrc + Base Address
register

175 STDRM - Set data RAM read mode

This instruction sets the data RAM read mode.
The default is to read all 16 bytes.
In'low' mode the lower byte is read and the upper byte is zero.
In 'high' mode the upper byte is read into the lower byte. The upper byte is zero.
In'swap' mode the upper and lower bytes are swapped.
This setting is sticky, such that once set it does not change until a future 'stdrm' instruction.
Syntax
st dr m Mode;

Example

/1 Set the data RAM read node
/1 to read JUST the high bytes
/1 but into the |ow byte

/1 of the destination registers.
stdrm hi gh;

M ode - Specifies the mode.

word Read the full word normally (default)

low Read just the low byte, upper byte is zero

high Read just the uppper byte, but shift into lower byte
swap Swap the upper and lower bytes in read

MC33816 Assembler, page 18Z0RE - Store a value from an ALU register int@) 89¢2E2884 REMVARE, Inc. ASHWARE, Inc.

Math

Part

MC33816 Assembler, page 103 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

18

Math

The following section covers the math operations including flag configuration, adds, subtracts, and multiplies,
etc.

18.1 STAL -set arithmetic logic

This instruction configures the behavior of addition and subtraction instructions only. All other instructions
(multiply, shift, bitwise, etc) are not affected by this instruction.

The addition and subtract results are affected only if one the 'saturation’ modes is selected. If 'saturation’ is
not selected then the results are not affected.

With 'saturation' enabled the result is bounded by the natural limits of the 16 bit register. The maximum
signed integer is Ox7FFF. When in signed saturation mode (al2) and two paositive numbers are added that
would exceed Ox7FFF, then the operation is said to 'saturate’ in that the result is OX7FFF.

The'Al and'AQ hits of the ALU Condition Register 'arith_reg' are written with this instruction.

This instruction is "sticky' in that once written, the setting does not change until written again with a future
‘stal' instruction.

Syntax

stal Mbde;

Example

/1 Set node to 'signed saturation' (al?2)

/'l This causes add/sub results that woul d

/'l otherw se overfl ow

// tolimt to the max/mn val ues instead

/1 In this exanple the register will get a Ox7FFF,
/1 (the maxi mum si gned val ue) .

stal al 2;

LOAD | R Ox7FFD;

addi ir 15 ro0;

MC33816 Assembler, page 104 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math ASH WARE, Inc. 6/8/2024

M ode
all Signed number without overflow saturation
al2 Signed number with overflow saturation
a3 Unsigned number without overflow saturation
a4 Unsigned number with overflow saturation

18.2 CP -Copy oneregister to another

Copy the value from one register to another.

Syntax
cp RegSrc RegDest;
Example

/1 Copy the contents
/1l of register 'r3'

/1 into the core's DAC
cp r3 dac_sssc;

RegSrc - The source register.

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register

ml ALU LSB Multiplication Result Register

ar The ‘arith_reg' (ar) is read-only. ALU condition register (Z,

C,N, V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar' register is often refered to as the "arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jirl Register 'Jump Destination 1'

jr2 Register 'Jump Destination 2

cntl Counter 1's 'count’ register

cnt2 Counter 2's "count’ register

cnt3 Counter 3's "count’ register

cnt4 Counter 4's 'count’ register

eocl Counter 1's "Terminal Count' register

eoc2 Counter 2's 'Terminal Count' register

eoc3 Counter 3's 'Terminal Count' register

eocd Counter 4's "Terminal Count' register

flag Flag output from the microcore

cr Control inputs from the controlling MCU

sr Status register for the controlling MCU

spi_data The SPI Bus's DATA Register

MC33816 Assembler, page 105 STAL - set arithmetic logic (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

dac_sssc 'Same Core Same Channel' current sense threshold DAC
Register

dac_ossc 'Other Core, Same Channel' current sense threshold DAC
Register

dac_ssoc '‘Same Core Other Channel' current sense threshold DAC
Register

dac_osoc 'Other Core, Other Channel' current sense threshold DAC
Register

dac4h4n Accesses either core 4's second current sense threshold

DAC register (used for DC/DC Control,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DAC access mode. See instruction
'stdm'’ for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Register
irg Interrupt status register
rXtx Inter core communication register

RegDest - The destination register.

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register

mi ALU LSB Multiplication Result Register

ar The 'arith_reg' (ar) is read-only. ALU condition register (Z,

C,N, V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar’ register is often refered to as the "arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jirl Register 'Jump Destination 1'

jr2 Register 'Jump Destination 2

cntl Counter 1's 'count’ register

cnt2 Counter 2's 'count’ register

cnt3 Counter 3's 'count’ register

cnt4 Counter 4's "count’ register

eocl Counter 1's "Terminal Count' register

eoc2 Counter 2's 'Terminal Count' register

eoc3 Counter 3's "Terminal Count' register

eocd Counter 4's 'Terminal Count' register

flag Flag output from the microcore

cr Contral inputs from the controlling MCU

sr Status register for the controlling MCU

spi_data The SPI Bus's DATA Register

dac_sssc 'Same Core Same Channel' current sense threshold DAC
Register

MC33816 Assembler, page 106 CP - Copy one register to anoth&g) 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

18. Math

ASH WARE, Inc. 6/8/2024

dac_ossc '‘Other Core, Same Channel' current sense threshold DAC
Register

dac_ssoc 'Same Core Other Channel' current sense threshold DAC
Register

dac_osoc 'Other Core, Other Channel' current sense threshold DAC
Register

dac4h4n Accesses either core 4's second current sense threshold

DAC register (used for DC/DC Control,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DA C access mode. See instruction
'stdm' for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Register

Interrupt status register
Inter core communication register

18.3 LDIRH-Load immediate register's MSB

Load an immediate value into the most significant byte (MSB) of the 'ir’ register.

The least significant byte (LSB) can be either reset to zero or left unchanged.

NOTE: If the intent is to update the entire 'ir' register, it is recommended the extended

instruction 'LOAD _IR' be used instead.

Syntax

| dirh Value rstlL;

/'l Setup the counter to detect a timeout error at 200 counts
LOAD | R 200;

| dca rst keep keep ir c1;

/1

/'l Load 'Ox7C into the upper byte of the IR register

/'l leaving the | ower byte unchanged.

I dirh OXAB _rst;

Value - 8-bit immediate value

rstL - Reset the LSB to zero?

Do not change the 'ir' register's LSB
Reset 'ir' register's LSB to zero

MC33816 Assembler, page 107

CP - Copy one register to anothé®) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

18. Math

18.4 LDIRL - Load immediate register's LSB

Load an immediate value into the least significant byte (LSB) of the 'ir' register.

The most significant byte (MSB) can be either reset to zero or left unchanged.

NOTE: If the intent is to update the entire "ir* register, it is recommended the extended

instruction 'LOAD _IR' be used instead.

Syntax

Idirl Value rstH;

Example

/1l Setup the counter to detect a tineout error at 200 counts

LOAD | R 200;

| dca rst keep keep ir cl;

/1
/1 Load ' OxAB' i

nto the I ower byte of the IR register

/1 leaving the upper byte unchanged.

Idirl OxAB _rst;
Value - 8-hit immediate value

rstH - Reset the MSB to zero?

_rst Do not change the 'ir' register's MSB

rst Reset

Ir' register's MSB to zero

18.5 Load the full 16-bit IR register (extended instruction)

Load an immediate value into the 'ir' register. The assembler optimally does the load based upon the

immediate value.
Syntax

LOAD_I R Val ue;

Example
/! Declare a 16-

bit variabl e nanmed 'engi ne_speedl’

sint16 engi ne_speedl;

1. ..

// Load the "ir'
// and store int
LOAD I R 0x1234;

regi ster with 0x1234
o vari abl e 'engi ne_speedl;

store ir engine_speedl ofs;

Value - 16-bit immediate value

MC33816 Assembler, page 108

LDIRL - Load immediate register's(C5®12-2024 ASHWARE, Inc. ASH WARE, Inc.

18. Math

ASH WARE, Inc. 6/8/2024

18.6 ADD - Addition of two registers

Add the value in one register with the value in a second register and place the result in a third register.

This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.

Syntax

add Addl Add2 Res;

Example

/1 Add ir and rl1,
/'l place results inr2
add ir rl r2;

Addl - The first register to be added

ro
ri
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

Add2 - The second register to be added

ro
ri
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

Res - The register where the result goes

ro
ri
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

MC33816 Assembler, page 109

ADD - Addition of two registergC) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

18. Math

18.7 ADDI - Addition of aregister with a 4-bit unsigned immediate

Adds a register to a 4-bit unsigned immediate and places the result in a register.
This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.

Syntax
addi Add I mm Res;
Example

/'l Add five to the value in the '"r0" register
/1 and place the result in the '"rl' register
addi r0 5 r1;

Add - The ALU register with the value to be added.

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

Imm - The 4-bit unsigned immediate value that gets added.
Res - The ALU register that will cantain the result of the addition.

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

18.8 SUB - Substraction of two registers

Subtracts a register from a register and places the results in a third register.
This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.
Res = Subl - Sub2

Syntax
sub Subl Sub2 Res;

MC33816 Assembler, page 118DDI - Addition of a register with a 4-bit unsigiteaolarade4fsie WARE, Inc. ASH WARE, Inc.

18. Math

ASH WARE, Inc. 6/8/2024

Example

/] Subtract the value in
/!l fromthe value in the

/'l and place results in

t he
et
r2'

"ir' register
register
register

add rl1 ir r2;

Subl - The minuend

ro
ri
r2
r3
r4
ir
mh
ml

Sub?2 - The subtrahend

ro
ri
r2
r3
r4
ir
mh
ml

Res - The result

ro
ri
r2
r3
r4
ir
mh
ml

18.9 SUBI - Subtraction by a 4-bit unsigned immediate

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

Subtracts an unsigned 4-bit immediate from a register and places the results in second register.

This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.

MC33816 Assembler, page 111

SUB - Substraction of two registdé#s2012-2024 ASHWARE, Inc. ASHWARE, Inc.

18. Math

Res=Sub - Imm

Syntax

subi

Example

Sub | mm Res;

/'l Subtract OxE fromregister 'r2
/'l and put the result into register 'r3

subi

ro
rl
r2
r3
r4
ir
mh
ml

r2 OxE r3;
Sub - The minuend

ALU General Purpose Register 0

ALU General Purpose Register 1

ALU General Purpose Register 2

ALU General Purpose Register 3

ALU General Purpose Register 4

ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

Imm - The 4-bit immediate subtrahend

Res - The result

ro
ri
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0

ALU General Purpose Register 1

ALU General Purpose Register 2

ALU General Purpose Register 3

ALU General Purpose Register 4

ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

18.10 MUL - Multiplication of two registers, result goes in 'mh' and ‘ml’

Multiply register Factl with register Fact2 and put the resulting 32-bit number's MSB in the 'mh’ register
and LSB inthe 'ml' register.

The multiply takes 17 clock cycles.

A series of shift's and add's of the ‘'mh' and 'ml' register is used such that the 'mh' and 'ml’ register should
be neither read nor written while the multiply is underway. However, registers 'rQ' through 'r4' and 'ir' are
available for parallel execution.

To determine when the multiply is complete, the arith_reg's OD hit, which goes from zero to one, can be
tested as shown in the example below.

Syntax

MC33816 Assembler, page 112

SUBI - Subtraction by a 4-bit unsigned i#r?8d22@24 ASH WARE, Inc. ASH WARE, Inc.

18. Math

ASH WARE, Inc. 6/8/2024

Example

ro
ri
r2
r3
r4
ir

mul Fact1l Fact 2;

mul r0O rl;

wai t _| oop6:
jarr doneb6
jpr wait_|
done6:

opd;
00p6;

store mh MyMsbVar _ofs;
store m MLsbVar _ofs;

Factl - The first register to be multiplied

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

Fact2 - The second register to be multiplied

ro
rl
r2
r3
r4
ir

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

18.11 MULI - Multiplication with 4-bit immediate, result goes in 'mh' and 'ml’

Multiply register Fact with the 4-bit immediate and put the resulting 32-bit number's MSB in the 'mh’
register and LSB in the 'ml' register.

The multiply takes 17 clock cycles.

A series of shift's and add's of the 'mh' and 'ml' register is used such that the 'mh' and 'ml’ register should
be neither read nor written while the multiply is underway. However, registers 'rQ’ through 'r4' and 'ir' are
available for parallel execution.

To determine when the multiply is complete, the arith_reg's OD bit, which goes from zero to one, can be
tested as shown in the example below.

Syntax

Example

mul i Fact |

muli r0 9;
wait _| oopl:

mm

jarr donel opd;

MC33816 Assembler, page M3L - Multiplication of two registers, result goe] 20431202hHSHWARE, Inc. ASH WARE, Inc.

18. Math

jmpr wait_|oopl;

donel:

store mh MyMsbVar _ofs;
store m MyLsbVar _ofs;

Fact - The register to be multiplied

ro ALU General Purpose Register 0
ri ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register

Imm - The four-bit immediate to be multiplied

18.12 SWAP - Swap a register's high and low bytes

The high byte becomes the low byte and the low byte becomes the high byte.

Syntax
swap Reg;
Example

/'l Swap the upper and | ower bytes
/'l within register 'rl

swap r1i,;
Reg

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

18.13 TOC2 - Conditional conversion to 2's complement format with sign
enforcement

Conditionally converts a number to 2's complement format.

If the conversion bit ‘'CS of the ALU Condition Register 'arith_reg' is zero then only the most significant bit
is to zero and no other hits are changed.

MC33816 Assembler, pagdlULl4 Multiplication with 4-bit immediate, result §6e1a-204' AGHWARE, Inc. ASHWARE, Inc.

18. Math

ASH WARE, Inc. 6/8/2024

However, if 'CS is one, then a two's complement is taken (bitwise inversion, then add one) and the most
significant bit is set to one.

Syntax

Example

Reg -

ro
rl
r2
r3
r4
ir
mh

toc2 Reg;

/1 Conditionally convert a nunber

/1 to 2's compl ement format.

/1 1f the conversion bit 'CS

/1 of the ALU Condition Register "arith_ reg" is zero
/1 then only the nost significant bit is to zero and
/1 no other bits are changed.

/1 However, if 'CS is one,

/1 then a two's conplement is taken

[l (bitwi se inversion, then add one)

/1 and the nost significant bit is set to one

toc2 ir;

ALU General Purpose Register 0

ALU General Purpose Register 1

ALU General Purpose Register 2

ALU General Purpose Register 3

ALU General Purpose Register 4

ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

18.14 TOINT - Convert from 2's complement

Convert the 2-complement value to integer format.

If the operand's most significant bit is zero then the original value is retained.

If the operand's most significant bit is a one then atwo's complement is performed (invert all bits and add
one) and the most significant bit is cleared.

The resulting value of the conversion bit ‘CS of the ALU Condition Register "arith_reg' is affected by the
Rst parameter.

If the Rst parameter is a zero then the CS hit gets 'OR'd with the operands most significant bit.

If the Rst parameter is a one then the CS bit is set to the operand's most significant bit.

Syntax

toi nt Reg Rst;

Example

/1 Convert from2's conpl enent.

MC33816 AssemblerQ&@e Comditional conversion to 2's complement form €D \RA1R-20gh ASToEBIMIen ASH WARE, Inc.

18. Math

/1 The Rst paraneter is a one

/1l so set the CS bit

/1l to the operand' s nost significant bit
toint ir rst;

Reg

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

Rst - CS hit behavior

_rst The existing conversion bit CS is XORed with the operand's
most significant bit

rst The existing conversion bit CSiis set according to the
operand's most significant bit

MC33816 Assembler, page 116 TOINT - Convert from 2's complen{€nh2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Bitwise

Part

MC33816 Assembler, page 117 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

19. Bitwise

19.1

19

Bitwise

This section covers the 'bitwise' operations, ‘and’, 'or’, 'xor’, and 'not'.

AND - Bitwise AND with 'ir' register

Performs a bitwise '"AND’ of the selected register with the 'ir' register and places the results back into the
(same) selected register.

The ALU Condition Register ‘arith_reg' '"MN' and ‘MZ" bits get written.

Note that the '"MN' flag indicating all one's gets tested by the 'jarr' and 'jarf' instructions using the 'alll'
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0" flag.
Syntax

and Reg;

Example

/1 AND the '"ir' register with the 'r0" register.
/1l Result goes in the 'r0' register
/1 1f the result is '"0'" then junp to the 'handle_all _zeroes_' code

| abel .

and ro0;

jarr handle_all _zeroes_ allO0;
/1 ... (nore code here)

handl e_al | _zeroes_:

Reg - The register for both the operation's operand and result.

MC33816 Assembler, page 118 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

19. Bitwise

ASH WARE, Inc. 6/8/2024

ro
rl
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0

ALU General Purpose Register 1

ALU General Purpose Register 2

ALU General Purpose Register 3

ALU General Purpose Register 4

ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

19.2 OR-Bitwise OR with the 'ir' register

Performs a hitwise 'OR’ of the selected register with the 'ir’ register and places the results back into the
(same) selected register.

The ALU Condition Register 'arith_reg' '"MN' and ‘MZ' bits get written.

Note that the '"MN' flag indicating all one's gets tested by the "jarr' and ‘jarf" instructions using the 'alll’
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0’ flag.

Syntax

or Reg;
Example

/1 Bitwise ORthe "ir' register with the 'r0" register.
/'l Result goes in the 'rQ" register.
/1 1f the result is "OxFFFF' then junp to the '"handle_all _ones_ ' code

| abel .
or rO;

jarr handle_all _ones_ alll;
/'l ... (nmore code here)
handl e_al | _ones_:

Reg - The register for both the operation's operand and resullt.

ro
rl
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0

ALU General Purpose Register 1

ALU General Purpose Register 2

ALU General Purpose Register 3

ALU General Purpose Register 4

ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

MC33816 Assembler, page 119

AND - Bitwise AND with 'ir' registé 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

19. Bitwise

19.3 XOR - Bitwise XOR with the 'ir' register

Performs a bitwise "XOR' of the selected register with the 'ir' register and places the results back into the
(same) selected register.

The ALU Condition Register 'arith_reg' '"MN' and ‘MZ' bits get written.

Note that the '"MN' flag indicating all one's gets tested by the 'jarr' and ‘jarf' instructions using the 'alll'
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0’ flag.
Syntax
xor Reg;
Example

/'l Bitwise XORthe "ir' register with the 'r0" register.
/'l Result goes in the 'rQ'" register.
/'l 1f the result is "OxFFFF then junp to the 'handle_all_ones' code

| abel .

xor rO0;

jarr handle_all _ones all1;
/1 ... (nmore code here)

handl e_al | _ones:

Reg - The register for both the operation's operand and result.

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

19.4 NOT - Bitwise NOT

Inverts the bits of the selected register and puts the result into the same register.
The ALU Condition Register 'arith_reg' ‘MN' and 'MZ' bits get written.

Note that the '"MN' flag indicating all one's gets tested by the ‘jarr' and ‘jarf' instructions using the 'alll'
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0’ flag.

Syntax
not Reg;

Example

/1 Bitwise invert the "r0" register.

/1l Result goes in the "r0" register.

/1 1f the result is '0" then junp to the 'handle_all _zeroes' code
| abel .

MC33816 Assembler, page 120 XOR - Bitwise XOR with the 'ir' reg(€le&p12-2024 ASHWARE, Inc. ASH WARE, Inc.

19. Bitwise ASH WARE, Inc. 6/8/2024

not rO;
jarr handle_all _zeroes allO;
/1 ... (nore code here)

handl e_al | _zeroes:

Reg - The register for both the operation's operand and resullt.

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

MC33816 Assembler, page 121 NOT - Bitwise NOT (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Shifts

Part

MC33816 Assembler, page 122 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts ASH WARE, Inc. 6/8/2024

20

Shifts

This section covers the shift instructions. Shifts include "shift left' and "shift right', shift by register' and
'shift immediate’, 'normal shift' and 'signed shift' in which the most significant bit does not change, and 32-hit
shifts in which the 'mh' and 'ml' registers are treated as a single 32-bit register in which the 'mh' register's
Isb connects with the 'ml's registers msb.

Shifts normally take one instruction cycle per shifted bit and the "arith_reg' register's 'OD' hit can be tested
to determine when the shift is completed. So an 11-hit shift would normally take 11 clock cycles to
execute. However, there is a special 8-bit shift which takes just a single clock cycle so shifts by constants
greater than 8 hit positions can be sped up by combining the 8-bit shift with the immediate shift.

20.1 SHR - Shiftright by register

Shift right register 'RegData’ the number of bits set by the value in register 'RegPos'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax
shr RegDat a RegPos;

Example

shr r3 r2;
wait_| oop9:
jarr done9 opd;
jpr wait_| oop9
done9:

RegData - The register that gets shifted

MC33816 Assembler, page 123 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

20.2 SHRS - Shift right by register, signed

Shift right register 'RegData’ the number of bits set by the value in register 'RegPos'.
The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' hit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax
shrs RegDat a RegPos;

Example

shrs r3 r2;
wait_| oopl0:

jarr donelO opd;
jmpr wait_| ooplO;
donelO:

RegData - The register that gets shifted

MC33816 Assembler, page 124 SHR - Shift right by register (C) 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

20. Shifts ASH WARE, Inc. 6/8/2024

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

20.3 SHRI - Shift right by immediate

Shift right register 'Reg' the number of bits set by an immediate value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the shift is complete, the arith_reg's OD bit, which goes from zero to one upon
completion, can be tested as shown in the example below.

Syntax
shri Reg I mm
Example

shri r3 7;

wai t _| oop4:

jarr done4 opd;
jnpr wait_| oop4;
done4:

Reg - The register that gets shifted

MC33816 Assembler, page 125 SHRS - Shift right by register, sig@d012-2024 ASHWARE, Inc. ASH WARE, Inc.

20. Shifts

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

20.4 SHRSI - Shift right by immediate, signed

Shift right register 'Reg’ the number of bits set by the immediate value.
The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done" bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax
shrsi Reg | mm

Example

shrsi r3 7;

wai t _| oop5:

jarr done5 opd;
jmpr wait_| oop5;
done5:

Reg - The register that gets shifted

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

MC33816 Assembler, page 126 SHRI - Shift right by immediatdC) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

20. Shifts

ASH WARE, Inc. 6/8/2024

20.5 SHRS - Shift right by 8
Shift right register 'Reg’ eight bits.

This operation one clock.

Syntax

shr8 Reg;

Example

/1l Shift the r3 register right by 11 bits
/'l in tw steps that take 4 clocks

shr8 r3;

shri r3 3;

cpir ir; [/ NOP

cpir ir; [/ NOP

Reg - The register that gets shifted

ro
ri
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0

ALU General Purpose Register 1

ALU General Purpose Register 2

ALU General Purpose Register 3

ALU General Purpose Register 4

ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

20.6 SH32R - Shiftright 'mh' and 'ml' by register

Shift right registers 'mh’ and 'ml' the number of bits set by the value in register '‘RegPos’. Note that the 'mh'
and 'ml' registers are considered to be a single 32-bit register where the Isb from 'mh’ shifts into the msb of

‘mil'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position

shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

Example

sh32r RegPos;

sh32r r2;

wait_| oopl4:

jarr donel4 opd;
jpr wait_| oopl4;
donel4:

RegPos - This register sets the number of bits to shift

MC33816 Assembler, page 127 SHRS - Shift right by 8

(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

20.7

20.8

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

SH32RI - Shift right 'mh' and 'ml' by 4-bit immediate

Shift right registers 'mh’ and 'ml' the number of bits set by the immediate value. Note that the ‘'mh' and ‘'ml’
registers are considered to be a single 32-bit register where the Isb from 'mh' shifts into the msb of 'ml'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, can be tested as shown in the example below.
Syntax

sh32ri 1 mm

Example

sh32ri 7;

wait_| oopl2:

jarr donel2 opd;
jpr wait_| oopl2;
donel2:

Imm - The number of bits to shift

SHL - Shift left by register

Shift left register 'RegData’ the number of bits set by the value in register 'RegPos'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax
shl RegDat a RegPos;

MC33816 Assembler, page 128 SH32R - Shift right 'mh' and 'ml' by régigfdr-2024 ASHWARE, Inc. ASH WARE, Inc.

20. Shifts ASH WARE, Inc. 6/8/2024

Example

shl r3 r2;
wait_| oop7:

jarr done7 opd;
jpr wait_I| oop7;
done7:

RegData - The register that gets shifted

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.9 SHLS - Shift left by register, signed

Shift left register 'RegData’ the number of bits set by the value in register 'RegPos'.
The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax
shl s RegDat a RegPos;

Example
shls r3 r2;
wait_| oop8:
jarr done8 opd;

MC33816 Assembler, page 129 SHL - Shift left by register (C) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

20. Shifts

jmpr wait_|oops;
dones8:

RegData - The register that gets shifted

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
mi ALU LSB Multiplication Result Register

20.10 SHLI - Shift left by immediate

Shift left register 'Reg’ the number of bits set by an immediate value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the shift is complete, the arith_reg's OD hit, which goes from zero to one upon
completion, can be tested as shown in the example below.

Syntax
shli Reg I mm
Example

shli r3 7;

wait _| oop2:

jarr done2 opd;
jmpr wait_|oop2;
done2:

Reg - The register that gets shifted

MC33816 Assembler, page 130 SHLS - Shift left by register, signéd 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

20. Shifts ASH WARE, Inc. 6/8/2024

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

20.11 SHLSI - Shift left by immediate, signed

Shift left register 'Reg’ the number of bits set by the immediate value.
The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done" bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax
shlsi Reg I nm

Example

shlsi r3 7;

wait _| oop3:

jarr done3 opd;
jmpr wait_|oop3;
done3:

Reg - The register that gets shifted

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

MC33816 Assembler, page 131 SHLI - Shift left by immediate (C) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

20. Shifts

20.12 SHLS8 - Shift left by 8
Shift left register 'Reg’ eight bits.

This operation one clock.

Syntax

shl 8 Reg;

Example

/1 Shift the r3 register left by 11 bits
/'l in tw steps that take 4 clocks
shl 8 r3;

shli r3 3;

cpir ir; [/ NOP

cpir ir; [/ NOP

Reg - The register that gets shifted

ro
ri
r2
r3
r4
ir
mh
ml

ALU General Purpose Register 0
ALU General Purpose Register 1
ALU General Purpose Register 2
ALU General Purpose Register 3
ALU General Purpose Register 4
ALU Immediate Register

ALU MSB Multiplication Result Register
ALU LSB Multiplication Result Register

20.13 SH32L - Shift left 'mh' and 'ml' by register

Shift left registers 'mh’ and 'ml* the number of bits set by the value in register ‘RegPos’. Note that the 'mh’
and 'ml' registers are considered to be a single 32-bit register where the msb from 'ml’ shifts into the Isb of

'mh'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position

shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

Example

sh32]l RegPos;

sh32l r2;

wait_| oopl3:

jarr donel3 opd;
jpr wait_| oopl3;
donels3:

RegPos - This register sets the number of bits to shift

MC33816 Assembler, page 132 SHLS8 - Shift left by 8

(C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts ASH WARE, Inc. 6/8/2024

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.14 SH32LI - Shift left 'mh" and 'ml' by 4-bit immediate

Shift left registers 'mh’ and 'ml' the number of bits set by an immediate value. Note that the ‘mh" and ‘'ml’
registers are considered to be a single 32-bit register where the msb from 'ml' shifts into the Isb of 'mh'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax
sh32li | nmm

Example

sh32li 7;

wait_| oopll:

jarr donell opd;
jpr wait_I| oopll;
donell:

Imm - The number of bits to shift

MC33816 Assembler, page 133 SH32L - Shift left ‘'mh' and 'ml' by re@)st$2-2024 ASHWARE, Inc. ASHWARE, Inc.

Control, Status, Flags, and the Inter Core
Communications 'rxtx' register

Part

MC33816 Assembler, page 134 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register ASH WARE, Inc. 6/8/2024

21

Control, Status, Flags, and the Inter
Core Communications 'rxtx' register

This section covers the instructions that handle the control register, the status register and the flags register.
Note that each of the four cores has it's own control and status register but the four course share the flag
register.

The flags register has many purposes. The devices's input pins can be read through the (single) flags
register (if configured appropriately.) Output pins (if configured appropriately) can be controlled through the
flags register. The flags register can also by the ‘wait' instruction such that a state value can cause a
section of code to execute.

The inter-core communication register 'rxtx' provides a mechanism to share data between cores. Each
core writes its own 'rxtx' register. However, any core can read any other core's 'rxtx' register by
configuring appropriately using the "stcrt’ instruction.

21.1 STCRB - Write control register bit
Writes individual bits in the control register (‘cr’) to either '1' or '0'.
Note that only the upper byte (bits 8 through 15) can be written as the lower bits are read-only.

Note also that the entire upper byte can be written at once using the copy (‘cp’) instruction.
Syntax
stcrb Value Bit Sel;

Example

/1 Set bit 8 of the core's control register,
stcrb high bs;

Value - Value ("1 or '0) of the write.

low Write the bit to '0f
high Write the bit to '1'

MC33816 Assembler, page 135 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register

BitSel - Specifies which control bit to set.

b8 Write hit 8

b9 Write bit 9

b10 Write bit 10
b1l Write hit 11
b12 Write bit 12
b13 Write bit 13
b14 Write bit 14
b15 Write bit 15

21.2 STSRB - Write status register bit
Writes individual bits in the status register (‘sr’) to either '1' or 'O'.
Note that the entire register can be written at once using the copy ('cp’) instruction.

Syntax
stsrb Val ue BitSel;

Example

/1 Wite a 'l to bit 10 in the 'Flag' register.
stsrb high bl0;

Vaue
low Write the bit to '0f
high Write the bit to '1'

BitSel - Specifies which bit to test.

b0 Status register bit O
bl Status register bit 1
b2 Status register bit 2
b3 Status register bit 3
b4 Status register bit 4
b5 Status register hit 5
b6 Status register bit 6
b7 Status register bit 7
b8 Status register bit 8
b9 Status register bit 9
b10 Status register bit 10
bll Status register bit 11
b12 Status register bit 12
b13 Status register bit 13
b14 Status register bit 14

MC33816 Assembler, page 136 STCRB - Write control register b 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register ASH WARE, Inc. 6/8/2024

b15 Status register bit 15

21.3 STF - Write flag register bit

This 'std' instruction writes a bit in the channel's flag register. Since the two cores share a channel flag
register if both cores write to the same channel bit, the bit goes to the last-written value.

The chip has a chip-wide channel register that is derived from the two channel flag registers. Each hit in the
chip-wide register is the ANDed value of the two respective bits from the two channel flag registers.

But wait there is more. Each bit in the chip-wide flag register can ALSO come from the chips 1/0 pins
when these pins are configured to be generic input pins. This the flags _source register and the
flags_direction register determine (on a bit by bit basis) whether these chip-wide flags register comes from
the pins or the ANDing of the two channel_flag registers.

The chip-wide flags register can be used to set the output pin values. Pins configured as generic outputs get
the values set in chip-wide flag register. Curiously (since both '1' and '0' values can be driven on all flag
bits) the output pins can be inverted relative to the flag pins by writing the respective hits in the

'flags_polarity' register.

The DBG, OA_1- OA_2, IRQB, Startl — Start6, and Flag0-Flag2 pins can be individually configured as
generic input pins and be read by reading the chip-wide flags register. When configured suchly (by writing
the flags_source and the flags_direction registers appropriately) the values written by this 'stf' instruction
are ignored and instead the input pin value becomes the flag value.

These flag values can be tested using the ‘jump on condition’ instructions, 'jocf' and ‘jocr.
These flag values can also be conditions that cause threads to execute in the 'wait" instruction.

Syntax
stf Value BitSel;

Example

/'l Set 'flag6' high.
stf high b6;

Value - Specifies which flag register bit to set.

low Write the hit to 'O
high Write the bit to '1'

BitSel - Specifies which bit to set

b0 Flag bit O (and the 'Flag0" generic output pin if configured
suchly)

bl Flag bit 1 (and the 'Flagl' generic output pin if configured
suchly)

b2 Flag bit 2 (and the 'Flag2' generic output pin if configured
suchly)

MC33816 Assembler, page 137 STSRB - Write status register bi€) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register

b3 Flag bit 3 (and the 'Start1' generic output pin if configured
suchly)

b4 Flag bit 4 (and the 'Start2' generic output pin if configured
suchly)

b5 Flag bit 5 (and the 'Start3' generic output pin if configured
suchly)

b6 Flag bit 6 (and the 'Start4' generic output pin if configured
suchly)

b7 Flag bit 7 (and the 'Start5' generic output pin if configured
suchly)

b8 Flag bit 8 (and the 'Start6' generic output pin if configured
suchly)

b9 Flag bit 9 (and the 'TRQB' generic output pin if configured
suchly)

b10 Flag bit 10 (and the 'OA_1' generic output pin if configured
suchly)

b1l Flag bit 11 (and the 'OA_2' generic output pin if configured
suchly)

b12 Flag bit 12 (and the 'DBG' generic output pin if configured
suchly)

b13 Flag bit 13

b14 Flag bit 14

b15 Flag bit 15

21.4 STCRT - Configure which cores' 'rxtx' register gets read

The 'rxtx' register is used for iner-core communications. Each core has its own 'rxtx' register that only it
can write. However a core can read any of the four cores' 'rxtx' register. This instruction sets which cores
'rXtX' register gets read when a core reads an 'rxtx' registers.

Note that this setting is 'sticky' such that, once set, it will not change until changed by a future execution of
this 'stert' instruction.

Syntax
stcrt Seqld;

Example

/1 Sets 'rxtx' register that gets read
/1 to be fromthe other core in the other channel.
stcrt osoc;

Seqld - Specifies the core.

SSSC Same Core Same Channel
0SsCc Other Core Same Channel
SSoC Same Core other Channel
0SsocC Other Core other Channel

MC33816 Assembler, page 138 STF - Write flag register bit (C) 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register ASH WARE, Inc. 6/8/2024

21.5 RSTREG - Reset registers

Resets one or more of the following the core's status register, the core's control register, the core's
automatic diagnostics register. Also can re-enable the diagnostics interrupt.
Syntax
rstreg Target Reg;
Example

/1 Reset both the Status and Control Registers
rstreg sr_cr;

TargetReg - Specifies the registers and to reset and whether to re-enable diagnostics interrupt.

sr The core's status register

cr The core's control register

sr_diag_halt The core's status register, automatic diagnostics register, and
re-enables diagnostics interrupts

al The core's status and control registers, automatic diagnostics
register, and re-enables diagnostics interrupts

diag_halt The automatic diagnostics register, and re-enables diagnostics
interrupts

sr_cr The core's status and control registers

sr_halt The core's status register and re-enables diagnostics
interrupts

halt Re-enables diagnostics interrrupts

21.6 RSTSL - Reset the start-latch register
Reset the Start_latch_ucx register.

This instruction is active only if the Smart Latch Mode is enabled. The smart mode register can be
activated by setting the bits smart_start_ucO and smart_start_ucl of the Start_config_reg registers (0x104,
0x124).
Syntax

rstsil;
Example

/! Reset the |atched start bits
rstsl;

MC33816 Assembler, page 139 RSTREG - Reset registers (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Shortcuts

Part

MC33816 Assembler, page 140 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

22. Shortcuts ASH WARE, Inc. 6/8/2024

22.1

22

Shortcuts

Shortcuts are used to connect a core to the hardware. There are two types of shortcuts; ‘output driver'
shortcuts and "current sense block' shortcuts.

Output driver shortcuts allow a core to modify the states of up to three outputs at once. By modifying all
three output in a single instruction, fully synchronized driver changes can occur in a single instruction. This
prevents (say) an interrupt from causing a delay between output driver changes.

Each core has one current sense block shortcut. The current sense block shortcut connects the core to one
of the four current senses blocks. This shortcut is used primarily for testing the ‘own current' current
threshold (see the 'ocur’ field value of the 'jocf' and ‘jocr' instructions) or waiting for the ‘own current'
threshold to be reached (see the 'wait' instruction's ‘ocur’ field value.)

Another benefit of shortcuts is the ability to write core-independent code. This allows (say) the exact same
code to operate on different sets of output drivers and current sense blocks without having to make driver-
specific conditional jumps.

DFCSCT - Define the core's current sense block shortcut

Each core connects to one Current Sense Block through a shortcut connection.
The shortcut is used only to read the Current Sense Block's current-threshold comparator.

This comparator indicates if current flowing through the sense resistor is above or below the threshold
programmed into the Current Sense Block's DAC.

Using the shortcut, the comparator's output is determined using the 'wait' instruction's ‘Own Current' (ocur,
_Ocur) parameters

The Jump On Condition (jocr/jocf) instructions can also us the 'ocur’ and'_ocur' parameters to determine
the comparator's output state.

Syntax
df csct Shrt Cur;

MC33816 Assembler, page 141 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

22. Shortcuts

Example

/1 Configure core's own

/1 current threshold shortcut for Ch2.UcO

/'l Test the 'own current' (occur) threshold
/'l and junp to | abel 'current_above_t hreshol d'
/1 if the current is above the threshold

df csct dac3;

jocr current_above_t hreshol d ocur;

/1 ... (nmore code here)
current _above_t hreshol d:
ShrtCur
dacl The Current Sense Block normally belonging to Channel 1,
Core 0O
dac2 The Current Sense Block normally belonging to Channel 1,
Corel
dac3 The Current Sense Block normally belonging to Channel 2,
Core O
dac4l The Current Sense Block normally belonging to Channel 2,
Core 1

22.2 DFSCT - Define the core's three output driver shortcuts

Each core controls three output drivers using 'shortcuts’.

This instruction determines which of the high side drivers and low side drivers each of the three shortcuts
controls.

This setting is "sticky' in that once programmed, the shortcuts stay the same until changed by a future "df sct'
instruction.

Each shortcut can connect to any of the high side or low side drivers.

Syntax
df sct Shrtl Shrt2 Shrt 3;

Example

/'l Set the currently-executing core's shortcuts
/1 to control output drivers

/1 H gh Side Driver #3 with shortcut #1

/'l H gh Side Driver #4 with shortcut #2

/1l Low Side Driver #6 with shortcut #3

df sct hs3 hs4 | s6;

/'l Synchronously turn off HS3,

/1l turn on HS4,

/1 and turn on LS6

stos off on on;

Shrtl - Shortcut #1

MC33816 Assembler, page 142 DFCSCT - Define the core's current sense bl@c0Eha024utSH WARE, Inc. ASH WARE, Inc.

22. Shortcuts ASH WARE, Inc. 6/8/2024

hsl High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
Is1 Low Side Driver 1
[s2 Low Side Driver 2
Is3 Low Side Driver 3
Is4 Low Side Driver 4
Is5 Low Side Driver 5
Is6 Low Side Driver 6
Is7 Low Side Driver 7
undef Undefined

Shrt2 - Shortcut #2

hsl High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
Is1 Low Side Driver 1
Is2 Low Side Driver 2
[s3 Low Side Driver 3
Is4 Low Side Driver 4
Is5 Low Side Driver 5
Is6 Low Side Driver 6
Is7 Low Side Driver 7
undef Undefined

Shrt3 - Shortcut #3

hsl High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
Is1 Low Side Driver 1
[s2 Low Side Driver 2
Is3 Low Side Driver 3
Is4 Low Side Driver 4
Is5 Low Side Driver 5
Is6 Low Side Driver 6
Is7 Low Side Driver 7
undef Undefined

MC33816 Assembler, page 143 DFSCT - Define the core's three output drier2§ia@e2té SH WARE, Inc. ASH WARE, Inc.

22. Shortcuts

22.3 STOS

- Synchrounously control three output drivers using shortcuts

Each core controls three output drivers using 'shortcuts’.

This instruction provides an atomic method for synchronously changing all three output drivers. If the output
drivers were to be changed sequentially using (say) the 'sto’ instruction then an intervening interrupt could

paossibly ¢

ause a large delay between when the multiple output drivers get modified.

The three shortcuts can be any of the high side or low side drivers and these are configured with the 'df sct'
instruction.

Each output driver can be independently set high, set low, toggled, or kept the same.

Syntax

Example

stos Qutl CQut2 CQut3;

/1 Configure cores' three

/1 output driver shortcuts

/1l to control HS3, HS4, and LS2
df sct hs3 hs4 |s2;

/1

/1 Synchronously

/1 - Turn ON HS3

/1l - Leave HS4 unchanged

/1 - Toggle LS2

[l (if ONturn OFF, if OFF turn ON)
stos on keep toggl e;

Out1 - Forces the state of the output driver controlled by the core's first output driver shortcut

keep
off
on

toggl

No change, keep the previous setting
Turn the output driver off
Turn the output driver on
e Toggle the output driver; if it was on turn it off, if it was off
turn it on.

Out2 - Forces the state of the output driver controlled by the core's second output driver shortcut

keep
off
on

togal

No change, keep the previous setting
Turn the output driver off
Turn the output driver on
e Toggle the output driver; if it was on turn it off, if it was off
turn it on.

Out3 - Forces the state of the output driver controlled by the core's third output driver shortcut

MC33816 Assembler, page 144 DFSCT - Define the core's three output drier2§ia@e2té SH WARE, Inc. ASH WARE, Inc.

22. Shortcuts ASH WARE, Inc. 6/8/2024

keep No change, keep the previous setting

off Turn the output driver off

on Turn the output driver on

toggle Toggle the output driver; if it was on turn it off, if it was off
turn it on.

MC33816 Assembler, pageSIT4BS - Synchrounously control three output driveEds20Er2§24hoFtWEsRE, Inc. ASH WARE, Inc.

Current Sense Blocks

Part

MC33816 Assembler, page 146 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks ASH WARE, Inc. 6/8/2024

23

Current Sense Blocks

The instructions described in this section are used to configure the current sense blocks. However, there is
one related instruction that is missing form this section. Instructions 'dfsct," which connects the core to a
current sense block using a shortcut, is described in the 'Shortcuts' section.

23.1 STADC - Select 'Analog to Digital' or 'Digital to Analog' mode

Selects the Current Sense Block to operate either in 'Analog to Digital' mode or 'Digital to Analog’ mode.

In the normal 'Digital to Analog’ mode the DAC is used to generate a threshold voltage. This voltage
threshold is compared against the an amplification of the voltage across the current sense resistor. The
output of the Current Sense comparator indicates if the current through the sense resistor is above or below
this programmed threshold.

In the 'Analog to Digital' mode the DA C will contain the output of the A to D conversion 11 clock cycles
after the conversion is initiated. Note that sharing of the OAX multiplexer prevents concurrent conversions
on Current Sense Blocks 1 and 3. For the same reason, concurrent conversions on Current Sense Blocks 2
and 4 is also not possible.

The instruction is successful only if the core has the right to access the effected Current Sense Block. See
registers Cur_block_access 1 and Cur_block _access 2 Register (0x188 and 0x189.)

Syntax
stadc adcMode Target;
Example

/! Set the core's D/ A Converter
/! to work in D/ A node instead.
stadc on sssc;

adcM ode - Selects 'Analog to Digital' or 'Digital to Analog’ mode

MC33816 Assembler, page 147 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks

off The Current Sense Block compares the current flowing
through the sense resistor to the threshold programmed in the
DAC (default)

on The Current Sense Block performs and Analog to Digital

conversion (ADC) of the voltage across the current sense
resistor and places the results in the DAC

Target - Specifies the core.

SSSsc Same Core Same Channel
0SSsCc Other Core Same Channel
SSoC Same Core other Channel
0SoC Other Core other Channel

23.2 STDCCTL -Setthe DC to DC Converter's Control mode

This instruction enables or disable a special mode intended for DC to DC conversion using Current Sense
Block 4 and the Low Side Output Driver 7 (LS7.)

When enabled by executing this 'stdcctl' instruction with the Mode parameter set to ‘async' dedicated
hardware switches, the 'Is7' output driver is automatically switched on when the current drops below the
minimum threshold programmed by the DACAL and is automatically switched off when the current rises
above the upper threshold programmed into the DAC 4H. This is fully automatic with no additional
software control required.

When disabled by executing this 'stdcctl’ instruction with the Mode parameter set to 'sync' the Ls7 output
driver is controlled by the cores.

Syntax
stdcct!l WMode;

Example

/1 Begin hardware control of LS7

/1 based on Current Sense Block 4's

/1 lower and upper (4L and 4H) current sense threshol ds
stdcctl async;

M ode - Ls7 controlled by hardware or by the core

sync The Ls7 output driver is controlled by the core

async The Ls7 output driver is controlled by hardware using the
current maximum and minimum thresholds programmed in
DAC4H and DACAL of Current Sense Block 4

MC33816 Assembler, page 14BTADC - Select 'Analog to Digital' or 'Digital t6CA20APeRP2hdBIEWARE, Inc. ASHWARE, Inc.

23. Current Sense Blocks ASH WARE, Inc. 6/8/2024

23.3

STDM - Set DAC register access mode

The DAC registers are hit sliced in that the actual register that is accessed depends on the access mode
which is configured with this instruction.

The four primary DAC registers (dac_sssc, dac_ossc, dac_ssoc, dac_osoc) and the dac4hdn register are
multi-purpose registers. Depending on how they are configured with this 'stdm’ instruction, they can be used
to access the four Current Sense Blocks' actual DA C values, the four current sense blocks
COMPENSATION values, the fourth Current Sense Block's 4H DA C value, the fourth Current Sense
Block's 4neg DAC value, or the LS7's VBoost DAC value.

These registers can be read and written using the copy ('cp'), the load (‘load’) and the store ('store’)
instructions.

To access a Current Sense Block's primary DAC register, use the 'stdm dac' mode. The 8-bit DAC value
is accessed in hits 0 to 7 of the respective dac_sssc, dac_ossc, dac_ssoc, or dac_0soc regjisters.

To access a Current Sense Block's 'DAC Compensation' register use the 'stdm offset' mode. The 6-bit
DA C-Compensation value is accessed in bits 8-13 of the respective dac_sssc, dac_ossc, dac_ssoc, or
dac_osoc registers.

The 'stdm full' mode is used to access a Current Sense Block's the DA C value and DAC compensation in a
single instruction. The 8-bit DAC value is accessed in bits 0 to 7 and The 6-bit DA C-Compensation value is
accessed in bits 8-13 of the respective dac_sssc, dac_0ssc, dac_Ssoc, or dac_0soc registers.

To access the fourth Current Sense Block's 4H DAC's value use the 'stdm dac' mode. The 8-bit 4H DAC
value is accessed in bits 0 to 7 of the 'DACA4HAN' register.

To access the fourth Current Sense Block's 4Neg DA C's value use the 'stdm offset' mode. The 4-bit 4Neg
DAC value is accessed in bits 8 to 11 of the 'DACAHAN' register.

To access the fourth Current Sense Block's 4H and 4Neg DA C values together, use the 'stdm full' mode.
The 8-bit 4ANeg DAC value is accessed in hits 0 to 7 and the 4-bit 4ANeg DA C value is accessed in bits 8 to
11 of the 'DAC4HAN' register.

To access the VBoost DAC value use the 'stdm null' mode. The 8-bit VBoost DAC value is accessed in
bits 0-7 of the 'DACA4HAN' register.

This mode is 'sticky" such that once configured it retains its setting until changed by a future 'stdm'
instruction.

The default mode is 'DAC' such that the Current Sense Blocks' DAC values are accessed in their
respective dac_sssc, dac_ossc, dac_ssoc, or dac_osoc registers and the 8-bit 4H DA C value is accessed in
the DAC4hn register.

Syntax
st dm Mode;

Example

/1 Read the 'VBoost DAC into register 'r4

stdm nul | ;

cp dac4h4dn r4;

/1

/1 Wite a '0OxC into the fourth Current Sense Block's 4-bit DAC4Neg.

MC33816 Assembler, page 149 STDM - Set DAC register access m(§41@012-2024 ASHWARE, Inc. ASHWARE, Inc.

23. Current Sense Blocks

/1 Note that the DAC4Neg is accessed in the upper byte ... bits 8-11.'
stdm of f set;

[dirh OxC rst;

cp ir dac4h4n;

/1

/1 Wite the third Current Sense Bl ock's DAC Val ue and DAC
conmpensati on.

/1 The DAC value is witten with '0x98" and the DAC conpensation is
written with '0x13'

/1 Notel: It is assumed that this is executing in Channel 1 Core O
/1 such that 'OSSC accesses DACA.

/1 Note2: the 8-bit DAC Value is accessed in the |lower byte ... bits O-
7.

/1 Note3: The 6-bit DAC Conpensation is accessed in the upper byte ...
bits 8-13.

Idirl 0x98 _rst;
Idirh Ox13 _rst;
stdm ful | ;

cp ir dac_ossc;

M ode - The DAC Access mode

null Writes to the four DAC_xSXC registers have no affect and
reads return zero. Reads and writes to the DAC4H4N
register access the VBoost DAC.

dac Reads and writes to the four DAC_xSXC registers access the
four Current Sense Blocks' DAC registers. Reads and writes
to the DAC4HA4N register access the fourth Current Sense
Block's 4H Dac.

offset Reads and writes to the four DAC_xSXC registers access the
four Current Sense Blocks' DA C-Compensation registers in
bits 8-13. Reads and writes to the DAC4HA4N register access
the fourth Current Sense Block's 4N DAC at bits 8-11.

full Reads and writes to the four DAC_xSXC registers access the
four Current Sense Blocks' DAC values at bits 0-7 and the
DA C-Compensation values in bits 8-13. Reads and writes to
the DAC4HAN register access the fourth Current Sense
Block's 4H DAC at bits 0-7 and the 4N DAC at bits 8-11.

23.4 STGN - Set amplifier gain of a Current Sense Block

Set the gain of the Current Sense Block's Amplifier. This amplifies the voltage across the current sense
resistor by the gain specified by this instruction

The instruction is successful only if the core has the right to access the effected Current Sense Block. See
registers Cur_block_access 1 and Cur_block access 2 Register (0x188 and 0x189.)

Syntax

stgn Val ue QaTar get;

MC33816 Assembler, page 150 STDM - Set DAC register access m(§41@012-2024 ASHWARE, Inc. ASHWARE, Inc.

23. Current Sense Blocks ASH WARE, Inc. 6/8/2024

Example

/'l Set the gain

/'l of the executing core's
/'l current sense anplifier
/1 to 12.6 Volts/volt

stgn gainl2.6 sssc;

Value - The amplifier's gain

gain5.8 Set gainto 5.8
gainl2.6 Set gainto 12.3
gainl19.3 Set gainto 19.3
gain8.7 Set gainto 8.7

OaTarget - Specifies the core.

SSSC Same Core Same Channel
0SsCc Other Core Same Channel
SS0oC Same Core other Channel
0SsoC Other Core other Channel

23.5 STOC - Set offset compensation of a Current Sense Block

Enables or disables offset compensation on the specified current measurement block.

'Zero Compensation' is a small offset added to the input of the Current Sense Block's amplifier that reduces
the amplifier's zero current offset error.

When enabling, a 62-microsecond auto-calibration cycle is initiated in which the compensation value is
calculated by the hardware.

The instruction is successful only if the core has the right to access the effected Current Sense Block. See
registers Cur_block_access 1 and Cur_block _access 2 Register (0x188 and 0x189.)

Note that 'Ox1A" should be written to the Current Sense Block's DA C prior to initiating the auto-calibration
cycle.

Note also that the auto-calibration cycle should only be initiated when no current is flowing through the
Current Sense Block's sense resistor.

Syntax
stoc Ctrl DacTarget;

Example

/1 Start an auto-conpensation cycle
/1 on the core's own DAC
stoc on sssc;

Ctrl - Enable or Disable zero calibration

MC33816 Assembler, page 151 STGN - Set amplifier gain of a Current SERASWBIa@I¢ ASHWARE, Inc. ASHWARE, Inc.

23. Current Sense Blocks

off Disable zero compensation
on Enable zero compensation and begin an auto-calibration cycle

DacTarget - Specifies the core.

SSSC Same Core Same Channel
0SSsc Other Core Same Channel
SSocC Same Core other Channel
0soc Other Core other Channel

MC33816 Assembler, page 152 STOC - Set offset compensation of a CurrentCsedige2e4 4RH WARE, Inc. ASH WARE, Inc.

Output Drivers

Part

MC33816 Assembler, page 153 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

24. Output Drivers

24

Output Drivers

The instructions described in this section are used to control the Output Drivers.

24.1 BIAS - Set load current bias

Enable or disable load's current bias at the load for the specified diver.

The instruction is successful only if the core had the right to modify the specified output driver. See the four
output access registers, ‘Out_acc_ucO_chl', 'Out_acc_ucl chl,'Out_acc_ucO_ch2, and
'‘Out_acc_ucl _ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax
bi as BiasTarget Cirl;

Example

// Turn on bias's for all high and | ow side drivers.
bias all on;

// Turn off HS2's 'strong' and 'normal' bias's

bi as hs2s off;

bi as hs2 off;

BiasTarget - Output driver(s) selection

hsl High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
Is1 Low Side Driver 1
Is2 Low Side Driver 2
[s3 Low Side Driver 3
Is4 Low Side Driver 4
Is5 Low Side Driver 5
Is6 Low Side Driver 6

MC33816 Assembler, page 154 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

24. Output Drivers ASH WARE, Inc. 6/8/2024

hs2s Low Side Driver 2, strong

hs4s Low Side Driver 4, strong

al Select all high side and low side pre-driver bias structures
including strong bias structures

hs Select all high side pre-driver bias structures including strong
bias structures

Is Select all low side pre-driver bias structures

Ctrl - Enable or disable

off Turn the selected bias structure(s) off
on Turn the selected bias structure(s) on

24.2 STEOA - Set end of actuation mode
Enable or disable the end of actuation mode for all the high side output driver(s) that the core right to
modiify.
The Vsrc threshold monitoring of the affected output driver(s) is disabled by setting the 'mask’ parameter.
The default 'mask’ value is 'nomask'.
The default 'Switch' value is 'bsoff".

This instruction affects only the output drivers which the core has the right to modify. See the four output
access registers, 'Out_acc_ucO_chl', 'Out_acc_ucl chl','Out_acc ucO ch2, and
'‘Out_acc_ucl ch2 (0x184, 0x185, 0x186, and 0x187.)
Syntax
steoa mask switch;
Example

/1 Set the end of actuation npde
steoa mask bsoff;

mask - Mask Vsrc threshold monitoring

nomask V src threshold monitoring of the selected HS is unchanged
mask Vsrc threshold monitoring of the selected HS is masked to
zero

switch - Select end of actuation mode

MC33816 Assembler, page 155 BIAS - Set load current bias (C) 2012-2024 ASHWARE, Inc. ASHWARE, Inc.

24. Output Drivers

keep No change, keep the previous setting

bson Bootstrap switch can be enabled even if no low side pre-
driver is switched on

bsneutral Bootstrap control is not affected

bsoff Bootstrap switch is forced off

24.3 STFW - Set freewheeling mode between a pair of output drivers

This instruction enables or disables freewheeling mode between a pair of output drivers. In ‘freewheeling'
mode the output driver pair has a 'master/slave’ relationship in which, when the master is turned ‘on’, the
slave is automatically turned 'off', and when the master is turned 'off' the slave is automatically turned 'on'.

Because at any given time one driver is always 'off* when the other is ‘on' this is typically used to switch a
load between power and ground. Using this freewheeling mode, two sets of output drivers (four output
drivers total) can be used in an h-bridge configuration.

The selection of the master driver for the freewheeling mode is set by the core's output driver shortcut 1.
See the 'dfsct’ instruction. Only specific pairs are allowed, see below.

If shortcutl is hsl, then IS5 is affected
If shortcutl is hs2, then Is6 is affected
If shortcutl is hs3, then Is7 is affected
If shortcutl is hs4, then hs5 is affected
If shortcutl is hs5, then Is4 is affected

The instruction is successful only if the core has the right to modify the output driver selected by shortcut 1.
See the four output access registers, 'Out_acc_ucO_chl','Out_acc_ucl chl','Out_acc_ucO_ch2, and
'‘Out_acc_ucl ch2' (0x184, 0x185, 0x186, and 0x187.)

The freewheeling state can be seen in register Fw_ext_req (0x16A.)

A programmable 'dead time' prevents both drivers from being on at the same time. See the
Hsx_output_config Registers (0x155, 0x158, 0x15B, Ox15E, 0x161.)

Syntax
st fw Fwivbd;

Example

/1 Configure Shortcut #1 to be HS1
df sct hsl hs4 | s6;

/1

/1 Enabl e freewheeling node

/1 between HS1 and LS5

stfw aut o;

FwM od - Specify the freewheeling mode

MC33816 Assembler, page 156 STEOA - Set end of actuation mo@2012-2024 ASHWARE, Inc. ASH WARE, Inc.

24. Output Drivers ASH WARE, Inc. 6/8/2024

manual Disable
auto Enable

24.4 STO - Setone outputdriver

Turns an ouput driver on, off, or toggle. When 'toogle' is specified and the output driver is ‘on', it turns 'off'
and if it is 'of f' it turns'on'.
The instruction is successful only if the core had the right to modify the specified output driver. See the four

output access registers, '‘Out_acc_ucO_chl', 'Out_acc_ucl chl,'Out_acc_ucO_ch2, and
'‘Out_acc_ucl _ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax
sto QutSel Qut;

Example

/'l Turn HS3 on, LS6 off, and toggle LSI1.
sto hs3 on;

sto | s6 off;

sto Isl toggle;

OutSel - Select output driver

hs1 High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
Is1 Low Side Driver 1
Is2 Low Side Driver 2
Is3 Low Side Driver 3
Is4 Low Side Driver 4
Is5 Low Side Driver 5
Is6 Low Side Driver 6
Is7 Low Side Driver 7
undef Undefined

Out - Specify output driver state

keep No change, keep the previous setting

off Turn the output driver off

on Turn the output driver on

toggle Toggle the output driver; if it was on turn it off, if it was off
turn it on.

MC33816 Assembler, page 83FW - Set freewheeling mode between a pail@f20420241ASE Y¥ARE, Inc. ASH WARE, Inc.

24. Output Drivers

245 STSLEW - Set output drivers' slew rates

This instruction sets the output drivers' slew rates.
The slew rates can be set to the fastest possible by setting parameter 'Mode' to 'fast.’

The slew rates can returned back to their normal by setting paramter ‘Mode' to 'fast.’. Each output driver
has its own 'normal’ slew rate which is specified in registers hs_slewrate and Is_slewrate registers (Ox18E,
Ox18F.)

The instruction affects only those output drivers which the core has the right to modify. See the four output
access registers, 'Out_acc_uc0 chl','Out_acc_ucl chl,'Out_acc ucO ch2, and
'‘Out_acc_ucl ch2 (0x184, 0x185, 0x186, and 0x187.)
Syntax
st sl ew Mode;
Example

/1l Sets the slewates of all the output drivers
/1 that the core has access to to the 'fast' slew ate.
stsl ew fast;

M ode - Slew rate selection

normal Normal slew rate as specified for each driver in registers
Hs slewrate and Ls_slewrate (Ox18E, Ox18F)
fast Fast slew rate

MC33816 Assembler, page 158 STSLEW - Set output drivers' slew t@t@&l2-2024 ASHWARE, Inc. ASH WARE, Inc.

Diagnostics

Part

MC33816 Assembler, page 159 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

25. Diagnostics

25

Diagnostics

The automatic diagnostic capabilities described in this section provide a method for detecting if a variety of
error conditions including open load, load shorted to ground, load shorted to the battery, shorted driver, etc.

Diagnostic faults result in execution of an ISR. However, fault isolation generally requires additional
computation.

25.1 CHTH- Change diagnostic comparator's threshold

Change the thresholds for the selected VDS and V SRC diagnostic feedback comparator.

These are the same values as in registers Vds_threshold _hs (0x18A), Vsrc_threshold hs (0x18B),
Vds_threshold Is 1 (0x18C), and Vds_threshold Is 2 (0x18D).

The instruction is successful only if the core had the right to modify the specified output driver. See the four
output access registers, '‘Out_acc_ucO_chl','Out_acc_ucl chl,'Out_acc _ucO ch2, and
'Out_acc_ucl ch2' (0x184, 0x185, 0x186, and 0x187.)

The configuration of the high side pre-driver V src thresholds is also impacted by the bootstrap initialization
mode.

changes the thresholds for the selected feedback comparator.

For Vds on HS2 and H$4 the choice of the power source to be used as the 'drain' comparator comparator
can be switched between VBoost and VBat using the 'sifbk’ instruction.

Syntax
chth Sel Fbk ThLevel ;

Example

/1 Turn on driver HS2 and change the Vds threshold 'level 8 (VBoost-
3.5V.)

sto hs2 on;

chth hs2v |v8;

SelFbk - The diagnostic comparator's threshold to modify

MC33816 Assembler, page 160 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

25. Diagnostics

ASH WARE, Inc. 6/8/2024

hslv
hs2v
hs3v
hs4v
hs5v
hsls
hs2s
hs3s
hs4s
hsbs
Islv
Is2v
[s3v
[s4v
Is5v
Is6v

High side pre-driver 1 VDS feedback above threshold
High side pre-driver 2 VDS feedback above threshold
High side pre-driver 3 VDS feedback above threshold
High side pre-driver 4 VDS feedback above threshold
High side pre-driver 5 VDS feedback above threshold
High side pre-driver 1 V SRC feedback above threshold
High side pre-driver 2 V SRC feedback above threshold
High side pre-driver 3 V SRC feedback above threshold
High side pre-driver 4 V SRC feedback above threshold
High side pre-driver 5V SRC feedback above threshold
Low side pre-driver 1 VDS feedback above threshold
Low side pre-driver 2 VDS feedback above threshold
Low side pre-driver 3 VDS feedback above threshold
Low side pre-driver 4 VDS feedback above threshold
Low side pre-driver 5V DS feedback above threshold
Low side pre-driver 6 VDS feedback above threshold

ThLevel - The voltage threshold

vl
Iv2
Iv3
Iv4
Iv5
Ivb
Iv7
Iv8

0.0 Volts
0.5Vadlts
1.0Volts
1.5Volts
2.0Vdlts
2.5Vdlts (Note: the HSVds is 2.45 Valts)
3.0 Volts (Note: the HS Vds is 2.95 Volts)
3.5Valts (Note: the HS Vds is 3.45 Volts)

25.2 ENDIAG - Enable or disable output driver diagnostics, ONE

Enables or disables the automatic diagnostics for one output driver.

Note that the automatic diagnostics can result in an error-handling interrupt.

The instruction is successful only if the core had the right to modify the specified output driver. See the four
output access registers, ‘Out_acc_ucO_chl', 'Out_acc_ucl chl,'Out_acc_ucO_ch2, and
'‘Out_acc_ucl ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax
endi ag Sel

Example

Di ag;

/'l Enable Hi gh Side Driver #4's
/1 Vds Di agnostic Interrupt
endi ag hs5v di agon;

Sel - Feedback threshold.

MC33816 Assembler, page 161

CHTH - Change diagnostic comparator's(th2938@a24 ASH WARE, Inc. ASHWARE, Inc.

25. Diagnostics

hslv High side pre-driver 1 VDS feedback diagnostics
hsls High side pre-driver 1 V SRC feedback diagnostics
hs2v High side pre-driver 2 VDS feedback diagnostics
hs2s High side pre-driver 2 V SRC feedback diagnostics
hs3v High side pre-driver 3 VDS feedback diagnostics
hs3s High side pre-driver 3 V SRC feedback diagnostics
hs4v High side pre-driver 4 VDS feedback diagnostics
hs4s High side pre-driver 4 V SRC feedback diagnostics
hsbv High side pre-driver 5 VDS feedback diagnostics
hsbs High side pre-driver 5V SRC feedback diagnostics
[slv Low side pre-driver 1 VDS feedback diagnostics
[s2v Low side pre-driver 2 VDS feedback diagnostics
[s3v Low side pre-driver 3 VDS feedback diagnostics
[s4v Low side pre-driver 4 VDS feedback diagnostics
Is5v Low side pre-driver 5 VDS feedback diagnostics
[s6v Low side pre-driver 6 VDS feedback diagnostics

Diag - Enable or disable diagnostics

diagoff Disable automatic diagnostics
diagon Enable automatic diagnostics

25.3 ENDIAGA - Enable or disable output driver diagnostics, ALL

Enables or disables the automatic diagnostics for all output drivers all at once.

The operation is only for those output drivers which the the core has the right to modify. So by configuring
the Output Access registers appropriately, this instruction can be an effective way to enable just those
output drivers appropriate for to the core.

However, using the ‘endiags’ instruction is another approach to accomplishing a similar effect.
Note that the automatic diagnostics can result in an error-handling interrupt.

See the four output access registers, 'Out_acc_ucO _chl','Out_acc _ucl chl,'Out_acc ucO _ch2, and
'Out_acc_ucl ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax
endi aga Di ag;
Example

/1 Turn ON all diagnhostic interrupts

/1 that the core executing this instruction
/1 has a right to control

/1l per the core's output access enable

/'l register (see 0x185-0x189)

endi aga di agon;

MC33816 Assembler, page 162ENDIAG - Enable or disable output driver didgh¥s@2¢¥)2®N8H WARE, Inc. ASHWARE, Inc.

25. Diagnostics ASH WARE, Inc. 6/8/2024

Diag - Enable or disable diagnostics

diagoff Disable automatic diagnostics
diagon Enable automatic diagnostics

25.4 ENDIAGS - Enable or disable output driver diagnostics, SHORTCUTS

Enables or disables the automatic diagnostics for the three output drivers which the core is connected to via
its output driver shortcuts.

Note that the core's output driver shortcuts can be changed with the "df sct' instruction.
Note also that the automatic diagnostics can result in an error-handling interrupt.

The instruction is successful only on the output drivers which the core has the right to modify. See the four
output access registers, '‘Out_acc_ucO_chl', 'Out_acc_ucl chl,'Out_acc_ucO_ch2, and
'‘Out_acc_ucl _ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax
endi ags Di ag_shl_vds Diag_shl src Diag_sh2 vds Di ag_sh3_vds;
Example

/1 CONFI GURE

/1 HS4 on shortcut #1

/1 HS2 on shortcut #2

/1 LS3 on shortcut #3

/1 THEN

/'l Disable HS4"s Vds interrupt
/'l Enable HS4's Vsrc interrupt
/'l Keep unchanged HS2's Vds interrupt
/'l Enable LS3's Vds interrupt
df sct hs4 hs2 |s3;

endi ags of f on keep on;

Diag_shl vds - Select core's output driver shortcut #1's V ds setting

keep No change, keep the previous setting
NA Not allowed

off Disable automatic diagnostics

on Enable automatic diagnostics

Diag_shl src - Select core's output driver shortcut #1's Vsrc setting

keep No change, keep the previous setting
NA Not allowed

off Disable automatic diagnostics

on Enable automatic diagnostics

MC33816 Assembler, page 16 ENDIAGA - Enable or disable output driver did®aekti2e24M3H WARE, Inc. ASH WARE, Inc.

25. Diagnostics

Diag_sh2_vds - Select core's output driver shortcut #2's V ds setting

keep No change, keep the previous setting
NA Not allowed

off Disable automatic diagnostics

on Enable automatic diagnostics

Diag_sh3 vds - Select core's output driver shortcut #3's V ds setting

keep No change, keep the previous setting
NA Not allowed

off Disable automatic diagnostics

on Enable automatic diagnostics

25.5 SLFBK - Select the power source to monitor for Vds Diagnostics

Selects the power source to monitor for Vds Diagnostics. The drain voltage reference for the diagnostics
threshold comparator can either by the VBoost or the Battery pins.

This instruction can also enable, disable or not change automatic diagnosics for hs2 and hs4.
Note that this instruction applies only to High Side Driver 2 and High Side Driver 4 (hs2 and hs4.)

Syntax
sl fbk Sel Diag;

Example

/1 Set HS2's and HS4's VDS Conpar at or
/1 to the VBoost supply

/1 and enabl e di agnostics

sl f bk boost on;

Sel - Power source

boost The Vds diagnostic feedback comparator uses the VBoost
(VBOOST pin)

bat The Vds diagnostic feedback comparator uses the Battery
(VBATT pin)

Diag - Enable, Disable, or keep the same

keep No change, keep the previous setting
NA This field is invalid. Not Applicable
off Automatic diagnosis disabled

on Automatic diagnosis enabled

MC33816 Assembler, pageNBYAGS - Enable or disable output driver diagn &St 2S0BRBOVYWPSRE, Inc. ASH WARE, Inc.

Timers

Part

MC33816 Assembler, page 165 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

26. Timers

26

Timers

These instructions write the counter's terminal count.

26.1 LDCA-Load acounter's 'Terminal Count' from aregister and write two
output drivers

Loads one of the four counter's "Terminal Count' registers with a value stored in an ALU register and and
writes two of the output drivers from output driver shortcuts one and two. Note that the output driver
associated with the core's third output driver shortcut is left unchanged.

The counter can either be left unchanged or reset to zero. In either case it continues to increment until it
reached it's "Terminal Count.'

Syntax
| dca Rst Shl Sh2 RegSrc Counter;
Example

/'l Load counter's termnal count with 100 m crosecods (6mhz core)
/'l Reset and run the core

/'l and also turns on shortcut 1's and 2's output driver

LOAD IR 6 * 100;

| dca rst on on ir cl;

Rst - select if the counter gets reset.

_rst The counter value is not changed (only its "Terminal Count’
gets written)

rst The counter is reset to zero and immediately resumes
counting

Sh1l - Sets the shortcut 1 (high side) output driver.

MC33816 Assembler, page 166 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

26. Timers ASH WARE, Inc. 6/8/2024

keep No change, keep the previous setting

off Turn the output driver off

on Turn the output driver on

toggle Toggle the output driver; if it was on turn it off, if it was off
turn it on.

Sh2 - Sets the shortcut 2 (high side) output driver.

keep No change, keep the previous setting

off Turn the output driver off

on Turn the output driver on

toggle Toggle the output driver; if it was on turn it off, if it was off
turn it on.

RegSrc - The register from which the counter's "Terminal Count' gets loaded.

ro ALU General Purpose Register 0

ri ALU General Purpose Register 1

r2 ALU General Purpose Register 2

r3 ALU General Purpose Register 3

r4 ALU General Purpose Register 4

ir ALU Immediate Register

mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Counter - Sets which counter's Terminal Count (eoc) gets written.

cl Counter 1
c2 Counter 2
c3 Counter 3
c4 Counter 4

26.2 LDCD -Load a counter's 'Terminal Count' from data RAM and write two
output Drivers
Loads one of the four counter's "Terminal Count' registers with a value stored in DRAM and and writes

two of the output drivers from output driver shortcuts one and two. Note that the output driver associated
with the core's third output driver shortcut is left unchanged.

The counter can either be left unchanged or reset to zero. In either case it continues to increment until it
reached it's "Terminal Count.'

MC33816 AssentlidtApagedda counter's ‘Terminal Count' from a register 4PPWPi282ASId WHRE dhd va$E WARE, Inc.

26. Timers

The DRAM address from which the counter's ‘'Terminal Count' is loaded is defined by 'AddSrc’ which is a
6-bit Data RAM address. Optionally, a base address can be applied to form a fully qualified address.

'Ofs' determines whether the 'Base Address' register is applied.

If '‘Base Address' is used it can be either the 'ip' register or the 'add_base' register which is configured by
the 'slab’ instruction.

Note that the read value can be affected by the 'Set Data RAM Read Mode ' instruction (stdrm) which
supports swapping the bytes, reading just the upper byte, and reading just the lower byte.

Instead of using a hardcoded address, a variable can be used instead - the address mode of the variable
must match the address mode specified by the Offset field.

Syntax
| dcd Rst OfFfset Shl Sh2 Addr Src Counter;

Example

/'l Declare a 16-bit variable nanmed 'engi ne_speed2’

sint16 engi ne_speed?2;

/1

/1 Reset Timer 1's counter

/1 and load it's Term nal Count from variable 'engi ne_speed2'
/1l turn on the output driver pointed to by 'shortcut 1'

/'l turn off the output driver pointed to by 'shortcut 2

I dcd rst _ofs on off engine_speed2 cl;

Rst - select if the counter gets reset.

_rst The counter value is not changed (only its "Terminal Count’
gets written)

rst The counter is reset to zero and immediately resumes
counting

Offset - Sets the addressing mode.

_ofs Immediate addressing, address = AddSrc
ofs Indexed addressing, address = AddSrc + Base Address
register

Sh1l - Sets the shortcut 1 (high side) output driver.

keep No change, keep the previous setting

off Turn the output driver off

on Turn the output driver on

toggle Toggle the output driver; if it was on turn it off, if it was off
turn it on.

Sh2 - Sets the shortcut 2 (high side) output driver.

MC33816 AssenidiDpagedd® counter's 'Terminal Count' from data RAM &QR¥2i2824/ 550 WHBE MeivEFH WARE, Inc.

26. Timers ASH WARE, Inc. 6/8/2024

keep No change, keep the previous setting

off Turn the output driver off

on Turn the output driver on

toggle Toggle the output driver; if it was on turn it off, if it was off
turn it on.

AddrSrc - Sets the data RAM address.

Counter - Sets which counter's Terminal Count (eoc) gets written.

cl Counter 1
c2 Counter 2
c3 Counter 3
c4 Counter 4

MC33816 AssenidiDpagedd@ counter's 'Terminal Count' from data RAM &QR¥2i2824/ 550 WHBE MeivEFH WARE, Inc.

SPI Backdoor

Part

MC33816 Assembler, page 170 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

27. SPIl Backdoor ASH WARE, Inc. 6/8/2024

21

SPI Backdoor

The SPI Backdoor allows reads and writes across the SPI bus similar to those available to the host MCU.
So whereas the 'load’ and 'store' instructions, which provide read and write access to just the Data RAM.
the SPI backdoor instructions allow full access to the entire MC33816 memory map including the
Configuration, Diagnostics, 1/0 and Main regions of the MCU's memory space. SPI Backdoor also
provides a mechanism for each channel to access the other channels Data RAM.

However, there are some restrictions. Not all registers can be accessed using SPI Backdoor. Also, there
are security capabilities that can (optionally) block SPI Backdoor access to certain regions of the MC33816
memory map.

27.1 SLSA-SPlbackdoor set address register

This instruction determines which register is used for SPI backdoor reads and writes.

This instruction is 'sticky' in that, once written, it does not change until a future 'slsa’ instruction changes the
previous value.

The default is to use the dedicated 'spi_add' (address) register.
Syntax

sl sa Sel;
Example

/'l Use the "ir' register to hold the address
/'l for SPI-backdoor accesses
slsair;

Sel - The register used for SPI backdoor reads and writes

reg Use the dedicated 'spi_add' register for SPI backdoor reads
and writes
ir Use the 'ir' register for SPI backdoor reads and writes

MC33816 Assembler, page 171 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

27. SPIl Backdoor

27.2

RDSPI - SPI backdoor read

Performs a SPI backdoor read. The read address must have already been loaded into the address register.

Note that address can be specified by either the 'ir' register or the dedicated 'spi_add' register. Thisis
determined by the most-recently executed 'slsa’ instruction

The value that is read goes into the 'spi_data’ register two instruction cycles later. Therefore, the instruction
that is executed immediately following the SPI backdoor read cannot access the 'spi_data’ register as the
operation would not have completed yet and the value in the 'spi_data’ register would not yet be
guaranteed.

Syntax
rdspi;

Example

/1 Read the 'Start_config reg' register

/1

/'l Configure SPlI accesses to use 'ir' for addresses
/'l Sticky - possibly only do once after reset
slsa ir;

/1

/1l Load the read-address into "ir’'

Idirh 01lh _rst;

Idirl 04h _rst;

/1

/1 Do the SPI Backdoor read

/'l and wait an instruction cycle

/'l for the two-instruction cycle read to conplete
rdspi;

cpir ir; [/ NOP

/1

/1l Put the newly-read Start_config reg val ue

/'l into the r0O register

cp spi _data rO0;

27.3 WRSPI - SPIBackdoor write

Performs a SPI backdoor write operation. The value in the 'spi_data’ (data) register gets written to the
address in the address register.

Note that address can be specified by either the 'ir' register or the dedicated 'spi_add' register. This is
determined by the most-recently executed 'slsa’ instruction

Each core has it's own 'spi_data’ and 'spi_addr' registers which must both have been written prior to
execution of this instruction, typically with a'cp' instruction.

This instruction takes two clock cycles to complete. Additionally, both the data and the address must not be
changed in the instruction following the 'wrspi' instruction or the result is undefined.

Syntax
wWr spi ;

MC33816 Assembler, page 172 RDSPI - SPI backdoor read (C) 2012-2024 ASHWARE, Inc. ASH WARE, Inc.

27. SPIl Backdoor

ASH WARE, Inc

. 6/8/2024

Example

/1 Wite the "Start_config reg' register

/1

/1 Configure SPI accesses to use 'ir' for addresses
/1l Sticky - possibly only do once after reset

slsa ir;

/1

/1 Load the read-address into
Idirh 01h _rst;

[dirl 04h _rst;

/1

/1 Load the value to be witten into
Idirh 01h _rst;

Idirl 01h _rst;

cp ir spi_data;

/1

/1 Do the SPI Backdoor wite

Wr spi ;

ir

spi _data'

MC33816 Assembler, page 173

WRSPI - SPI Backdoor write (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler, page 174 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

	1 Introduction
	1.1 Installation
	1.2 System Requirements
	1.3 High-Level Programming Features
	1.3.1 Variables

	2 Command Line Options
	2.1 File Naming Conventions
	2.2 The Build Process

	3 Pragmas
	3.1 Disabling the 'Unused Label' Warning
	3.2 Disabling the 'Unused Variable' Warning

	4 Notation and Syntax
	5 Auto-Header File
	6 Code RAM Files
	7 Data RAM Files
	8 Listing Files
	9 Label Tags
	10 Variables
	10.1 Immediate/Global Variables
	10.2 Enabling Initialized Data in the Simulator
	10.3 Data Banks Variables

	11 Extended Instructions
	12 Instruction Set
	13 Wait
	13.1 CWEF - create wait table entry far
	13.2 CWER - create wait table entry relative
	13.3 Fill a 'Wait Table' row with an event and an event-handling thread's code-address (extended instruction)
	13.4 WAIT - wait until a condition is verified

	14 Call/Return
	14.1 JTSF - Jump far to subroutine
	14.2 JTSR - Jump relative to subroutine
	14.3 Call a subroutine (extended instruction)
	14.4 RFS - Return from subroutine

	15 Program Flow
	15.1 LDJR1 - Load jump register 1
	15.2 LDJR2 - Load jump register 2
	15.3 JMPF - Unconditional jump far
	15.4 JMPR - Unconditional jump relative
	15.5 Unconditionally jump (extended instruction)
	15.6 JARF - Jump on arithmetic register far
	15.7 JARR - Jump on arithmetic register relative
	15.8 Conditionally jump on ALU and related flags (extended instruction)
	15.9 JCRF - Jump on control register far
	15.10 JCRR - Jump on control register relative
	15.11 Conditionally jump on 'Control Register' bit values (hi/lo) (extended instruction)
	15.12 JSRF - Jump on status register far
	15.13 JSRR - Jump on status register relative
	15.14 Conditionally jump on 'Status Register' bit values (hi/lo) (extended instruction)
	15.15 JOSLF - Jump on start-latch far
	15.16 JOSLR - Jump on start-latch relative
	15.17 Conditionally jump based on the state of the start pins latched states (extended instruction)
	15.18 JOCF - Jump on condition far
	15.19 JOCR - Jump on condition relative
	15.20 Conditionally jump based on a variety of conditions such as Flag state, Start state, above/below a Current Sense Threshold, ... (extended instruction)
	15.21 JFBKF - Jump on feedback far
	15.22 JFBKR - Jump on feedback relative
	15.23 Conditionally jump based on the state of a 'Diagnostic Feedback Comparator' output (extended instruction)
	15.24 JOIDF - Jump on current core far
	15.25 JOIDR - Jump on current core relative
	15.26 Conditionally jump based on the ID of the currently-executing core (extended instruction)
	15.27 JUMP<_type> - Jump on specified conditions

	16 Interrupts
	16.1 ICONF - Configure automatic interrupt return
	16.2 REQI - Request software interrupt
	16.3 IRET - Return from interrupt
	16.4 STIRQ - Write IRQB output pin

	17 Data RAM Accesses
	17.1 SLAB - Selects the register to be used in Indexed addressing mode
	17.2 STAB - Write the 'base_add' register
	17.3 LOAD - Load a register with a 16-bit value from the Data RAM
	17.4 STORE - Store a value from an ALU register into the Data RAM
	17.5 STDRM - Set data RAM read mode

	18 Math
	18.1 STAL - set arithmetic logic
	18.2 CP - Copy one register to another
	18.3 LDIRH - Load immediate register's MSB
	18.4 LDIRL - Load immediate register's LSB
	18.5 Load the full 16-bit IR register (extended instruction)
	18.6 ADD - Addition of two registers
	18.7 ADDI - Addition of a register with a 4-bit unsigned immediate
	18.8 SUB - Substraction of two registers
	18.9 SUBI - Subtraction by a 4-bit unsigned immediate
	18.10 MUL - Multiplication of two registers, result goes in 'mh' and 'ml'
	18.11 MULI - Multiplication with 4-bit immediate, result goes in 'mh' and 'ml'
	18.12 SWAP - Swap a register's high and low bytes
	18.13 TOC2 - Conditional conversion to 2's complement format with sign enforcement
	18.14 TOINT - Convert from 2's complement

	19 Bitwise
	19.1 AND - Bitwise AND with 'ir' register
	19.2 OR - Bitwise OR with the 'ir' register
	19.3 XOR - Bitwise XOR with the 'ir' register
	19.4 NOT - Bitwise NOT

	20 Shifts
	20.1 SHR - Shift right by register
	20.2 SHRS - Shift right by register, signed
	20.3 SHRI - Shift right by immediate
	20.4 SHRSI - Shift right by immediate, signed
	20.5 SHR8 - Shift right by 8
	20.6 SH32R - Shift right 'mh' and 'ml' by register
	20.7 SH32RI - Shift right 'mh' and 'ml' by 4-bit immediate
	20.8 SHL - Shift left by register
	20.9 SHLS - Shift left by register, signed
	20.10 SHLI - Shift left by immediate
	20.11 SHLSI - Shift left by immediate, signed
	20.12 SHL8 - Shift left by 8
	20.13 SH32L - Shift left 'mh' and 'ml' by register
	20.14 SH32LI - Shift left 'mh' and 'ml' by 4-bit immediate

	21 Control, Status, Flags, and the Inter Core Communications 'rxtx' register
	21.1 STCRB - Write control register bit
	21.2 STSRB - Write status register bit
	21.3 STF - Write flag register bit
	21.4 STCRT - Configure which cores' 'rxtx' register gets read
	21.5 RSTREG - Reset registers
	21.6 RSTSL - Reset the start-latch register

	22 Shortcuts
	22.1 DFCSCT - Define the core's current sense block shortcut
	22.2 DFSCT - Define the core's three output driver shortcuts
	22.3 STOS - Synchrounously control three output drivers using shortcuts

	23 Current Sense Blocks
	23.1 STADC - Select 'Analog to Digital' or 'Digital to Analog' mode
	23.2 STDCCTL - Set the DC to DC Converter's Control mode
	23.3 STDM - Set DAC register access mode
	23.4 STGN - Set amplifier gain of a Current Sense Block
	23.5 STOC - Set offset compensation of a Current Sense Block

	24 Output Drivers
	24.1 BIAS - Set load current bias
	24.2 STEOA - Set end of actuation mode
	24.3 STFW - Set freewheeling mode between a pair of output drivers
	24.4 STO - Set one output driver
	24.5 STSLEW - Set output drivers' slew rates

	25 Diagnostics
	25.1 CHTH - Change diagnostic comparator's threshold
	25.2 ENDIAG - Enable or disable output driver diagnostics, ONE
	25.3 ENDIAGA - Enable or disable output driver diagnostics, ALL
	25.4 ENDIAGS - Enable or disable output driver diagnostics, SHORTCUTS
	25.5 SLFBK - Select the power source to monitor for Vds Diagnostics

	26 Timers
	26.1 LDCA - Load a counter's 'Terminal Count' from a register and write two output drivers
	26.2 LDCD - Load a counter's 'Terminal Count' from data RAM and write two output Drivers

	27 SPI Backdoor
	27.1 SLSA - SPI backdoor set address register
	27.2 RDSPI - SPI backdoor read
	27.3 WRSPI - SPI Backdoor write

