
ASH WARE, Inc.

by

Version 3.01

7/23/2023

(C) 2008-2023 ASH WARE, Inc.

Compiler Reference Manual

John Diener and Andy Klumpp

page 2, Compiler Reference Manual

Compiler Reference Manual, page 3

Compiler Reference Manual

Table of Contents

Foreword 9

Part 1 Introduction 11

Part 2 Supported Targets 13

Part 3 References 15

Part 4 Keywords and Abbreviations 17

Part 5 eTPU Programming Model 19

.. 195.1 Legacy Mode

... 23Accessing Channel Variables From Outside eTPU Function Scope

... 24Legacy Mode Issues

.. 255.2 Enhanced ETEC Mode (eTPU Class)

... 27eTPU Class Example

... 29Threads

... 30Enabling/Disabling Matches in the Thread

... 30Controlling the Preload Parameter Bit (PP)

... 31Entry Tables

... 33Member Functions (Methods)

... 34Member Function Fragments

... 35Channel Variables

... 35Hiding Channel Variables (Public/Private)

... 37Initial Values

... 37Access Oustide Class Scope

... 38Channel Groups

... 39Extension Syntax Details

.. 405.3 eTPU Types

.. 425.4 Pointers

.. 435.5 eTPU Data Packing

... 44Global Variables

... 45Static Variables in Callable C-Functions

... 45Explicitly Locating Global Variables

Compiler Reference Manual

page 4, Compiler Reference Manual

... 45eTPU2 Engine Relative Address Space

... 46eTPU Channel Frame Variables

... 46Channel Frame PACKTIGHT Mode

... 47Local/Stack Variables

... 47Structures & Unions

... 49Structure PACKTIGHT Mode

... 50Structure Bit Fields

... 51Arrays

... 51Array PACKTIGHT Mode

... 52ANSI Mode

.. 525.6 eTPU Hardware Access

... 53Channel Hardware Access

... 53Baseline eTPU Channel Hardware Programming Model

... 54eTPU+ Extensions to the Channel Hardware Programming Model

... 56eTPU2 Extensions to the Channel Hardware Programming Model

... 57Register Access

... 59Using Special Registers for General Purpose

... 60ALU Condition Code Access

... 60Built-in / Intrinsic Functions

... 60Compatibility Functions

... 61ETEC Coherency & Synchronization Control

... 62TR18037 Fixed-point Library Support

... 63ALU/MDU Intrinsics

... 63Rotate Right Support

... 63Absolute Value Support

... 64Shift Register Support

... 64Shift By 2(N+1) Support

... 65Set/Clear Bit Support

... 65Exchange Bit Support

... 65MAC/MDU Support

.. 665.7 Code Fragments

... 68_eTPU_thread Calls

.. 685.8 State Switch Constructs

... 69State Enumeration

... 70State Variable

... 70State Switch

... 74Additional Notes

.. 745.9 eTPU Constant Tables

.. 765.10 ETEC Local Variable Model & Calling Conventions

... 76Stack-based Model

... 79Calling Convention

... 81Scratchpad-based Model

... 84Calling Convention

Compiler Reference Manual, page 5

Compiler Reference Manual

.. 855.11 In-Line Assembly

... 86Calling the Error Handler from User Code

.. 865.12 ETEC Standard Header Files

Part 6 C Preprocessing 87

Part 7 Auto Code Generation 89

.. 897.1 Auto-Struct File

... 9024-bit vs. Non-24-bit Accesses

... 91Naming Conventions

... 92eTPU Data in Auto-Structs

... 93eTPU Structures/Unions

... 95Arrays in Auto-Structs

... 97Bit-field and _Bool Variables

... 98Example Code

.. 997.2 Auto-Defines File

... 99Global Prepended Mnemonic

... 99Auto Header File Name

... 99Endian Support

... 101Text Generation

... 101Type Information

... 102Array Variables

... 103_Bool Type Variables

... 103Struct/Union Variables

... 103Tag Types (Structures, Unions, Enumerations)

... 106Global Mnemonic

... 106Settings, Register Fields, and Mnemonic

... 112Include Race Keepout

... 112NXP API compatibility

... 112ASH WARE Simulator Compatibility

... 112Support for Additional Languages

... 113SCM ARRAY

... 113PWM Example

.. 1137.3 Auto-Code Files

... 114Key Files

... 115Editing Template Files

... 115System Simulation Support

Part 8 Initialized Data Files 117

.. 1178.1 Initialized Global Memory

Compiler Reference Manual

page 6, Compiler Reference Manual

.. 1188.2 Initialized Channel Memory

.. 1198.3 Using the Initialized Data Macros in the Simulator

Part 9 Global Error Handling 121

.. 1229.1 Global Error Data

.. 1239.2 Error Handling Library

.. 1249.3 Invalid Entry Error Handling

.. 1249.4 In the SCM OFF Weeds Error Handling

.. 1249.5 In the FILL Weeds Error Handling

.. 1259.6 Unexpected Thread Error Handling

.. 1269.7 Extending the Error Handler

.. 1279.8 Accessing the Error Handler

.. 1289.9 Creating a User-Defined Error Handler

Part 10 Command Line Options 131

.. 13110.1 Compiler Command Line Options

.. 14310.2 C Preprocessor Command Line Options

.. 14710.3 Console Message Verbosity (-Verb)

.. 14810.4 Version (-Version)

Part 11 Limitations 149

.. 14911.1 Restrictions to the ISO/IEC 9899 C Definition

Part 12 Supported Features 151

.. 15112.1 General C Language Support

.. 15112.2 eTPU Programming Model Support

.. 15212.3 Compatibility Mode Support

... 152Entry Table Support

... 152#pragma support

Part 13 Appendix A : Pragma Support 153

.. 15413.1 Verify Version

Compiler Reference Manual, page 7

Compiler Reference Manual

.. 15513.2 Disabling Optimization in Chunks of Code

.. 15513.3 Disabling Optimizations by Type

.. 15613.4 Atomicity Control

.. 15613.5 Optimization Boundary (Synchronization) Control

.. 15613.6 Thread Length Verification (WCTL)

.. 15813.7 Forcing the WCTL

.. 15813.8 Excluding a thread from WCTL

.. 15813.9 Loop Iteration Count

.. 15913.10 Code Size Verification

.. 15913.11 Memory Size (Usage) Verification

.. 16013.12 Same Channel Frame Base Address

.. 16113.13 Auto-defines Export

.. 16213.14 Private Channel Frame Variables

.. 16313.15 Explicit Locating

.. 16413.16 ByteCraft #pragma write Support

Part 14 Appendix B : Data Packing
Details 165

.. 16514.1 Channel Frame FASTACCESS Mode

.. 16614.2 Structure FASTACCESS Mode

.. 16714.3 Structure PACKTIGHT with ANSI Mode Enabled

.. 16814.4 Structure FASTACCESS with ANSI Mode Enabled

.. 16914.5 Array FASTACCESS Mode

Part 15 Appendix C : eTPU Annotated
Object File Format 171

.. 17815.1 Code Labels

.. 17915.2 Entries

Part 16 Appendix D : Error, Warning and
Information Messages 181

.. 18116.1 Compiler Error Messages

Compiler Reference Manual

page 8, Compiler Reference Manual

.. 18316.2 Compiler Warning Messages

Compiler Reference Manual, page 9

Compiler Reference Manual

page 10, Compiler Reference Manual

1. Introduction

Compiler Reference Manual, page 11 (C) 2008-2023 ASH WARE, Inc.

1
Introduction

The eTPU Embedded C Compiler System is based upon the ISO/IEC 9899 C standard
(“C99”) and the ISO/IEC TR 18037 Embedded C extension. ETEC is a highly optimizing
C compiler for all versions of the eTPU. ETEC has its own version of the programming
model with regards to entry table definition and thread function definition, but also has a
Legacy Mode mode for compiling software written using existing programming paradigms.
 This document covers the details of these programming models, the ETEC Tools Suite
itself such as command line options, as well as details on the various outputs of the ETEC
Compiler Tools Suite.

page 12, Compiler Reference Manual

2. Supported Targets

Compiler Reference Manual, page 13 (C) 2008-2023 ASH WARE, Inc.

2
Supported Targets

The ETEC C compiler toolkit current supports the following targets.

eTPU - select Qorivva MPC55xx parts, select Coldfire MCF52xx parts (compiler/linker
option '-target=etpu1')

eTPU2 - select Qorivva MPC56xx parts, select STMicro SPC563Mxx parts
(compiler/linker option '-target=etpu2')

eTPU2+ - select Qorivva MPC57xx parts. There is not a separate target option for
eTPU2+ - use the eTPU2 target. The eTPU2+ has no instruction set differences versus
the eTPU2. The only programming model difference is that a third bit has been added to
the missing tooth count field in the tooth program register (TPR). If using the default TPR
struct defined in the ETpu_Hw.h header file, this third bit is accessed via the previously
unused TPR10 field.

page 14, Compiler Reference Manual

3. References

Compiler Reference Manual, page 15 (C) 2008-2023 ASH WARE, Inc.

3
References

ISO/IEC 9899:TC2 Programming Languages – C

ISO/IEC TR 18037 Programming Languages – C – Extensions to support embedded
processors

Enhanced Time Processing Unit (eTPU) Preliminary Reference Manual (ETPURM/D
5/2004 Rev 1)

page 16, Compiler Reference Manual

4. Keywords and Abbreviations

Compiler Reference Manual, page 17 (C) 2008-2023 ASH WARE, Inc.

4
Keywords and Abbreviations

Channel Frame The collection of channel variables associated with a
single eTPU Function or ETEC eTPU Class.

Channel
Variable

A variable that is addressed relative to the channel
base register. This storage is static and there is one
copy per channel to which it is assigned at run-time.
Sometimes channel variables are referred to as
parameters.

ETEC eTPU Embedded C Compiler

eTPU Enhanced Time Processor Unit (and derivatives)

eTPU-C The C code development system for the eTPU by Byte
Craft Limited.

eTPU Class The native ETEC programming model aggregates all
threads, Member Functions (methods), channel
variables and entry tables associated with a single
application into a class-like structure called an eTPU
class.

4. Keywords and Abbreviations

page 18, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

eTPU Function An eTPU-C term that refers to a C function that defines
a set of channel variables, an entry table, and the
threads that make up the vectors for that entry table.

With regards to ETEC, it refers to entry tables, channel
variables and threads that are all associated, an ETEC
“class”.

eTPU Thread An ETEC term. A C function that can be used as an
entry vector, but cannot be called from any other C
code.

SCM Shared Code Memory. The location of the eTPU code
and entry tables. Not readable from the eTPU.

SDM Shared Data Memory. Multi-ported data memory
accessible from the host CPU and the eTPU.
Historically this memory has been referred to as
parameter RAM.

5. eTPU Programming Model

Compiler Reference Manual, page 19 (C) 2008-2023 ASH WARE, Inc.

5
eTPU Programming Model

This section discusses the two major portions of the eTPU hardware programming model –
direct access to the eTPU hardware, and the syntax for defining entry tables. Unlike a
more conventional microprocessor, the eTPU does not typically process in any kind of
continuous manner. Rather, it behaves more like a set of interrupt handlers reacting to
events. Entry tables map events to the code / threads that need to process the event. In
between such activations the eTPU microengine is completely idle.

ETEC uses a stack-based approach for local variables and function calls. The user must
allocate stack space in SDM. This portion of the programming model is discussed in more
detail in the section 4.7.

5.1 Legacy Mode

The ETEC Compiler toolset supports 'Legacy Mode' style programming to maintain
compatibility with existing code built using other toolsets. It is possible to mix and match
Legacy Mode and 'ETEC Mode' code such that (say) one eTPU Function is built in ETEC
mode and another eTPU function is built using Legacy Mode. It is (generally) easy/trivial
to convert code from Legacy Mode to Enhanced ETEC Mode.

In Legacy Mode, entry tables are encoded via if-else blocks within functions designated as
eTPU Functions. eTPU Functions are designated with a #pragma (different formats
shown) that can include table type & function number information:

#pragma ETPU_function <func_name>; // implies standard

5. eTPU Programming Model

page 20, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

#pragma ETPU_function <func_name> @ <func_num>; // implies standard

#pragma ETPU_function <func_name>, [alternate | standard];

#pragma ETPU_function <func_name>, [alternate | standard] @ <func_num>;

The special if-else block resides at the top scope level of the function, with each if
expression defining the entry conditions for the ensuing thread. Each compound statement
following an if/else represents an eTPU thread. [TBD note: statement following if/else
must be a compound statement { } at the current time for proper compilation.] Below, a
skeleton of an eTPU Function is shown as an example.

#pragma ETPU_function TEST, standard;
// A, B, and C are channel variables
void TEST(int A, int B, int C)
{

// D is allocated as a channel variable
static int D;
int E; // local variable
if ((hsr==1) && (pin==0) && (flag0==0))
{

int F; // local variable
// thread 1

}
else if (hsr==1)
{

// thread 2
}
else if (hsr==2)
{

// thread 3
}
else if (lsr==1)
{

// thread 4
}
else if ((lsr==0) && (m1==0) && (m2==1))
{

// thread 5
}
else if ((lsr==0) && (m1==1) && (pin==0))
{

// thread 6
}
else if ((lsr==0) && (m1==1) && (m2==0) && (pin==1))

{
// thread 7

5. eTPU Programming Model

Compiler Reference Manual, page 21 (C) 2008-2023 ASH WARE, Inc.

}
else
{

// default "catch-all" thread
}

}

There are up to 7 different inputs into the entry table, although all seven are never
meaningful at the same time. The seven entry conditions are:

hsr // host service request – valid value 1-7

channel.LSR // link service request – 0 or 1;

 // ‘lsr’ is equivalent to channel.LSR

m1 // match A or transition B – 0 or 1

m2 // match B or transition A – 0 or 1

channel.PIN // pin value (host setting determines whether

 // it is the input or output pin) – 0 or 1;

 // ‘pin’ is equivalent to channel.PIN

channel.FLAG0 // channel flag0 – 0 or 1; ‘flag0’

 // is equivalent to channel.FLAG0

channel.FLAG1 // channel flag1 – only used in entry tables

 // of alternate type – 0 or 1; ‘flag1’

 // is equivalent to channel.FLAG1

Besides one exception, tests of these conditions can be logically ANDed and ORed
together to determine the conditions for entry into a given thread. Host service request
(hsr) conditions can never be ANDed together.

When defining an entry table of alternate type, specifying just one hsr condition from a
grouped set is sufficient to cover that group’s entries. For example, if (hsr == 1) { … } is
equivalent to if ((hsr == 1) || (hsr == 4) || (hsr == 5)) { … }. The latter format is
recommended as it is clearer to read & understand.

Within an entry condition specification, the operators ||, &&, !, ==, and != are allowed. The
!= and ! operators are not allowed for use with the hsr condition, only the other Boolean

5. eTPU Programming Model

page 22, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

conditions. The Boolean conditions may also be specified just by themselves (not hsr), e.g.
if (m1) { … } which is equivalent to if (m1 == 1) { … }.

The conditions in successive if expressions can overlap; the latter if only covers any
remaining open entry table slots for which its conditions apply. If no open slots remain a
compilation error is reported. Here’s an example of a standard entry table definition:

If (hsr == 1)
{

…
}
Else if (m1 && m2)
{

… // covers entry slots 10, 11, 20, 21, 22, 23
}
Else if (m1)
{

…
// covers entry slots 16, 17, 18, 19, 30, 31
// (but not 10-11, 20-23 since they were already taken)
}
…

The if-else array can end in a dangling else that covers any remaining entry slots in the
table. A dangling else is required if all of the ‘if’ expressions do not fully cover a table.
Typically the dangling else executes error code.

In each thread defined by the if-else array, the default is for the Match Enable (ME) entry
to be set true, matches enabled. The Match Enable can be set explicitly, or disabled, by
making one of the below intrinsic function calls or macro synonyms somewhere in the
thread (no code is generated by the intrinsic, only the entry ME bit is affected).

match_enable();
match_disable();
// synonyms
enable_match();
disable_match();
EnableMatchesInThread();
DisableMatchesInThread();

For more information on entry tables and entry conditions reference eTPU documentation.

5. eTPU Programming Model

Compiler Reference Manual, page 23 (C) 2008-2023 ASH WARE, Inc.

5.1.1 Accessing Channel Variables From Outside eTPU Function Scope

When using legacy mode one constraint is that channel frame variables cannot be (easily)
accessed outside the eTPU function scope. This means code cannot be broken out into
subroutines for more readable code or efficient processing, without take special steps. The
way to overcome this is via use of the register 'register_chan_base'. This register
represents the CPBA address register for the current channel (as controlled by the 'chan'
register). To make it all work, several steps are necessary. First, encapsulate the entire
eTPU channel frame in a structure.

struct ETPU_FUNC_CHAN_FRAME
{

int24 a;
int24 b;
// ...

};

Then use that in the eTPU function definition:

#pragma ETPU_function ETPU_FUNC, standard;
void ETPU_FUNC(

struct ETPU_FUNC_CHAN_FRAME etpu_func_local
)
{

if (hsr == 1)
{

// ...
}
else // ...

}

Once the above is in place, other functions can access the channel frame using the syntax
shown below. Since 'register_chan_base' represents an address the register access should
be mapped to a pointer to the channel frame struct.

int24 ETPU_FUNC_helper(int24 p1, int24 p2)
{

register_chan_base struct ETPU_FUNC_FRAME
*etpu_func_local_p;

etpu_func_local_p->some_chan_var = p1 *
etpu_func_local_p->some_other_chan_var;

// ...
}

5. eTPU Programming Model

page 24, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Although it doesn't make quite as much sense syntactically, the compiler supports mapping
the channel frame struct directly to 'register_chan_base' as well.

int24 ETPU_FUNC_helper(int24 p1, int24 p2)
{

register_chan_base struct ETPU_FUNC_FRAME
etpu_func_local;

etpu_func_local.some_chan_var = p1 *
etpu_func_local.some_other_chan_var;

// ...
}

When using ETEC classes, this kind of access generally comes naturally as member
functions have access to channel frame variables directly. However, in the case of global
functions, or where one function/class needs to access another function/class data, the
same strategy can be used by encapsulating all of the class data members in a structure.
However, it better, and more easily accomplished using the class scope syntax - see
Access Outside Class Scope for more information.

5.1.2 Legacy Mode Issues

The original eTPU compiler had been available for about 5 years when we noticed that
numerous customers experienced repeated instances of common bugs. These bugs were a
result of various issues with the Legacy Mode programming model enumerated below.
ASH WARE decided to address these issues by developing a new coding mode which we
named Enhanced ETEC Mode which would address many of the common issues through
the use of an enhanced coding pattern that matches the unique nature of the eTPU. The
following drawbacks were addressed.

· It was difficult to share code that accessed Channel Variables in different threads. This
lead to the use of unstructured 'GOTOs' . ETEC Mode supports this using Member
Functions.

· It was difficult to group functions that could all share Channel Variables, Member
Functions, and Threads. ETEC Mode supports this by allowing multiple entry tables in
the same eTPU Class. Threads can be referenced by just one (or multiple) Entry
Tables.

· Legacy Mode hides critical aspects of the Entry Table making it challenging to properly
design the entry table code. The authors of this manual have seen numerous instances

5. eTPU Programming Model

Compiler Reference Manual, page 25 (C) 2008-2023 ASH WARE, Inc.

of buggy customer code due to major issue. ETEC Mode fully exposes the Entry Table,
thereby forcing the user to consider the Entry Table in its entirety and eliminating this
common source of buggy code.

· Legacy Mode Entry Table code does not always operate the way it reads. For instance,
the order of execution of thread described in the if/else array is defined by the hardware,
not by the if else array. It is common for Entry Table code to read one way, but operate
a different way. ETEC Mode Entry Tables execute exactly the way they are written.

· Legacy Mode does not operate the way it reads. A common coding error is to attempt
to write code before or after the Entry Table defining if/else array. This is not an issue
in ETEC Mode because there is no entry table.

· Legacy Mode Entry Table if/else array only supports a small subset of the 'c' language
because it must be dedicated solely to the entry table which is not intuitive.This is not an
issue in ETEC Mode because there is no entry table.

· Legacy Mode Channel Variables appear to be static and are actually dynamic and it is in
no way intuitive that there is a single copy of each Channel Variable for each channel.
The way Channel Variables are declared and used in ETEC mode makes it intuitive that
each channel gets its own static copy of its Channel Variables.

· Legacy Mode Channel Variables can also be declared using the 'static' keyword within
the scope of the eTPU function. In 'C' there is normally one copy of these variables
whereas in the eTPU each eTPU channel gets its own copy making these variables very
confusing and non-intuitive. ETEC Mode handles Channel Variables in an intuitive way
that is obvious that Channel Variables are static and each channel gets its own copy.

· Legacy Mode Channel Variables are all exposed to the host CPU, whereas there are
really two categories, those that are shared between the Host CPU and the eTPU and
those that are private to the eTPU. ETEC Mode supports this important differentiation
through the use of the 'private' and 'public' keywords.

5.2 Enhanced ETEC Mode (eTPU Class)

The Enhanced ETEC Mode was developed to address numerous shortcoming of the earlier
Legacy Mode as described in the Legacy Mode Issues section.

The ETEC programming model for the eTPU uses extensions to the C language to more
cleanly match the eTPU hardware. A class-like syntax connects all the pieces that apply

5. eTPU Programming Model

page 26, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

to a single eTPU channel (or group of channels that must work in concert and share a
Channel Variables.) This class-like syntax, referred to as an “eTPU class”, is used to
aggregate the data and code that is used to perform a single eTPU function/application.

Although it is somewhat similar in syntax to a C++ class, it is actually quite simplified in that
there are no concepts like overloading or derivation Rather it acts as a way to aggregate
all the necessary pieces of an eTPU application (typically maps to one channel, but can
map to multiple channels) into a clean package. An eTPU Class consists of the following.

· Threads which are sections of code that executed in response to an HSR, LSR, Match
or Transition event, detailed in the

· The Entry Table (sometimes referred to as the Event Vector table) which maps events
and combinatorial's the event-handling threads.

· Member Functions (methods) that can be called by threads and other member functions
and can access channel variables.

· The data which is called the “channel frame”, or Channel Variables.

These are covered in more detail in subsequent sections

· In the eTPU programming model, there is a static copy of the channel frame for each
channel, or set of channels, to which the eTPU class is assigned. The assignment itself
is done via a combination of the channel function select register (CFSR) and allocating
room for the channel frame in SDM (SPRAM) and properly setting the channel
parameter base address (CPBA).

The last main piece of an eTPU class is the entry table definition. A class may be
associated with one or more eTPU entry tables, each of which has a unique eTPU function
number. These entry tables are defined like initialized arrays and the user must explicitly
specify an eTPU thread for each of the 32 different entry conditions allowed per table. As
part of the entry table definition, table qualifiers such as type (standard or alternate), pin
direction, and CFSR (function number) value are specified.

The ETEC compiler supports an alternative syntax for thread declarations. The
"_eTPU_thread" keyword can be used interchangeably with "void
__attribute__((interrupt_handler))", which is a GNU-based syntax.

5. eTPU Programming Model

Compiler Reference Manual, page 27 (C) 2008-2023 ASH WARE, Inc.

5.2.1 eTPU Class Example

The example below shows the overall eTPU class syntax. Subsequent sections of this
manual describe the following in more detail.

// Standard Compiler-supplied header
#include <ETpu_Std.h>

// Exclude Init and Error threads from WCTL calculations
#pragma exclude_wctl MyClass::Init
#pragma exclude_wctl _Error_handler_unexpected_thread

_eTPU_class MyClass
{
 // Channel Variables
 int24 _myChanVar;

 // Thread Declarations
 _eTPU_thread Init(_eTPU_matches_disabled);
 _eTPU_thread HandleMatchA(_eTPU_matches_enabled);

 // Member Functions (methods)
 int24 CalculateOutput(int24 myPassedVar);

 // Entry Table declaration(s)
 _eTPU_entry_table MyClass;
};

_eTPU_thread MyClass::Init(_eTPU_matches_disabled)
{
 // ...
 _myChanVar = tcr1;
 // ...
}

_eTPU_thread MyClass::HandleMatchA(_eTPU_matches_enabled)
{
 // ...
 _myChanVar = CalculateOutput(erta);
 // ...
}

int24 MyClass::CalculateOutput(int24 myPassedVar)
{

5. eTPU Programming Model

page 28, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

 // Class Member Function can directly access channel variables
 return _myChanVar + myPassedVar;
}

DEFINE_ENTRY_TABLE(MyClass, MyClass, standard, outputpin, autocfsr)

{

 // Host Service Request (HSR) 7

 // is used for initialization

 // HSR LSR M1 M2 PIN F0 F1 vector

 ETPU_VECTOR1(7, x, x, x, x, x, x, Init),

 // Only valid combination when toggling the output pin

 // using Action Unit A is MRL-A is set and MRL-B is clear

 // HSR LSR M1 M2 PIN F0 F1 vector

 ETPU_VECTOR1(0, 0, 1, 0, 0, 0, x, HandleMatchA),

 ETPU_VECTOR1(0, 0, 1, 0, 1, 0, x, HandleMatchA),

 // Host Service Requests (HSR) 1 through 5 are not used.

 // Therefore, these HSR's set get steered to the error handler.

 // HSR LSR M1 M2 PIN F0 F1 vector

 ETPU_VECTOR1(1, x, x, x, 0, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(1, x, x, x, 0, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(1, x, x, x, 1, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(1, x, x, x, 1, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(2, x, x, x, x, x, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(3, x, x, x, x, x, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(4, x, x, x, x, x, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(5, x, x, x, x, x, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(6, x, x, x, x, x, x, _Error_handler_unexpected_thread),

 // Links are not used, should never get a link

 // Therefore, threads with LSR set get steered to the error handler.

 // HSR LSR M1 M2 PIN F0 F1 vector

 ETPU_VECTOR1(0, 1, 1, 1, x, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 1, 1, x, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 0, 0, 0, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 0, 0, 0, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 0, 0, 1, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 0, 0, 1, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 0, 1, x, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 0, 1, x, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 1, 0, x, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 1, 1, 0, x, 1, x, _Error_handler_unexpected_thread),

5. eTPU Programming Model

Compiler Reference Manual, page 29 (C) 2008-2023 ASH WARE, Inc.

 // Although Flag0 is not used,

 // it is set to zero in init.

 // Therefore, threads that respond

 // when Flag0 is set are invalid

 // and get steered to the error handler.

 ETPU_VECTOR1(0, 0, 1, 0, 0, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 1, 0, 1, 1, x, _Error_handler_unexpected_thread),

 // Action Unit B is not used.

 // Therefore, MRL-B should never get set.

 // Threads with M2 set get steered to the error handler.

 // HSR LSR M1 M2 PIN F0 F1 vector

 // HSR LSR M1 M2 PIN F0 F1 vector

 ETPU_VECTOR1(0, 0, 0, 1, 0, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 0, 1, 0, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 0, 1, 1, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 0, 1, 1, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 1, 1, 0, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 1, 1, 0, 1, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 1, 1, 1, 0, x, _Error_handler_unexpected_thread),

 ETPU_VECTOR1(0, 0, 1, 1, 1, 1, x, _Error_handler_unexpected_thread),

};

5.2.2 Threads

The most critical elements of the eTPU class are the threads. A thread is a section of
code that quickly responds to event(s). When a thread ceases to execute it 'ends'. The
scheduler then queues up another thread for execution by the execution unit. However, if
none of the 32 channels in the engine are requesting service, then the execution unit can
actually go idle such that nothing at all is executing. While the execution is 'Idle' (waiting
for a channel to request service) the SDM memory is read as part of a 'safety' mechanism
to assure that there are no memory errors.

Note that threads are by definition of type 'void' since when a thread ends no data is
returned.

_eTPU_class MyClass
{
 // <... SNIP ...>
 _eTPU_thread HandleMatchA(_eTPU_matches_enabled);
 // <... SNIP ...>

5. eTPU Programming Model

page 30, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

};

_eTPU_thread MyClass::Init(_eTPU_matches_disabled)
{
 // <... SNIP ...>
 _myChanVar = tcr1;
 // <... SNIP ...>
}

5.2.2.1 Enabling/Disabling Matches in the Thread

While a thread executes matches for the channel executing the thread can either be
enabled to disabled. Note that this applies to just to the single channel executing the thread.
This is controlled by the first argument in the thread declaration as shown below. The
setting is called the Match Enable (ME) Bit which is actually encoded into the Entry Table.
The keywords that support this are "_eTPU_matches_disabled" and
"_eTPU_matches_enabled". It is generally recommended that users write their
functions/threads in such a way that matches can be enabled during thread processing. If
possible, only initialization & shutdown threads should have matches disabled.

_eTPU_thread HandleMatch(_eTPU_matches_enabled);

5.2.2.2 Controlling the Preload Parameter Bit (PP)

Immediately prior to execution of a thread, there is a Time Slot Transition (TST) in which
two or three Channel Variables are pre-loaded into the eTPU's execution unity thereby
improving performance many cases. There is some configurability in which variables are
preloaded which is controlled by the Preload Parameter Bit (PP). It is generally preferable
to allow the toolset to control this setting as it is chosen as part of an execution speed and
code size optimization strategy. However, this can be overridden using an optional
(second) argument in the thread declaration as shown below. Note that supported
keywords are "_eTPU_preload_low" and "_eTPU_preload_high". Note that this option is
(correctly) seldom used.

_eTPU_thread HandleMatch(_eTPU_matches_enabled, _eTPU_preload_high);

5. eTPU Programming Model

Compiler Reference Manual, page 31 (C) 2008-2023 ASH WARE, Inc.

5.2.3 Entry Tables

The last main piece of an eTPU class is the entry table definition. A class may be
associated with one or more eTPU entry tables, each of which has a unique eTPU function
number. These entry tables are defined like initialized arrays and the user must explicitly
specify an eTPU thread for each of the 32 different entry conditions allowed per table. As
part of the entry table definition, table qualifiers such as type (standard or alternate), pin
direction, and CFSR (function number) value are specified.

The entry table definition takes the form of an array initializer, with a total of 32 entries,
one for each possible unique entry. The entry table is qualified by whether it is alternate or
standard, whether it is based upon an input or output pin value, and what channel function
select number it should be assigned. The input/output setting generates a #define in the
auto header for use during host initialization of the eTPU; note that some microcontrollers
only support an input pin setting. It does not actually affect eTPU code generation. The
entry table will be given the specified function number, unless during link a conflict is found
in which case linking fails. If no function number is specified (autocfsr), the linking process
automatically assigns a function number. Each entry vector is specified by its entry
conditions, and the thread activated by those conditions. Vectors may be specified in any
order as long as the complete set of 32 is defined. To simplify the entry table definition,
several macros have been defined. The first begins the table definition:

#define DEFINE_ENTRY_TABLE(className, tableName, tableType, pinDirection, cfsrValue)

The className and tableName must match the names used in the class declaration. The

tableType parameter must be standard or alternate. The pinDirection argument can be

either inputpin or outputpin. Finally, the cfsrValue can be either a number from [0-31],

or it can be autocfsr, in which case the linker assigns the entry table a CFSR value.

Then, three different macros are used to specify each entry vector. Three are required
since depending upon entry table type, up to 3 HSR values can contribute to the entry.

#define ETPU_VECTOR1(hsr1, lsr, m1, m2, pin, flag0, flag1, threadName)

#define ETPU_VECTOR2(hsr1, hsr2, lsr, m1, m2, pin, flag0, flag1, threadName)

#define ETPU_VECTOR3(hsr1, hsr2, hsr3, lsr, m1, m2, pin, flag0, flag1, threadName)

Below is an example of the definition of a standard entry table with a user-specified CFSR
value.

DEFINE_ENTRY_TABLE(ClassName, EntryTableName, standard, inputpin, 3)

{

// HSR LSR M1 M2 PIN F0 F1 vector

ETPU_VECTOR1(1, x, x, x, 0, 0, x, Initialize),

ETPU_VECTOR1(1, x, x, x, 0, 1, x, Initialize),

ETPU_VECTOR1(1, x, x, x, 1, 0, x, Initialize),

ETPU_VECTOR1(1, x, x, x, 1, 1, x, Initialize),

5. eTPU Programming Model

page 32, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

ETPU_VECTOR1(2, x, x, x, x, x, x, Global_Error_Thread),

ETPU_VECTOR1(3, x, x, x, x, x, x, Global_Error_Thread),

ETPU_VECTOR1(4, x, x, x, x, x, x, Global_Error_Thread),

ETPU_VECTOR1(5, x, x, x, x, x, x, Global_Error_Thread),

ETPU_VECTOR1(6, x, x, x, x, x, x, Global_Error_Thread),

ETPU_VECTOR1(7, x, x, x, x, x, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 1, 1, x, 0, x, HandleMatch),

ETPU_VECTOR1(0, 1, 1, 1, x, 1, x, HandleMatch),

ETPU_VECTOR1(0, 0, 0, 1, 0, 0, x, Global_Error_Thread),

ETPU_VECTOR1(0, 0, 0, 1, 0, 1, x, Global_Error_Thread),

ETPU_VECTOR1(0, 0, 0, 1, 1, 0, x, Global_Error_Thread),

ETPU_VECTOR1(0, 0, 0, 1, 1, 1, x, Global_Error_Thread),

ETPU_VECTOR1(0, 0, 1, 0, 0, 0, x, HandleMatch),

ETPU_VECTOR1(0, 0, 1, 0, 0, 1, x, HandleMatch),

ETPU_VECTOR1(0, 0, 1, 0, 1, 0, x, HandleMatch),

ETPU_VECTOR1(0, 0, 1, 0, 1, 1, x, HandleMatch),

ETPU_VECTOR1(0, 0, 1, 1, 0, 0, x, HandleMatch),

ETPU_VECTOR1(0, 0, 1, 1, 0, 1, x, HandleMatch),

ETPU_VECTOR1(0, 0, 1, 1, 1, 0, x, HandleMatch),

ETPU_VECTOR1(0, 0, 1, 1, 1, 1, x, HandleMatch),

ETPU_VECTOR1(0, 1, 0, 0, 0, 0, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 0, 0, 0, 1, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 0, 0, 1, 0, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 0, 0, 1, 1, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 0, 1, x, 0, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 0, 1, x, 1, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 1, 0, x, 0, x, HandleMatch),

ETPU_VECTOR1(0, 1, 1, 0, x, 1, x, HandleMatch),

};

An example of an alternate entry table might look like:

DEFINE_ENTRY_TABLE(UART, UART, alternate, outputpin, autocfsr)

{

// HSR LSR M1 M2 PIN F0 F1 vector

ETPU_VECTOR2(2,3, x, x, x, 0, 0, x, Global_Error_Thread),

ETPU_VECTOR2(2,3, x, x, x, 0, 1, x, Global_Error_Thread),

ETPU_VECTOR2(2,3, x, x, x, 1, 0, x, Global_Error_Thread),

ETPU_VECTOR2(2,3, x, x, x, 1, 1, x, Global_Error_Thread),

ETPU_VECTOR3(1,4,5, x, x, x, x, x, x, TX_INIT),

ETPU_VECTOR2(6,7, x, x, x, x, x, x, RX_INIT),

ETPU_VECTOR1(0, 1, 0, 0, 0, x, x, Global_Error_Thread),

ETPU_VECTOR1(0, 1, 0, 0, 1, x, x, Global_Error_Thread),

5. eTPU Programming Model

Compiler Reference Manual, page 33 (C) 2008-2023 ASH WARE, Inc.

ETPU_VECTOR1(0, x, 1, 0, 0, 0, 0, Test_New_Data_TX),

ETPU_VECTOR1(0, x, 1, 0, 0, 1, 0, Send_Serial_Data_TX),

ETPU_VECTOR1(0, x, 1, 0, 0, 0, 1, Receive_Serial_Data_RX),

ETPU_VECTOR1(0, x, 1, 0, 0, 1, 1, Receive_Serial_Data_RX),

ETPU_VECTOR1(0, x, 1, 0, 1, 0, 0, Test_New_Data_TX),

ETPU_VECTOR1(0, x, 1, 0, 1, 1, 0, Send_Serial_Data_TX),

ETPU_VECTOR1(0, x, 1, 0, 1, 0, 1, Receive_Serial_Data_RX),

ETPU_VECTOR1(0, x, 1, 0, 1, 1, 1, Receive_Serial_Data_RX),

ETPU_VECTOR1(0, x, 0, 1, 0, 0, 0, Global_Error_Thread),

ETPU_VECTOR1(0, x, 0, 1, 0, 1, 0, Global_Error_Thread),

ETPU_VECTOR1(0, x, 0, 1, 0, 0, 1, Detect_New_Data_RX),

ETPU_VECTOR1(0, x, 0, 1, 0, 1, 1, Detect_New_Data_RX),

ETPU_VECTOR1(0, x, 0, 1, 1, 0, 0, Global_Error_Thread),

ETPU_VECTOR1(0, x, 0, 1, 1, 1, 0, Global_Error_Thread),

ETPU_VECTOR1(0, x, 0, 1, 1, 0, 1, Detect_New_Data_RX),

ETPU_VECTOR1(0, x, 0, 1, 1, 1, 1, Detect_New_Data_RX),

ETPU_VECTOR1(0, x, 1, 1, 0, 0, 0, Test_New_Data_TX),

ETPU_VECTOR1(0, x, 1, 1, 0, 1, 0, Send_Serial_Data_TX),

ETPU_VECTOR1(0, x, 1, 1, 0, 0, 1, Detect_New_Data_RX),

ETPU_VECTOR1(0, x, 1, 1, 0, 1, 1, Detect_New_Data_RX),

ETPU_VECTOR1(0, x, 1, 1, 1, 0, 0, Test_New_Data_TX),

ETPU_VECTOR1(0, x, 1, 1, 1, 1, 0, Send_Serial_Data_TX),

ETPU_VECTOR1(0, x, 1, 1, 1, 0, 1, Detect_New_Data_RX),

ETPU_VECTOR1(0, x, 1, 1, 1, 1, 1, Detect_New_Data_RX),

};

The linker would assign a function number to the UART entry table assigned above, and
the auto-header output would not contain information for host on setting the entry table to
the input or output pin.

Entry tables must contain all 32 of the entry vectors shown above for either a standard or
alternate table, however, there is no constraint on the ordering of the entries. They can be
re-arranged for ease of reading, etc.

5.2.4 Member Functions (Methods)

Member Functions (methods) are very cool. This is a section of code that can be called
from thread and other Member Functions within the same class, thereby addressing the
'two copy' problem of Legacy Mode code. A key aspect of Member Functions (and an
important way the differ from regular 'c' functions) is that they can access the channel
variables. See below.

_eTPU_class MyClass

5. eTPU Programming Model

page 34, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

{
 // <... SNIP ...>
 // Member Functions (methods)
 int24 CalculateOutput(int24 myPassedVar);
 // <... SNIP ...>
};

int24 MyClass::CalculateOutput(int24 myPassedVar)
{
 // Class Member Function can directly access channel
variables
 return _myChanVar + myPassedVar;
}

A frustration with Member Functions in the Scratchpad or Engine programming model is
that they pass parameters either in 'Global Scratchpad' or in the 'Engine' data space. A
workaround is to set the programming model for just this code file to the 'Stack'
programming model. This has the advantage that the 'Stack' programming model passes the
first few parameters in registers which is significantly faster and tighter. Then, to make
sure that no stack is actually used, use the following pragma.

#pragma verify_memory_size stack 0 bytes

The above does not actually force there to be no variables passed on a stack. Instead, it
makes this potential problem observable by issuing a compile-time error.

5.2.4.1 Member Function Fragments

Member Functions can also be declared as 'fragments' which have no 'return'. Instead,
execution always ends in the fragment. This eliminates much of the call/return structure
thereby reducing code and increasing execution speed as shown below in mixed
source/assembly view.

5. eTPU Programming Model

Compiler Reference Manual, page 35 (C) 2008-2023 ASH WARE, Inc.

5.2.5 Channel Variables

Class data is called the “channel frame” which consists of one of more Channel Variables.
Each channel contains its own variable-sized channel frame. There is a static copy of the
channel frame for each channel, or set of channels, to which the eTPU class is assigned.
The assignment itself is done via a combination of the channel function select register
(CFSR) and allocating room for the channel frame in SDM (SPRAM) and properly setting
the channel parameter base address (CPBA).

_eTPU_class MyClass
{
 // Channel Variables
 int24 _myChanVar1, _myChanVar2;
 int8 _myiBitChanVar;
 // <... SNIP ...>

5.2.5.1 Hiding Channel Variables (Public/Private)

The visibility of eTPU classes Channel Variables can be 'public' (the default) or 'private'
visibility setting using the "public" and "private" keywords, much like in C++. Items get
their visibility setting based on the nearest visibility keyword declared above them, or are
"public" if no visibility keywords are present. The visibility setting only applies to Channel

5. eTPU Programming Model

page 36, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Variables and whether their interface information is exported into the auto-defines and
auto-struct files. Private data is not referenced in the generated auto-defines and/or auto-
struct. Below is an example class definition showing this feature.

_eTPU_class Test
{
public:

int r1;
int r2;

private:
int op1;
int op2;

public:
int r3;
int r4;

private:
int op3;
int8 op4;
struct S op5;

// methods

// threads
_eTPU_thread Main(_eTPU_matches_enabled);

// entry tables
_eTPU_entry_table Test;

};

The Channel Variables r1 - r4 are public and their location information will be output in the
auto-defines and auto-struct files. The opN variables are private and will not be exposed in
the auto-generated interface files.

5. eTPU Programming Model

Compiler Reference Manual, page 37 (C) 2008-2023 ASH WARE, Inc.

5.2.5.2 Initial Values

Channel variables (class data members) can be given initial values that flow through to the
auto-generated initialized data files output by the linker. In most cases channel variable
initialized data is not used, as channels need to be initialized programatically anyways, but
occasionally it is useful. The below code sample shows how it is done.

// ETEC class declaration must come first (can be in an
included header file)
_eTPU_class SomeClass
{

// ...

int8 _some8BitVar;
int24 _some24BitVar;
int24 *_somePointer;

// ...
};

int g_int24;

// provide initial values for SomeClass data members
// type portion must match type as declared in class
int8 SomeClass::_some8BitVar = 33;
int24 SomeClass::_some24BitVar = 1234;
int24 *SomeClass::_somePointer = &g_int24;

5.2.5.3 Access Oustide Class Scope

A class' public channel variables can be accessed outside its scope. Presumably this would
be done in conjunction with a chan register change in order to get or set data on another
channel. The syntax is shown below.

#include "OtherClass.h" // declaration of OtherClass eTPU
class

// ...

_eTPU_thread ThisClass::ThisThread(_eTPU_matches_enabled)
{

5. eTPU Programming Model

page 38, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

// ...

chan = SomeOtherChan; // change chan
tempLocal1 = OtherClass::_otherClassMember1; // get
OtherClass::_otherClassMember2 = tempLocal2; // set
chan = ThisChan; // return to chan

// ...
}

5.2.6 Channel Groups

Multiple channel groups are really cool! Multiple channel groups can …

· Share channel variables.

· Contain any combination of shared and unshared threads.

· Have separate entry tables.

The I2C code found below is available for download from the ASH WARE website

5. eTPU Programming Model

Compiler Reference Manual, page 39 (C) 2008-2023 ASH WARE, Inc.

5.2.7 Extension Syntax Details

The ETEC syntax extensions have been added into the C99 grammar as follows:

Several productions have been added to type-specifier:

type-specifier:
…
etpu-class-specifier
_eTPU_thread
_eTPU_entry_table
// only to be used in thread declaration / definition
_eTPU_matches_enabled
// only to be used in thread declaration / definition
_eTPU_matches_disabled
// only to be used in thread declaration / definition
_eTPU_preload_low
// only to be used in thread declaration / definition
_eTPU_preload_high

etpu-class-specifier:
// function declarators are
//allowed in the struct-declaration-list
_eTPU_class identifier { struct-declaration-list }

The following production has been added to declarator:

declarator:
…
scope director-declarator

scope:
scope-name ::

scope-name:
identifier // eTPU class name

The following productions have been added to type-qualifier – they can only apply to the
_eTPU_entry_table type:

Type-qualifier:
…
_eTPU_standard_ET

5. eTPU Programming Model

page 40, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

_eTPU_alternate_ET
_eTPU_inputpin_ET
_eTPU_outputpin_ET
_eTPU_cfsr_[0-31]_ET
_eTPU_cfsr_autocfsr_ET

In order to support the public/private feature, two productions have been added to
struct_declaration:

struct_declaration
specifier_qualifier_list struct_declarator_list ';'
'public' ':'
'private' ':'

5.3 eTPU Types

The C basic types map to the eTPU hardware as follows:

Type Size Notes

char, unsigned char 8 bits int8 is a synonym for char

short, unsigned short 16 bits int16 is a synonym for short

int, unsigned int 24 bits int24 is a synonym for int

long int, unsigned long int 32 bits int32 is a synonym for long int; 32-bit
int usage is limited as the eTPU ALU
only operates on 24-bits. Essentially
only load/store operations are
supported. Any use of 32-bit data in an
expression that involves arithmetic
operations outside assignment
(load/store) result in compilation errors.
 Conversion via typecast to
signed/unsigned int32 is supported.

long long int, unsigned long
long int

32 bits treated like long types (see comment
above)

5. eTPU Programming Model

Compiler Reference Manual, page 41 (C) 2008-2023 ASH WARE, Inc.

Type Size Notes

_Bool 1 bit / 8 bits _Bool needs to hold 0 or 1. By default,
it is packed into 1 bit that is part of an
8-bit unit. Global _Bool variables
consume an entire 8-bit unit by
themselves so that external linking
works correctly. Up to 8 channel
frame _Bool variables can packed into
one 8-bit unit.

Arrays of _Bool are treated as special
“bit arrays” and are limited to a length
of 24.

If the –ansi mode is specified, then all
_Bools consume and 8 bits and arrays
of _Bools are similar to arrays of
chars.

_Complex Not supported Not supported

float Not supported Not supported

double Not supported Not supported

The TR 18037 Embedded C extensions defines additional types. ETEC supports these as
follows:

Type Size Notes

no TR18037 defined type

[use 'fract8']

8 bits, s.7 format fract8 is a synonym

no TR18037 defined type 8 bits, 0.8 format unsigned fract8 is a synonym

5. eTPU Programming Model

page 42, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Type Size Notes

[use 'unsigned fract8']

short _Fract 16 bits, s.15
format

fract16 is a synonym for short _Fract

unsigned short _Fract 16 bits, 0.16
format

unsigned fract16 is a synonym for
unsigned short _Fract

_Fract 24 bits, s.23
format

fract24 is a synonym for _Fract

unsigned _Fract 24 bits, 0.24
format

unsigned fract24 is a synonym for
unsigned _Fract

long _Fract 32 bits, s.31
format

fract32 is a synonym for long _Fract.
Note the eTPU ALU/MDU does not
support 32-bit operations so 32-bit fract
operations are relegated to load/store.

unsigned long _Fract 32 bits, 0.32
format

unsigned fract32 is a synonym for
unsigned long _Fract. Note the eTPU
ALU/MDU does not support 32-bit
operations so 32-bit fract operations
are relegated to load/store.

_Accum TBD TBD

5.4 Pointers

Pointers in the eTPU programming model are sized to 24-bits as this is the natural size of
the machine (16-bits would provide sufficient range, however). In the default mode,
pointers to 8-bit types increment in 1-byte steps, 16-bit types increment in 2-byte steps, and

5. eTPU Programming Model

Compiler Reference Manual, page 43 (C) 2008-2023 ASH WARE, Inc.

pointers to 24-bit types increment in 4 bytes steps. Some data packing modes cause all
pointers to basic types to increment in 4 byte steps (see later sections).

All pointers are always kept in global address space. Thus when the address operator is
applied to a channel frame variable the address is computed to be the sum of the channel
frame offset and the CPBA register. The same is true with eTPU2 engine-relative
address space.

_Bool pointer note. Pointers to type _Bool are allowed, and will increment/decrement like
a pointer to an 8-bit. Depending upon _Bool bit packing they may point to any of the 8 bits
in a _Bool unit. It is recommended pointers to type _Bool not be used, unless in ANSI
mode.

5.5 eTPU Data Packing

Because of the unique memory & addressing architecture of the eTPU, memory allocation
of variables and data packing is a much more complex process than in many processor
architectures. The sections below provide details on how global variables are allocated,
channel frame variables, and lastly the aggregate types: structures/unions and arrays. Note
that the array packing option also impacts the behavior of pointer arithmetic; see section
4.3.11 for details.

Most of the packing algorithms are based around the following information:

The natural data sizes of the eTPU memory architecture are 1-byte, 3-byte and 4-byte
(limited 4-byte support, however – just load/store).

Single-byte data is best accessed when placed in a modulo 4 address, unless it does not
share a 3-byte location with any other data.

3-byte data is best accessed when placed in an address that is modulo 4 plus 1.

Packing multiple non-3-byte (< 3) data into 3-byte locations can result in data coherency
issues.

Multiple data packing modes are available in order to help tailor compilation to the
application requirements. Note however, that linking object files compiled under different
modes will result in link errors in many cases. It is highly recommended that all object files
to be linked be compiled with the same data packing settings (the linker has checks for
this).

5. eTPU Programming Model

page 44, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

5.5.1 Global Variables

Because global variables can be declared in one translation unit (source file), and
referenced externally by other translation units, the global variable packing algorithm must
properly account for this in order to have a reasonable linking process. To that end, all
global variables are allocated at natural locations for their size. Thus all 1-byte data
variables are located at modulo 4 addresses, all 3 byte variables at modulo 4 plus 1
addresses, etc. Note that by default global variables are located starting at address 0 of
shared data memory (SDM).

Given these global declarations:

char c1, c2, c3, c4;
int32 s32;
unsigned int16 u16;
int s24;
struct SomeStruct somestruct; // sizeof(SomeStruct) == 8

The memory allocation looks like:

SDM Address MSByt
e

3 LSBytes

0 c1 unused u16

4 c2 s24

8 c3 unused

12 c4

16 s32

20 somestruct

24

Note that the order of declaration does not necessarily match the address order of the
variable locations. This is necessary to avoid significant wasted memory. Also note that

5. eTPU Programming Model

Compiler Reference Manual, page 45 (C) 2008-2023 ASH WARE, Inc.

global variables declared in different translation units may be intermixed in the final linked
memory map depending upon sizes and fitting (link) order.

All implicitly located global variables must fit in the directly accessible portion of shared
data memory (SDM), which on the eTPU is the first 1KB. It is possible to explicitly locate
global variables in any portion of SDM - see Explicitly Locating Global Variables for more
information.

5.5.2 Static Variables in Callable C-Functions

Because these types of C functions are not associated with a particular eTPU Function (or
eTPU Class), any static variables declared within them cannot be assigned to a channel
frame. Thus they are assigned global storage. WARNING: if using a dual eTPU part
(e.g. MPC5554) and running code containing such static variables on BOTH eTPUs, there
is risk of collisions between the two. This must be taken into consideration when using
such a construct; use of semaphore protection may be required depending upon the
intended application.

5.5.3 Explicitly Locating Global Variables

Global variables can be explicitly located in any part of shared data memory (SDM) via the
#pragma locate_symbol preprocessor directive. This capability should be used carefully
and is primarily provided as a way to locate large data items and buffers at the end of
SDM. More detailed information can be found in the Explicit Locating section of the
manual.

5.5.4 eTPU2 Engine Relative Address Space

Variables can specified for allocation in engine-relative address space through use of the
_ENGINE intrinsic address-space type qualifier. Note that automatic variables cannot be
so qualified; variables declared within the scope of a function with the _ENGINE qualifier
must have a storage class of either static or extern. Such variables are allocated with
respect to the user-configured engine base address register.

_ENGINE int24 e_duty_cycle;

On a dual-eTPU2 microcontroller, each engine references unique copies of e_duty_cycle,
assuming the engine-relative base address has been configured properly for each eTPU2.
It is generally recommended that the use of engine-relative variables be avoided as they

5. eTPU Programming Model

page 46, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

complicate the memory layout. An exception is if the user is also selecting the engine
scratchpad programming model.

5.5.5 eTPU Channel Frame Variables

Although channel frames are configured and located at run-time, channel variable
allocation is static to the channel frame base and thus the compilation process. The
mechanism for declaring channel variables differs between Legacy Mode and Enhanced
ETEC Mode, but in either case there are two packing modes for channel variables. The
default mode is called “PACKTIGHT”, and its goal is to use the least memory possible in
the allocation of the channel frame while still providing reasonable performance. The other
mode is called “FASTACCESS”, which places variables at their most natural locations for
efficient processing, even though it can result in more “holes” of unused memory in a
channel frame and thus greater memory usage. In either case, the order of declaration
does not necessarily result in monotonically increasing address offsets.

The default PACKTIGHT mode is described in more detail below; FASTACCESS is
described in an appendix. In either case the algorithm could change slightly over time, OR
the optimizer could re-arrange parameters depending upon level of optimization specified.
Should a user want complete control over the location of channel variables they should use
the explicit locating mechanism described in section 4.3.8 (TBD).

5.5.6 Channel Frame PACKTIGHT Mode

The PACKTIGHT mode packing algorithm first locates every variable of size 3 bytes or
larger. Next variables of size 2 bytes are located, followed by 1-byte variables last.

The set of channel frame variables (likely declared as parameters to an eTPU function in
Legacy Mode):

int x, y; // 24-bit vars
char c1, c2, c3, c4, c5, c6;
short a, b, c; // 16-bit vars
struct SomeStruct somestruct; // sizeof(SomeStruct) == 8

Would get packed like:

SDM Channel Frame
Address Offset

MSByte 3 LSBytes

5. eTPU Programming Model

Compiler Reference Manual, page 47 (C) 2008-2023 ASH WARE, Inc.

0 c1 x

4 c2 y

8 somestruct

12

16 a b

20 c c3 c4

24 c5 c6 unused

Note that tight packing can potentially introduce coherency issues, such as at address
offsets 16 (a, b) and 20 (c3, c4, c). In general, it is best to avoid 16-bit data in eTPU code,
and to avoid 8-bit data ending up in non-optimal locations.

5.5.7 Local/Stack Variables

The ETEC compiler aggressively uses registers for local / temporary variables when
possible, but sometimes such variables need to be stored in memory (e.g. when they have
the & address operator applied to them). ETEC uses a stack-based approach for local
variable overflow. Each stack variable takes up at least one 4-byte data word, and more if
the variable has size greater than 4 bytes, allowing for efficient access to such variables.

5.5.8 Structures & Unions

Like channel frames, structures can be packed in either a “PACKTIGHT” mode or a
“FASTACCESS” mode. For structures, one additional mode exists – “LEGACY”. An
additional variable is ANSI mode, which forces the compiler to allocate members in
monotonically increasing offset order, even though the result can be significant wasted
memory.

5. eTPU Programming Model

page 48, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Unions do not need to be packed, per se, as union members overlay each other. However,
by ANSI/ISO standard every union member is expected to be placed at an offset of 0 from
the union base… but that is not very practical on the eTPU with its unusual addressing
constraints. Take this union for example:

union ExampleUnion
{

int24 s24;
int8 array[4];
int16 s16;
int8 s8;

};

For efficient access, the byte offsets for the union members are best s24 -> 1, array -> 0,
s16 ->2, s8 -> 0. When ANSI mode is enabled, such a union would generate a warning;
the compiler will not (at this time) attempt to generate ANSI-compatible unions.

The data packing of C structures faces some of same issues discussed in channel frame
packing, with an additional twist. Per ANSI/ISO standard, struct member offsets are
expected to be in monotonically increasing order, however, on the eTPU this can result in
impractical data packing and significant memory waste. Once again there are essentially
two data packing flavors: “PACKTIGHT” attempts to minimize the amount of wasted
memory, while structures are laid out in “FASTACCESS” mode to promote efficient
access, potentially at the cost of extra memory usage. The third mode, “LEGACY”, is
only for handling certain cases where existing code is highly dependent upon the packing
done by legacy tools (e.g. a mix of C code and inline assembly). “LEGACY” packing is
very similar to “PACKTIGHT” except that members such is 8-bit variables will pack in
holes only within the last 4 bytes; they will not get packed back at the very first hole
available in the structure.

The default mode packing algorithm, PACKTIGHT, is detailed below. The algorithm may
change over time so it is recommended to always use the auto define data for referencing
structures from the host side. If complete control of data packing is required, the explicit
member locating constructs should be used. Also note that the ANSI mode affects
structure packing by forcing offsets to monotonically increasing.

5. eTPU Programming Model

Compiler Reference Manual, page 49 (C) 2008-2023 ASH WARE, Inc.

5.5.9 Structure PACKTIGHT Mode

This is the default mode of the compiler, and uses the same algorithm as the channel frame
PACKTIGHT pack mode. The one difference occurs on small structs where the
component member’s size totals 3 bytes or less. In this case the struct is packed to fit in
the same slot that basic typed variables of the same size would occupy. Some examples:

struct ByteBitfield
{

int8 a:2;
int8 b:3;
int8 c:3;

}; // sizeof() == 1, gets packed like a char in channel
frame, array, etc.

struct TwoByteStruct
{

char x; // offset 0
char y; // offset 1

}; // sizeof() == 2, gets packed like an int16

struct ThreeByteStruct
{

int16 twobytes; // offset 1
int8 onebyte; // offset 0

}; // sizeof() == 3, gets packed like an int24

The set of struct members:

int x, y; // 24-bit vars
char c1, c2, c3, c4, c5, c6;
short a, b, c; // 16-bit vars
struct SomeStruct somestruct; // sizeof(SomeStruct) == 8

Would get packed like:

SDM Channel Frame
Address Offset

MSByt
e

3 LSBytes

0 c1 x

4 c2 y

5. eTPU Programming Model

page 50, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

8 somestruct

12

16 a b

20 c c3 c4

24 c5 c6 unused

The sizeof() this struct would be 28, including the two padding bytes at the end.

5.5.10 Structure Bit Fields

Bitfields can be made out of int8, int16 or int24 types. Bitfields are allocated starting with
least significant bit of the storage unit, and are never split across storage units by ETEC.

struct BitFieldExample
{

int24 x : 10; // bit offset == 14
int24 y : 10; // bit offset == 4
int24 z : 10; // bit offset == 46

}; // sizeof() == 8

Structures (and thus bitfields) can also be mapped onto a register using the TR18037
named register concept, e.g.

struct tpr_struct {
unsigned int16 TICKS : 10;
unsigned int16 TPR10 : 1;
unsigned int16 HOLD : 1;
unsigned int16 IPH : 1;
unsigned int16 MISSCNT : 2;
unsigned int16 LAST : 1;

} register _TPR tpr_reg;

5. eTPU Programming Model

Compiler Reference Manual, page 51 (C) 2008-2023 ASH WARE, Inc.

5.5.11 Arrays

The packing of arrays is also tied into how pointer arithmetic is handled in the compilation
process. Pointer arithmetic follows the array stride size settings, which are governed by
the array packing mode. Once again, the modes are termed PACKTIGHT (default) and
FASTACCESS. Because this setting affects pointer arithmetic (e.g. in FASTACCESS
mode incrementing a char pointer results in an increment by 4 bytes), care should be taken
in using the non-default setting. Additional PACKTIGHT mode specifics are given below;
further FASTACCESS information is in the appendix.

Note that FASTACCESS and ANSI modes are incompatible and compilation will error.

5.5.12 Array PACKTIGHT Mode

In array PACKTIGHT mode, the array stride size matches the element size with the
exception of 24-bit elements. For element types with a byte size of 3, the array stride size
is 4 bytes, thus leaving an unused byte between each element. These unused bytes are
open to be allocated, except if ANSI mode is enabled. Once an element is greater than 4
bytes in size, the stride size is rounded up to the next multiple of 4 bytes. Once again, the
unused memory between array elements is open for allocation (under default settings).

Some example declarations and the ensuing memory allocations are shown below:

char a[6];
int b[3];
struct FiveByteStruct
{

char f1;
int f2;
char f3;

} c[2];
int24 x;
int8 y;
int16 z;

The resulting memory allocation map would look like (PACKTIGHT channel frame pack
mode):

SDM Channel Frame
Address Offset

MSByt
e

3 LSBytes

5. eTPU Programming Model

page 52, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

0 a[0] a[1] a[2] a[3]

4 a[4] a[5] z

8 y b[0]

12 unused b[1]

16 unused b[2]

20 c[0].f1 c[0].f2

24 c[0].f3 x

28 c[1].f1 c[1].f2

32 c[1].f3 unused

5.5.13 ANSI Mode

ANSI mode (controlled with the –ansi option) has been mentioned several times above.
Essentially it forces ANSI/ISO compatibility wherever possible, particularly in data packing
(structs are always packed in order, for example). Also, _Bools are packed as 8-bit units
rather than as single bits (LSB holds the 0 or 1 value). It is not recommended for use in
production eTPU code as it typically increases memory usage and decreases performance.

5.6 eTPU Hardware Access

Most eTPU hardware access involves the channel hardware or portions of the register set.
 The underlying hardware programming model described here is defined in the ETpu_Hw.h
header file that is part of the ETEC distribution.

5. eTPU Programming Model

Compiler Reference Manual, page 53 (C) 2008-2023 ASH WARE, Inc.

5.6.1 Channel Hardware Access

The channel hardware is represented by a large structure of bitfields. Each field
represents an accessible piece of channel hardware. This structure type has the name
chan_struct and as part of the standard programming model a “variable” of this type
named “channel” is declared. No actual memory space is allocated. Most fields are write-
only, none are readable in the normal sense. Some are test-only, whereas a few are both
writeable and testable.

5.6.2 Baseline eTPU Channel Hardware Programming Model

The eTPU chan_struct is defined as:

typedef struct {

 CIRC int : 2 ; // write-only

 ERWA int : 1 ; // write-only

 ERWB int : 1 ; // write-only

 FLC int : 3 ; // write-only

 IPACA int : 3 ; // write-only

 IPACB int : 3 ; // write-only

 LSR int : 1 ; // writeable, testable, entry condition

 MRLA int : 1 ; // writeable, testable

 MRLB int : 1 ; // writeable, testable

 MRLE int : 1 ; // write-only

 MTD int : 2 ; // write-only

 OPACA int : 3 ; // write-only

 OPACB int : 3 ; // write-only

 PDCM int : 4 ; // write-only

 PIN int : 3 ; // write-only

 TBSA int : 4 ; // write-only

 TBSB int : 4 ; // write-only

 TDL int : 1 ; // write-only

 SMPR int : 2 ; // writeable, testable

 // [setting to -1 triggers semaphore free]

 FLAG0 int : 1 ; // writeable (also via FLC), entry condition

 FLAG1 int : 1 ; // writeable (also via FLC), entry condition

 FM0 int : 1 ; // test-only

 FM1 int : 1 ; // test-only

 PSS int : 1 ; // test-only

 PSTI int : 1 ; // test-only

 PSTO int : 1 ; // test-only

 TDLA int : 1 ; // test-only

5. eTPU Programming Model

page 54, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

 TDLB int : 1 ; // test-only

} chan_struct;

See eTPU documentation for the details on each field.

Note that the ETpu_Std.h header file defines many macros that simplify interaction with
the channel hardware and make it more user-friendly.

5.6.3 eTPU+ Extensions to the Channel Hardware Programming Model

For the eTPU+, chan_struct has been modified and extended to the following:

typedef struct {

 CIRC int : 3 ; // write-only

 ERWA int : 1 ; // write-only

 ERWB int : 1 ; // write-only

 FLC int : 3 ; // write-only

 IPACA int : 3 ; // write-only

 IPACB int : 3 ; // write-only

 LSR int : 1 ; // writeable, testable, entry condition

 MRLA int : 1 ; // writeable, testable

 MRLB int : 1 ; // writeable, testable

 MRLE int : 1 ; // write-only

 MTD int : 2 ; // write-only

 OPACA int : 3 ; // write-only

 OPACB int : 3 ; // write-only

 PDCM int : 4 ; // write-only

 PIN int : 3 ; // write-only

 TBSA int : 4 ; // write-only

 TBSB int : 4 ; // write-only

 TDL int : 1 ; // write-only

 UDCMRWA int : 1 ; // write-only

 SMPR int : 2 ; // writeable, testable

 // [setting to -1 triggers semaphore free]

 FLAG0 int : 1 ; // writeable (also via FLC),

 // testable, entry condition

 FLAG1 int : 1 ; // writeable (also via FLC),

 // testable, entry condition

 FM0 int : 1 ; // test-only

 FM1 int : 1 ; // test-only

 PSS int : 1 ; // test-only

 PSTI int : 1 ; // test-only

5. eTPU Programming Model

Compiler Reference Manual, page 55 (C) 2008-2023 ASH WARE, Inc.

 PSTO int : 1 ; // test-only

 TDLA int : 1 ; // writeable, testable

 TDLB int : 1 ; // writeable, testable

} chan_struct;

The following changes have been made to the eTPU+ chan_struct channel hardware
programming model from the baseline:

New fields are:

 UDCMRWA - Controls writing of erta register to the UDCM register.

 Writing a value of 0 to this field triggers

 the write to the UDCM register.

Modified fields are:

 CIRC - This field has been extended by 1 bit,

 with this new bit treated as inverted.

 The 3-bit CIRC field then has the following meanings:

 Value ~CIRC[2] CIRC[1] CIRC[0] Meaning

 ----- -------- ------- ------- -------

 0 0 0 0 channel interrupt request from

 service channel [same as eTPU]

 1 0 0 1 data transfer request from

 service channel [same as eTPU]

 2 0 1 0 global exception [same as eTPU]

 3 0 1 1 do nothing; don't request

 interrupt [same as eTPU]

 4 1 0 0 channel interrupt request from

 current channel

 5 1 0 1 data transfer request from

 current channel

 6 1 1 0 channel interrupt & data

 transfer request from current

 channel

 7 1 1 1 channel interrupt & data

 transfer request from service

 channel

 FLAG0 - Now testable for conditional jumps

 FLAG1 - Now testable for conditional jumps

 TDLA - Now writeable (clearable) independent of TDLB

 TDLB - Now writeable (clearable) independent of TDLA

5. eTPU Programming Model

page 56, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

5.6.4 eTPU2 Extensions to the Channel Hardware Programming Model

For the eTPU2, chan_struct has been modified and extended to the following:

typedef struct {

 CIRC int : 3 ; // write-only

 ERWA int : 1 ; // write-only

 ERWB int : 1 ; // write-only

 FLC int : 3 ; // write-only

 IPACA int : 3 ; // write-only

 IPACB int : 3 ; // write-only

 LSR int : 1 ; // writeable, testable, entry condition

 MRLA int : 1 ; // writeable, testable

 MRLB int : 1 ; // writeable, testable

 MRLE int : 1 ; // write-only

 MTD int : 2 ; // write-only

 OPACA int : 3 ; // write-only

 OPACB int : 3 ; // write-only

 PDCM int : 4 ; // write-only

 PIN int : 3 ; // write-only

 TBSA int : 4 ; // write-only

 TBSB int : 4 ; // write-only

 TDL int : 1 ; // write-only

 UDCMRWA int : 1 ; // write-only

 SMPR int : 2 ; // writeable, testable

 // [setting to -1 triggers semaphore free]

 FLAG0 int : 1 ; // writeable (also via FLC),

 // testable, entry condition

 FLAG1 int : 1 ; // writeable (also via FLC),

 // testable, entry condition

 FM0 int : 1 ; // test-only

 FM1 int : 1 ; // test-only

 PSS int : 1 ; // test-only

 PSTI int : 1 ; // test-only

 PSTO int : 1 ; // test-only

 TDLA int : 1 ; // writeable, testable

 TDLB int : 1 ; // writeable, testable

 MRLEA int : 1 ; // write-only

 MRLEB int : 1 ; // write-only

} chan_struct;

The following changes have been made to the eTPU2 chan_struct channel hardware
programming model from the eTPU+:

New fields are:

 MRLEA - Now writeable (clearable) independent of MRLEB

 (MRLE still clears both latches)

5. eTPU Programming Model

Compiler Reference Manual, page 57 (C) 2008-2023 ASH WARE, Inc.

 MRLEB - Now writeable (clearable) independent of MRLEA

 (MRLE still clears both latches)

In order to allocate variable storage to eTPU2 engine-relative space, the address-space
type qualifier _Engine should be used.

5.6.5 Register Access

The eTPU has several special-purpose registers for which direct C-level access is
appropriate. In fact all registers can be accessed using the TR18037 named register
feature. The following named register keywords have been implemented in ETEC:

_A
_B
_C
_D
_CHAN
_DIOB
_ERTA
_ERTB
_LINK
_MACH
_MACL
_P
_RAR
_SR
_TCR1
_TCR2
_TPR
_TRR
_CHANBASE
_P_31_24
_P_23_16
_P_15_8
_P_7_0
_P_31_16
_P_15_0
_P_31_0
_CC

These names are qualifiers to the ‘register’ storage class keyword. Typedefs have been
defined for the entire register set, using the names register_<name> in order to be
compatible with many existing applications (see etpu_hw.h). They are as follows:

5. eTPU Programming Model

page 58, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

typedef register _A register_ac;
typedef register _B register_b;
typedef register _C register_c;
typedef register _D register_d;
typedef register _CHAN register_chan;
typedef register _DIOB register_diob;
typedef register _ERTA register_erta;
typedef register _ERTB register_ertb;
typedef register _LINK register_link;
typedef register _MACH register_mach;
typedef register _MACL register_macl;
typedef register _P register_p;
typedef register _RAR register_rar;
typedef register _SR register_sr;
typedef register _TCR1 register_tcr1;
typedef register _TCR2 register_tcr2;
typedef register _TPR register_tpr;
typedef register _TRR register_trr;
typedef register _CHANBASE register_chan_base;
typedef register _P_31_24 register_p31_24;
typedef register _P_23_16 register_p23_16;
typedef register _P_15_8 register_p15_8;
typedef register _P_7_0 register_p7_0;
typedef register _P_31_16 register_p31_16;
typedef register _P_15_0 register_p15_0;
typedef register _P_31_0 register_p31_0;
typedef register _CC register_cc;

register_cc (register _CC) does not map to an actual physical register that can be
read/written by the eTPU. The register_cc type provides direct access to the ALU and
MDU condition codes. This is discussed further in the next section.

The register_chan_base (register _CHANBASE) type provides a way to specify a
channel relative pointer.

For the most part, the variables of the general purpose register types should not need to be
declared (e.g. a, p, diob, b, c, d, sr, macl, mach). In some cases variables of these registers
act as aliases only – they do not allocate them for the sole use of the variable (e.g. p).
However, registers a, b, c, d, diob and sr can be allocated directly by the user, locking out
the compiler from using them (except stack access can override b & diob). This capability
should be used very carefully as it can prevent the compiler from generating code resulting
in compilation errors.

5. eTPU Programming Model

Compiler Reference Manual, page 59 (C) 2008-2023 ASH WARE, Inc.

An important difference between named register variables declared in a function scope,
and local variables which the compiler assigns to registers, occurs on function calls.
Named register variables are not saved/restored to prevent overwriting by the called
function; instead they are treated as if they have a global scope. True local variables, on
the other hand, are saved/restored if necessary when function calls are made.

The special purpose registers need to frequently be directly accessed, and are therefore
are declared in the ETpu_Hw.h header file as follows:

register_chan chan ; // 5 bits
register_erta erta ; // 24 bits
register_erta ertA ; // 24 bits
register_ertb ertb ; // 24 bits
register_ertb ertB ; // 24 bits
register_tcr1 tcr1 ; // 24 bits
register_tcr2 tcr2 ; // 24 bits
register_tpr tpr ; // 16 bits
register_trr trr ; // 24 bits
register_link link ; // 8 bits

5.6.6 Using Special Registers for General Purpose

There are 4 special purpose registers that can potentially be designated for general purpose
instead in order to allow the compiler to generate more efficient code. The registers are
the tooth program register (TPR), tick rate register (TRR), TCR1 counter register and the
TCR2 counter register. When the angle mode hardware is not enabled, the TPR and TRR
registers are available for general purpose use. The TPR register is only 16 bits, so the
compiler will not use it as a temporary for expression processing, but will use it to hold local
variables of size 16 bits or less. The TRR register, when designated for general purpose,
can be used as a temporary or hold a local variable. Many non-engine control applications
do not use the TCR2 counter, and it can be configured as frozen such that it can then be
used by eTPU code for any general purpose. Last, in some unusual applications, TCR1 is
not used (e.g. if the eTPU is simply used as a co-processor to offload the host from some
processing) - it too can be frozen to allow for general use. These special registers are
designated as general purpose via the compiler command line option "-
setRegGP=<REG[,REG]>". Note that all object files linked must have been compiled with
matching settings or the link will error and fail.

5. eTPU Programming Model

page 60, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

5.6.7 ALU Condition Code Access

Although best to avoid as a general coding practice, the ALU and MDU condition codes
can be accessed (tested) directly via _CC (register_cc). The comment in ETpu_Hw.h
best describes this feature:

// register_cc type is syntactically accessed like a struct (bitfield)

// of the following declaration:

// typedef struct {

// unsigned int V : 1; // ALU overflow condition code

// unsigned int N : 1; // ALU negative condition code

// unsigned int C : 1; // ALU carry condition code

// unsigned int Z : 1; // ALU zero condition code

// unsigned int MV : 1; // MDU overflow condition code

// unsigned int MN : 1; // MDU negative condition code

// unsigned int MC : 1; // MDU carry condition code

// unsigned int MZ : 1; // MDU zero condition code

// unsigned int MB : 1; // MDU busy flag

// unsigned int SMCLK : 1; // semaphore locked flag

// } register_cc;

5.6.8 Built-in / Intrinsic Functions

This section covers available built-in/library/intrinsic functions available in ETEC.

5.6.8.1 Compatibility Functions

The following built-in functions provide user control of eTPU hardware settings & features,
but generate no code; they provide compatibility with existing solutions.

match_enable() - when called out in a thread, it causes matches to be enabled during the
thread by setting the match enable bit in the entry table for all vectors pointed at the thread.
 Note that threads default to matches enabled. Not needed in ETEC enhanced mode.

match_disable() - when called out in a thread, it causes matches to be disabled during the
thread by setting the match enable bit in the entry table for all vectors pointed at the thread.
 Note that threads default to matches enabled. Not needed in ETEC enhanced mode.

preload_p01() - when called out in an eTPU-C thread, specifies that the low preload entry
option is to be used - this means p gets loaded with the data at channel frame address 0 (32
bits), and diob gets loaded with the data at channel frame address 5 (24 bits). The default
is to let the tools decide which preload results in the best code (recommended). In ETEC

5. eTPU Programming Model

Compiler Reference Manual, page 61 (C) 2008-2023 ASH WARE, Inc.

mode, the preload is specified by specifying a second parameter to the eTPU thread,
"_eTPU_preload_low" or "_eTPU_preload_high".

preload_p23() - when called out in an eTPU-C thread, specifies that the high preload entry
option is to be used - this means p gets loaded with the data at channel frame address 8 (32
bits), and diob gets loaded with the data at channel frame address 13 (24 bits). The default
is to let the tools decide which preload results in the best code (recommended). In ETEC
mode, the preload is specified by specifying a second parameter to the eTPU thread,
"_eTPU_preload_low" or "_eTPU_preload_high".

Functions that affect code generation:

read_mer() – triggers the contents of the A and B match registers to be transferred into
the erta/ertb registers.

NOP() – injects a no-op opcode into the code stream that does not get optimized out.

5.6.8.2 ETEC Coherency & Synchronization Control

These functions allow users to clearly state their needs in terms of coherency, ordering,
etc.

_AtomicBegin(), _AtomicEnd() - code located between a pair of these calls will be packed
into a single opcode; if this cannot be done a compilation error results. Another side-effect
of these atomic regions is that the optimizer will not optimize the code out, or move any of
the sub-instructions apart from each other. Other sub-instructions may be optimized into
the atomic opcode. See the Atomicity Control section for a matching pragma definition.

Example 1, Coherently clear any old match and schedule a new match,

// Coherently clear any old match and schedule a new match
_AtomicBegin();
WriteErtAToMatchAAndEnable();
ClearMatchAEvent();
_AtomicEnd();

Example 2, the provided macros for working around the T2/T4 (see provided standard file
'etpu_std.h'):

/* eTPU2 unambiguous match set when in T2/T4 timing mode */
#define EnableMatchA_T2T4() { _AtomicBegin();
channel.ERWA = 0; channel.MRLEA = 0; _AtomicEnd(); }

5. eTPU Programming Model

page 62, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

#define EnableMatchB_T2T4() { _AtomicBegin();
channel.ERWB = 0; channel.MRLEB = 0; _AtomicEnd(); }

_SynchBoundaryAll() – disables any code from moving across the boundary during the
optimization process. See the Optimization Boundary (Synchronization) Control section for
a matching pragma definition.

Example 3, enforcing order of operations when setting a lock.

dataLock = 1;
_SynchBoundaryAll();
*ptr++ = SomeVal;
_SynchBoundaryAll();
dataLock = 0;

5.6.8.3 TR18037 Fixed-point Library Support

_Fract support includes a portion of the fixed-point library specified in TR 18037, as well as
some extensions. Supported functions are:

int mulir(int, _Fract) – under ordinary arithmetic conversion rules the result of a
multiplication of an integer and a _Fract is a _Fract. There are applications where instead
the desired result is the integer portion of the result; this library function provides that
capability.

unsigned int muliur(unsigned int, unsigned _Fract) – unsigned version.

Other versions to support 8 and 16 bit int-fract multiplication:

int8 muli8r8(int8, fract8);

unsigned int8 muli8ur8(unsigned int8, unsigned fract8);

int16 muli16r16(int16, fract16);

unsigned int16 muli16ur16(unsigned int16, unsigned fract16);

int24 muli24r8(int24, fract8);

unsigned int24 muli24ur8(unsigned int24, unsigned fract8);

int24 muli24r16(int24, fract16);

unsigned int24 muli24ur16(unsigned int24, unsigned fract16);

5. eTPU Programming Model

Compiler Reference Manual, page 63 (C) 2008-2023 ASH WARE, Inc.

5.6.8.4 ALU/MDU Intrinsics

The eTPU has a number of hardware features that are not directly accessible via standard
C syntax. The intrinsics defined here provide C function-like access to these capabilities.
The eTPU Reference Manual should be consulted for additional details, particularly as
related to condition code calculations.

5.6.8.4.1 Rotate Right Support

// Rotate right by 1 bit the lower 8 bits
// (result[6:0] = v[7:1]; result[7] = v[0];
// result[23:8] = v[23:8];)
// Condition code flags are sampled on 8 bits.
int24 __rotate_right_1_b7_0(int24 v);
// Rotate right by 1 bit the lower 16 bits
// (result[14:0] = v[15:1]; result[15] = v[0];
// result[23:16] = v[23:16];)
// Condition code flags are sampled on 16 bits.
int24 __rotate_right_1_b15_0(int24 v);
// Rotate right by 1 bit all 24 bits
// (result[22:0] = v[23:1]; result[23] = v[0];)
// Condition code flags are sampled on 24 bits.
int24 __rotate_right_1(int24 v);
// Rotate the 24-bit value v
// to the right by 2^(bitexp+1) bits,
// where bitexp can be
// 0, 1, 2 or 3.
// Condition code flags are sampled
// per _sfXX extension, if used.
// See eTPU reference manual for details
// on condition code computation
// with multi-bit rotate.
int24 __rotate_right_2n(int24 v, int24 bitexp);
int24 __rotate_right_2n_sf8(int24 v, int24 bitexp);
int24 __rotate_right_2n_sf16(int24 v, int24 bitexp);
int24 __rotate_right_2n_sf24(int24 v, int24 bitexp);

5.6.8.4.2 Absolute Value Support

// Compute the absolute value of v.
// Condition code flags are sampled
// per _sfXX extension, if used.
// See eTPU reference manual for details

5. eTPU Programming Model

page 64, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

// on condition code computation with absolute value.
int24 __abs(int24 v);
int24 __abs_sf8(int24 v);
int24 __abs_sf16(int24 v);
int24 __abs_sf24(int24 v);

5.6.8.4.3 Shift Register Support

// Shift the SR register right one bit.
void __shift_right_SR();
// Shift v right by one bit and return it.
// Register SR also gets shifted right by one
// bit and SR bit 23 gets the bit shifted out of v.
// Condition code flags are sampled
// per _sfXX extension, if used.
// See eTPU reference manual for details
// on condition code computation with add/shift right
int24 __shift_right_SR48(int24 v);
int24 __shift_right_SR48_sf8(int24 v);
int24 __shift_right_SR48_sf16(int24 v);
int24 __shift_right_SR48_sf24(int24 v);

5.6.8.4.4 Shift By 2(N+1) Support

// Shift 24-bit value v left or right by 2^(bitexp+1) bits,

// where bitexp can be

// 0, 1, 2 or 3.

// Condition code flags are sampled

// per _sfXX extension, if used.

// See eTPU reference manual for details

// on condition code computation with multi-bit rotate.

int24 __shift_left_2n(int24 v, int24 bitexp);

int24 __shift_left_2n_sf8(int24 v, int24 bitexp);

int24 __shift_left_2n_sf16(int24 v, int24 bitexp);

int24 __shift_left_2n_sf24(int24 v, int24 bitexp);

int24 __shift_right_2n(int24 v, int24 bitexp);

int24 __shift_right_2n_sf8(int24 v, int24 bitexp);

int24 __shift_right_2n_sf16(int24 v, int24 bitexp);

int24 __shift_right_2n_sf24(int24 v, int24 bitexp);

5. eTPU Programming Model

Compiler Reference Manual, page 65 (C) 2008-2023 ASH WARE, Inc.

5.6.8.4.5 Set/Clear Bit Support

// Set or clear (bitval==0 -> clear, bitval==1 -> set)

// the bit specified by bitnum in v.

// If revbitnum is not equal to 0,

// then the updated bit is actually 31 - bitnum.

// Condition code flags are sampled per _sfXX extension,

// if used.

// See eTPU reference manual for details on condition code

// computation with bit set/clear.

int24 __bit_n_update(int24 v, int24 bitnum,

 int bitval, int revbitnum);

int24 __bit_n_update_sf8(int24 v, int24 bitnum,

 int bitval, int revbitnum);

int24 __bit_n_update_sf16(int24 v, int24 bitnum,

 int bitval, int revbitnum);

int24 __bit_n_update_sf24(int24 v, int24 bitnum,

 int bitval, int revbitnum);

5.6.8.4.6 Exchange Bit Support

// Exchange the bit in v specified by the bitnum

// with C condition code flag.

// If revbitnum is not equal to 0, then the updated bit

// is actually 31 - bitnum rather then bitnum.

// Condition code flags are sampled per _sfXX extension,

// if used.

// See eTPU reference manual for details on condition code

// computation with bit exchange.

int24 __bit_n_exchange_C(int24 v, int24 bitnum,

 int revbitnum);

int24 __bit_n_exchange_C_sf8(int24 v, int24 bitnum,

 int revbitnum);

int24 __bit_n_exchange_C_sf16(int24 v, int24 bitnum,

 int revbitnum);

int24 __bit_n_exchange_C_sf24(int24 v, int24 bitnum,

 int revbitnum);

5.6.8.4.7 MAC/MDU Support

All MAC/MDU intrinsic functions include a spin-while-busy loop after the operation is
begun. The optimizer will attempt to fill the pipeline with non-dependent opcodes and
eliminate the spin loop.

5. eTPU Programming Model

page 66, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

// Signed multiplication, with second argument 8, 16, or 24 bit

// {mach,macl} = x * y

void __mults8(int24 x, int8 y);

void __mults16(int24 x, int16 y);

void __mults24(int24 x, int24 y);

// Unsigned mutliplication, with second argument 8, 16, or 24 bit

void __multu8(unsigned int24 x, unsigned int8 y);

void __multu16(unsigned int24 x, unsigned int16 y);

void __multu24(unsigned int24 x, unsigned int24 y);

// Signed 24-bit multiply-accumulate.

// {mach,macl} += x * y

void __macs(int24 x, int24 y);

// Unsigned 24-bit multiply-accumulate.

// {mach,macl} += x * y

void __macu(unsigned int24 x, unsigned int24 y);

// Multiply signed value x and unsigned 8-bit fractional value f. The

mantissa

// portion of the result ends up in mach, and the fractional portion ends up

in macl.

void __fmults8(int24 x, unsigned fract8 f);

// Multiply signed value x and unsigned 16-bit fractional value f. The

mantissa

// portion of the result ends up in mach, and the fractional portion ends up

in macl.

void __fmults16(int24 x, unsigned fract16 f);

// Multiply unsigned value x and unsigned 8-bit fractional value f. The

mantissa

// portion of the result ends up in mach, and the fractional portion ends up

in macl.

void __fmultu8(unsigned int24 x, unsigned fract8 f);

// Multiply unsigned value x and unsigned 16-bit fractional value f. The

mantissa

// portion of the result ends up in mach, and the fractional portion ends up

in macl.

void __fmultu16(unsigned int24 x, unsigned fract16 f);

// Unsigned division, 24 bit / 8,16,24 bit

// {macl} = x / y, {mach} = remainder

void __divu8(unsigned int24 x, unsigned int8 y);

void __divu16(unsigned int24 x, unsigned int16 y);

void __divu24(unsigned int24 x, unsigned int24 y);

5.7 Code Fragments

Given the thread-based nature of eTPU execution, ETEC provides the concept of “no-
return” function calls – such functions are called “fragments” and are specified by using
the special return type “_eTPU_fragment”. Give the no-return functionality,
_eTPU_fragment is essentially equivalent to the void type.

5. eTPU Programming Model

Compiler Reference Manual, page 67 (C) 2008-2023 ASH WARE, Inc.

When a call to a fragment is made, the compiler generates a jump opcode rather than a call
opcode since no return occurs. Additionally, no state such as registers, stack frame, etc. is
saved since execution cannot return to the caller, thereby saving unnecessary overhead.
Fragments support passing parameters just like normal functions, and the calling
conventions are the same except for the state save (on both caller and callee sides). Note
that on the fragment (callee) side, there is also reduced state saving – non-volatile registers
do not need to be saved, nor does the return address register. Internally, fragments work
just like any other C function – they can make calls, even to other fragments. A simple
example of using common initialization code is show below.

_eTPU_thread PPA::INIT_TCR1(_eTPU_matches_disabled)
{

/* set up time base for TCR1*/
ActionUnitA(MatchTCR1, CaptureTCR1, GreaterEqual);
CommonInit(); // no return from this call

}

_eTPU_thread PPA::INIT_TCR2(_eTPU_matches_disabled)
{

/* set up time base for TCR2 */
ActionUnitA(MatchTCR2, CaptureTCR2, GreaterEqual);
CommonInit(); // no return from this call

}

_eTPU_fragment PPA::CommonInit()
{

DisableOutputBuffer(); /* required for Puma */

// Needed so ouptut pin does not get toggled
OnMatchA(NoChange);

// Needed so ouptut pin does not get toggled
OnMatchB(NoChange);

ClearAllLatches();
Measurement = Inactive;

// Enable service request when first edge occurs
SingleMatchSingleTransition();

// ...
}

5. eTPU Programming Model

page 68, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Note that the compiler will attempt to detect stranded code that follows a call to a
fragment, and issue a warning if it finds such code.

The ETEC compiler supports an alternative syntax for fragment declarations. The
"_eTPU_fragment" keyword can be used interchangeably with "void
__attribute__((noreturn))", which is a GNU-based syntax.

5.7.1 _eTPU_thread Calls

ETEC supports “calls” to _eTPU_thread functions – these act like calls to fragments in
that they execute a jump rather than call. Although this is functional, in most cases it is
recommended that such common code be placed in an _eTPU_fragment instead and called
from two locations, rather than directly calling an _eTPU_thread. Threads
(_eTPU_thread functions) may contain additional prologue code that the caller does not
actually want to execute, although such code does not cause invalid behavior.

5.8 State Switch Constructs

ETEC provides a specialized version of the C switch statement that provides reduced
thread length operation and in most cases reduced code size, at the cost of user control
over state values and some of the robustness features of the standard C switch statement.
 The tradeoffs should be carefully considered before choosing to use this feature. This
‘state switch’, as it is referred to, makes efficient use of the eTPU architecture’s dispatch
instruction. The dispatch instruction allows a jump (or call) to the instruction at the address
of the current program counter, plus a variable displacement which can be up to 255
instructions/opcodes. This feature is activated through two new keywords:

// similar to “switch” keyword in C syntax
_eTPU_state_switch
// similar to “enum” keyword in C syntax
_eTPU_state_switch_enum

The sections below provide the details on this feature.

5. eTPU Programming Model

Compiler Reference Manual, page 69 (C) 2008-2023 ASH WARE, Inc.

5.8.1 State Enumeration

A state enumeration must be declared as only expressions of this type may be used in state
switches. A state enumeration is like a regular ‘C’ enum, with a few of exceptions.

· A state enumeration is denoted with the ‘_eTPU_state_switch_enum’ rather than
‘enum’ keyword.

· The enumerators in a state enumeration cannot be assigned values. Code such
“_eTPU_state_switch_enum CrankState { STALL = 5, };” will result in a compile
error.

· The enumerator values assigned by the compiler/linker may not match the ANSI
standard for C code, wherein they start at 0, and increment by 1 with each
successive enumerator. Rather, the compiler/linker assigns values such that the
dispatch instruction used for the matching _eTPU_state_switch works correctly.

· _eTPU_state_switch_enum tag types (or typedef thereof) cannot be used in
typecasts. This is to prevent potentially dangerous code.

· Variables declared with an _eTPU_state_switch_enum tag type are always
allocated as a single unsigned byte.

· State enumeration literals must be unique among all the enumeration literals (state
or regular) of all the code that is to be linked together. This limitation is due to the
fact that the enumeration literals only get computed at link time and if the literals
are not uniquely named there can be clashes.

An example of a state enumeration type declaration is as follows:

_eTPU_state_switch_enum CrankStates
{
 CRANK_SEEK,
 CRANK_BLANK_TIME,
 CRANK_BLANK_TEETH,
 CRANK_FIRST_EDGE,
 CRANK_SECOND_EDGE,
 CRANK_TEST_POSSIBLE_GAP,
 CRANK_VERIFY_GAP,
 CRANK_GAP_VERIFIED,
 CRANK_COUNTING,
 CRANK_TOOTH_BEFORE_GAP,
 CRANK_TOOTH_AFTER_GAP,

5. eTPU Programming Model

page 70, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

 CRANK_TOOTH_AFTER_GAP_NOT_HRM
};

5.8.2 State Variable

A “state” variable must be declared with a state enumeration type. Variables of this
special tag type are 1 byte in size, and unlike variables of the standard enum tag type, strict
type checking is performed by the compiler. Such a state variable cannot be assigned to a
constant integer value, for example, or assigned the value of another variable of integer
type. It can only be assigned to one of the _eTPU_state_switch_enum enumerators, or to
another variable of exactly the same type.

// declare state variable
_eTPU_state_switch_enum CrankStates Crank_State;

// compilation error – must assign to an enumerator
Crank_State = 0;

// valid
Crank_State = CRANK_SEEK;

5.8.3 State Switch

For each _eTPU_state_switch_enum tag type there can be up to one
_eTPU_state_switch statement. It is the contents of this statement that determine the
state (enumerator) values. The linker issues an error if it finds more than one
_eTPU_state_switch associated with the same _eTPU_state_switch_enum tag type.
Statements denoted with _eTPU_state_switch are very much like the standard ‘C’ switch
statement, with a few exceptions:

· The controlling expression in an _eTPU_state_switch statement must have an
_eTPU_state_switch_enum tag type.

· No ‘default’ case is allowed in an _eTPU_state_switch.

· All enumerators in the _eTPU_state_switch_enum tag type used in the controlling
expression must be associated with a case, even if it does nothing but ‘break’.

· When multiple cases are associated with the same piece of code, the compiler
implicitly inserts a NOP() between them – it must do this to ensure that each
enumerator is the _eTPU_state_switch_enum tag type gets a unique value.

5. eTPU Programming Model

Compiler Reference Manual, page 71 (C) 2008-2023 ASH WARE, Inc.

· No range or validity check is done on the controlling expression value.
Programmers using this feature MUST ensure that the state variable does not get
assigned an invalid value. The compiler assists with this via its strict type checking
on _eTPU_state_switch_enum tag types.

Note that a state variable, although it can only be used in a single _eTPU_state_switch
statement, can be used other places in a normal ‘C’ switch statement.

An example of a state switch, shown in a listing file, is shown below (some code removed
for brevity). Note that every enumerator is covered by a case, and note the NOPs inserted
where multiple cases fall through to the same code.

 _eTPU_state_switch (Crank_State)

0CF4: 0xCFEFF987 ram p_31_24 = *((channel int8 *) 0x1C);;

0CF8: 0xFFDFDEF9 seq goto ProgramCounter + p_31_24, flush;;

 {

 case CRANK_BLANK_TIME:

 // timeout is expected

 Blank_Time_Expired_Flag = 1;

0CFC: 0x000FA439 alu p_31_24 = ((u24) 0)+0x1;;

0D00: 0xCFFFF986 ram *((channel int8 *) 0x18) = p_31_24;;

 // Timeout time

 ertb = Tooth_Time + Blank_Time;

0D04: 0xBFEC2F87 alu ertA = tcr1+0x0;

 : ram diob = *((channel int24 *) 0x1D);;

0D08: 0x1F783FFF alu ertB = p+diob;;

 // schedule an immediate match to open the window

 erta = tcr1;

 ClearMatchALatch();

0D0C: 0x58FFFE1F chan clear MatchRecognitionLatchA, matchA = ertA,

 set MatchEnableLatchA,

 clear MatchRecognitionLatchB,

 matchB = ertB, set MatchEnableLatchB,

 : detectA = off;;

 ClearMatchBLatch();

 WriteErtAToMatchAAndEnable();

 WriteErtBToMatchBAndEnable();

 // don't detect transition during blank time

 OnTransA (NoDetect);

 tcr2 = 0;

0D10: 0x0FFF9FFF alu tcr2 = ((u24) 0)+0x0;

 : seq end;;

 break;

 case CRANK_BLANK_TEETH:

 // schedule an immediate match

 // to open the window

 erta = tcr1;

5. eTPU Programming Model

page 72, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

 // clear MatchB

 // & don't set new match value

 ClearMatchBLatch ();

0D14: 0xDFEFD984 ram p_31_24 = *((channel int8 *) 0x10);

 : chan clear MatchRecognitionLatchB;;

 // so it always enabled window is fully open

 // MatchA is left pending;

 // in this channel mode

 // it doesn't request service

 Blank_Tooth_Count--;

0D18: 0x1EF2AFFF alu p_31_24 = p_31_24-0x0-1;;

0D1C: 0xCFFFF984 ram *((channel int8 *) 0x10) = p_31_24;;

// < REMOVED>

 case CRANK_FIRST_EDGE:

 // Timeout time

 ertb = Tooth_Time + First_Tooth_Timeout;

0D34: 0xBFEF9F89 alu tcr2 = ((u24) 0)+0x0;

 : ram diob = *((channel int24 *) 0x25);;

0D38: 0x1F783FFF alu ertB = p+diob;;

 WriteErtBToMatchBAndEnable();

0D3C: 0x7FFFFF9F chan clear MatchRecognitionLatchB, matchB = ertB,

 set MatchEnableLatchB;;

 ClearMatchBLatch();

 Crank_State = CRANK_SECOND_EDGE;

0D40: 0x005FA439 alu p_31_24 = ((u24) 0)+0x15;;

0D44: 0xCFFFF987 ram *((channel int8 *) 0x1C) = p_31_24;;

 tcr2 = 0;

// <REMOVED>

 case CRANK_SECOND_EDGE:

 Tooth_Period_A = Tooth_Time - Last_Tooth_Time;

0D50: 0xBFEF9F95 alu tcr2 = ((u24) 0)+0x0;

 : ram diob = *((channel int24 *) 0x55);;

0D54: 0xBC787B91 alu p = p-diob;

 : ram *((channel int24 *) 0x45) = p_23_0;;

 Crank_State = CRANK_TEST_POSSIBLE_GAP;

0D58: 0x009FA459 alu p_31_24 = ((u24) 0)+0x26;;

0D5C: 0xCFFFF987 ram *((channel int8 *) 0x1C) = p_31_24;;

 tcr2 = 0;

// <REMOVED>

 case CRANK_TEST_POSSIBLE_GAP:

 Tooth_Period_B = Tooth_Time - Last_Tooth_Time;

0D94: 0xBFEFFF95 ram diob = *((channel int24 *) 0x55);;

0D98: 0xBC787B93 alu p = p-diob;

 : ram *((channel int24 *) 0x4D) = p_23_0;;

5. eTPU Programming Model

Compiler Reference Manual, page 73 (C) 2008-2023 ASH WARE, Inc.

// <REMOVED>

 case CRANK_VERIFY_GAP:

 Tooth_Period_A = Tooth_Time - Last_Tooth_Time;

0E4C: 0xBFEFFF95 ram diob = *((channel int24 *) 0x55);;

0E50: 0xBC787B91 alu p = p-diob;

 : ram *((channel int24 *) 0x45) = p_23_0;;

 // Gap is verified

 if (muliur(Tooth_Period_B, Gap_Ratio)

 > Tooth_Period_A)

0E54: 0xBFEFFB93 ram p_23_0 = *((channel int24 *) 0x4D);;

0E58: 0xBFEFFF86 ram diob = *((channel int24 *) 0x19);;

0E5C: 0x2F78FFE9 alu mac = p * ((u24) diob);;

0E60: 0xF3587307 seq if MacBusy==true then goto 0xE60, flush;;

0E64: 0xBFEFFB91 ram p_23_0 = *((channel int24 *) 0x45);;

0E68: 0x1C17FEEF alu nil = mach-p, SampleFlags;;

0E6C: 0xF4D87607 seq if LowerOrEqual==true then goto 0xEC0, flush;;

 {

 Crank_State = CRANK_GAP_VERIFIED;

0E70: 0x01FFA459 alu p_31_24 = ((u24) 0)+0x7E;;

0E74: 0xCFFFF987 ram *((channel int8 *) 0x1C) = p_31_24;;

// <REMOVED>

 case CRANK_GAP_VERIFIED:

 Tooth_Count++;

0EF4: 0xCFEB3980 ram p_31_24 = *((channel int8 *) 0x0);

 : chan set ChannelFlag1, set SvcdChan ChannelIntr;;

0EF8: 0x0002A439 alu p_31_24 = p_31_24+0x1;;

0EFC: 0xCFFFF980 ram *((channel int8 *) 0x0) = p_31_24;;

// <REMOVED>

 case CRANK_SEEK:

0F40: 0x4FFFFFFF nop;;

 case CRANK_COUNTING:

0F44: 0x4FFFFFFF nop;;

 case CRANK_TOOTH_BEFORE_GAP:

0F48: 0x4FFFFFFF nop;;

 case CRANK_TOOTH_AFTER_GAP:

0F4C: 0x4FFFFFFF nop;;

 case CRANK_TOOTH_AFTER_GAP_NOT_HRM:

 Error_Status = Error_Status

 | CRANK_INTERNAL_ERROR;

0F50: 0xCFEFF982 ram p_31_24 = *((channel int8 *) 0x8);;

0F54: 0x0C42AB82 alu p_31_24 = p_31_24 | 0x10;;

0F58: 0xC7FFF982 ram *((channel int8 *) 0x8) = p_31_24;

 : seq end;;

5. eTPU Programming Model

page 74, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

 break;

 }

5.8.4 Additional Notes

The compiler/linker calculated state enumeration values are output through all the
supported host interface mechanisms. For example, given the examples above, this is what
is output for the CrankStates state enumeration:

// defines for type _eTPU_state_switch_enum CrankStates

// size of a tag type

// value (sizeof) = _CHAN_TAG_TYPE_SIZE_CrankStates_

#define _CHAN_TAG_TYPE_SIZE_CrankStates_ 0x01

// values of the literals of an enum type

// value = _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_SEEK_

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_SEEK_ 0x91

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_BLANK_TIME_ 0x00

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_BLANK_TEETH_ 0x06

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_FIRST_EDGE_ 0x0E

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_SECOND_EDGE_ 0x15

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_TEST_POSSIBLE_GAP_ 0x26

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_VERIFY_GAP_ 0x54

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_GAP_VERIFIED_ 0x7E

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_COUNTING_ 0x92

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_TOOTH_BEFORE_GAP_ 0x93

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_TOOTH_AFTER_GAP_ 0x94

#define _CHAN_ENUM_LITERAL_Crank_CrankStates_CRANK_TOOTH_AFTER_GAP_NOT_HRM_

0x95

If the code that makes up the state switch exceeds 255 opcodes, there may be some cases
that still require the dispatch jump plus a regular jump. Such cases can be minimized but
putting the most code-intensive case(s) at the end of the state switch.

The user can easily convert ETEC-specific state switch code to ANSI-compliant code by
utilizing macros such as:

#define _eTPU_state_switch switch
#define _eTPU_state_switch_enum enum

5.9 eTPU Constant Tables

The eTPU instruction set provides a fairly efficient way to create 24-bit constant lookup
tables in the code. These special lookup tables are not any more efficient than the use of a
regular C arrays for lookup tables, and in fact access is almost always slightly slower.
However, they do offer one key difference that can be advantageous in some cases - the

5. eTPU Programming Model

Compiler Reference Manual, page 75 (C) 2008-2023 ASH WARE, Inc.

constant table is stored in the code memory rather than the data memory. If system being
programmed is out of data memory (SDM), but is not using all of code memory (SCM),
then the use of this constant lookup table construct can be very helpful. Below, the syntax
and usage is described. For much more detail on eTPU constant lookup tables, including
how to perform run-time data calibration, please see the Assembler Reference Manual
Constant Lookup Table section.

In C code, constant tables are defined as arrays of the special type
'_eTPU_constant_table'. The arrays can be multi-dimensional. Typically an initializer
should be used to load the constant table. Any uninitialized array elements are given a
value of 0. When a 24-bit value is retrieved from the table, it is treated as a signed integer
by default. Type casting can be used to change to unsigned, _Fract (fractional), or
whatever type is desired.

// constant table definition (global)
_eTPU_constant_table sin_table[64] = { 0x000000,
0x034517, ... };

// external declaration for reference from other files
extern _eTPU_constant_table sin_table[64];

// multi-dimensional
_eTPU_constant_table switch_table[2][2] = { { 3, 2, }, { 1,
0 } };

// table static to a scope
static _eTPU_constant_table coef_table[8] = { 0x0,
0x200, ... };

Syntactically, accessing elements of the table is handled just like normal array element
access.

int coef = coef_table[index]; // get the coefficient
specified by index
fract24 sin_val = (fract24)sin_table[angle];

Because constant tables exist in code memory which is not writeable and utilize a special
eTPU microcode instruction, there are several limitations associated with them:

- tables can contain at most 256 elements

- because the table lives in immutable, inaccessible code memory, the only operation that
can be performed on the table symbol is a full array de-reference. No conversion to a
pointer or other operations.

5. eTPU Programming Model

page 76, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

- tables can only be defined at global scope, or static to a function scope

5.10 ETEC Local Variable Model & Calling Conventions

When local variables are declared & used, they are allocated to available registers if
possible, but the resources are limited. The same situation arises when function calls with
parameters are made – some parameters may be passed by registers but again it is a very
limited resource on the eTPU. Thus local variables, parameters, and other data that needs
to be saved/restored on function calls must be kept somewhere in memory. The default
model that ETEC uses for this is a stack that builds upwards in memory as function call-
tree depth increases.

The stack approach allows any C code to compile and run without fail (within memory
limits), but in some cases may not generate as optimal code as that compiled using a
“scratchpad” model. ETEC supports “–globalScratchpad” “-engineScratchpad” options to
enable compilation with this model. When scratchpad is enabled and data overflows
registers, rather than go onto a dynamic stack, it is allocated to static addresses in global
memory (engine relative available on the eTPU2). While generally less efficient with
regards to memory usage than a stack solution, the eTPU instruction set is such that the
resulting code tends be slightly more efficient in size and performance. The greatest
weakness of this solution is that it can lead to a very insidious bug in the original eTPU (or
whenever global scratchpad is used) – when the same function runs simultaneously on both
eTPUs of a dual-eTPU engine micro, and the function uses scratchpad memory, there can
be corruption/coherency issues as both eTPUs simultaneously use the same scratchpad
memory. Users of the global scratchpad model must be very careful to use functions that
access scratchpad on only one eTPU at a time.

Both models are discussed in further details in the sections below. Note that source
compiled to different models can be linked successfully, it is recommended that for most
cases one model or the other should be chosen for all code that is to be linked into an
executable image.

5.10.1 Stack-based Model

ETEC uses a stack-based approach for local variables and function calls by default. Any
eTPU threads / functions for which local variables overflow register availability, or perform
function calls, reference a stack base variable. This stack base parameter is allocated as a
channel variable in the function’s (class’) channel frame, and thus each channel with a
function that uses the stack has a stack base parameter that must be initialized when the

5. eTPU Programming Model

Compiler Reference Manual, page 77 (C) 2008-2023 ASH WARE, Inc.

rest of the channel is initialized. Note that channels on each eTPU should share the same
stack base, which is a byte address in the eTPU SDM address space. On a dual eTPU
system, each eTPU engine must have unique stack base addresses.

On the eTPU, on a dual engine system, the SDM layout may look as follows:

global variables start at address 0

engine 0 stack

engine 1 stack

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

 [including compiler allocated stack base to
be filled in during host eTPU initialization]

engine 0, channel 5 channel variables

….

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

 [including compiler allocated stack base to
be filled in during host eTPU initialization]

….

engine 1, channel 27 channel variables

5. eTPU Programming Model

page 78, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

On the eTPU2, the SDM layout may look something like the following if there is user-
defined engine relative data:

global variables start at address 0

engine-space variables (engine 0)

 user engine data

engine-space variables (engine 1)

 user engine data

engine 0 stack

engine 1 stack

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

 [including compiler allocated stack base to
be filled in during host eTPU initialization]

engine 0, channel 5 channel variables

….

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

5. eTPU Programming Model

Compiler Reference Manual, page 79 (C) 2008-2023 ASH WARE, Inc.

 [including compiler allocated stack base to
be filled in during host eTPU initialization]

….

engine 1, channel 27 channel variables

5.10.2 Calling Convention

The stack-based programming model uses registers, and if necessary stack-space, to pass
parameters when function calls are made. Stack is also used to save function state such as
volatile registers that are in use at the time of the call. The detailed calling convention
procedure is outlined below:

· First, any volatile registers that are in use at the time of the function call are saved
onto the stack, if any. Volatile registers are: P, A, SR, MACH, MACL. The
exception to this are named register variables. The registers used for such
variables are not saved and restored during a function call, which allows for implicit
parameter passing via register (as is done in some legacy applications).

· Next, if the stack frame offset is changing (the stack is used by the current
function for local variables, or any volatile registers have been saved), the current
stack frame (register B) is saved to the stack.

· At this point the current stack pointer is the stack frame for the called function.

· The arguments to the function are processed. The first argument that can fit in a
24-bit register is allocated to the A register. The next argument that can fit in a
register is allocated to the SR register. Finally, the next argument that can fit in a
register is allocated to the MACL register. Any further arguments, or those that
do not fit in a register (e.g. a structure larger than 24-bits), are placed on the stack
in order.

· The stack frame (register B) is updated to the new value if necessary, and the call
is made. Note that if the called function has a return type/value that fits in a
register, it will be returned in register A. Otherwise, space is allocated on the
stack after the parameters.

5. eTPU Programming Model

page 80, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

· On the callee side, the following is done.

· If the callee itself makes further function calls, it saves the RAR (return address)
register onto the stack.

· If the function uses any of the non-volatile registers (registers C and D), it saves
them to the stack.

· Last, passed parameters are moved to their final locations, if they are different.
For example, a parameter passed via register may get allocated to a stack location,
or a parameter passed on the stack may be moved to a register.

Based on the sample code below:

struct S { int x, y; };

… (in a function)
char a;
struct S b;
int c, d, e;
struct S f = CalcPos(a, b, c, d, e);
… (rest of function)

struct S CalcPos(char a, struct S b, int c, int d, int e)

{
…
 return b;
}

The resulting stack may look like:

caller SF + N + 0 : register A saved (for
example’s sake, it was in use at time of call)

caller SF + N + 4 : current stack frame saved

*** NEW CALLEE STACK FRAME ***

callee SF + 0 : parameter ‘b’

callee SF + 4 : parameter ‘b’ continued

5. eTPU Programming Model

Compiler Reference Manual, page 81 (C) 2008-2023 ASH WARE, Inc.

callee SF + 8 : parameter ‘e’

callee SF + 12 : return value location

callee SF + 16 : return value location
continued

callee SF + 20: register RAR saved

callee SF + 24 : register D saved

callee SF + 28 : register C saved

callee SF + 32 : parameter ‘a’ moved from
register A to this stack location

… any additional callee stack usage starts here
…

Note that in most real eTPU code, much less stack space is required for a function call
(good eTPU code should not pass & return structures).

The ETEC compiler pre-defines a macro __ETEC_EABI_STACK_V1_0__ when the
above calling convention is in use. Should the calling convention ever change in future
versions of the compiler, this macro’s version number will also be changed. This allows
users who write code (e.g. inline assembly) that depends upon the calling convention to
detect a change and prevent to possible compilation of non-function code.

5.10.3 Scratchpad-based Model

When the scratchpad-based model is enabled, local variables that overflow register
availability, and function state that needs to be saved when function calls are made
(including parameters) get allocated in what is called “scratchpad” space. On the eTPU,
scratchpad is just global memory, placed after (above) user global variables. When
compiled for the eTPU2 target, scratchpad data may be assigned to engine-relative space
rather than global address space. Each eTPU2 engine sees its own independent engine-

5. eTPU Programming Model

page 82, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

relative space; the global location of these engine-relative spaces is configured via a host
CPU register. One down-side of the eTPU2 engine-relative space is that it can only be
configured to begin on 256-byte boundaries, and thus may result in wasted Shared Data
Memory (SDM). Additionally, in some cases engine-relative memory accesses are less
efficient than global address accesses. If the protection provide by engine-relative
addressing on a dual-eTPU is not needed, it is not recommended that it be used.

On the eTPU (or when –globalScratchpad is specified on the eTPU2), the SDM layout
looks essentially the same whether it is a single or dual-engine part:

global variables start at address 0

global scratchpad allocation

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

engine 0, channel 5 channel variables

….

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

….

engine 1, channel 27 channel variables

On the eTPU2, there is one engine space allocated per engine, and the scratchpad can be
allocated out of this address space if specified with the “-engineScratchpad” option. The
diagram below shows an example SDM layout for a dual-engine target. Note that the

5. eTPU Programming Model

Compiler Reference Manual, page 83 (C) 2008-2023 ASH WARE, Inc.

engine space allocations could be anywhere in memory, with the only limitation being they
begin on a 256-byte boundary.

global variables start at address 0

engine 0 engine-relative space

 user engine-relative data

 engine-relative scratchpad

engine 1 engine-relative space

 user engine-relative data

 engine-relative scratchpad

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

engine 0, channel 5 channel variables

….

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

….

engine 1, channel 27 channel variables

5. eTPU Programming Model

page 84, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

5.10.4 Calling Convention

The scratchpad-based programming model uses scratchpad space to pass all parameters
when function calls are made. Scratchpad is also used to save function state such as
volatile registers that are in use at the time of the call. The detailed calling convention
procedure is outlined below:

· First, any volatile registers that are in use at the time of the function call are saved
into unique scratchpad locations. Volatile registers are: P, A, SR, MACH, MACL.
 The exception to this are named register variables. The registers used for such
variables are not saved and restored during a function call, which allows for implicit
parameter passing via register (as is done in some legacy applications).

· The arguments to the function are processed and each is placed into a unique
scratchpad location. Note that this scratchpad location is the same for each
invocation of the function (thus scratchpad eliminates the ability to use recursion).

· The call is made. Note that if the called function has a return type/value that fits in
a register, it will be returned in register A. Otherwise, scratchpad space is
allocated

· On the callee side, the following is done.

· If the callee itself makes further function calls, it saves the RAR (return address)
register into scratchpad.

· If the function uses any of the non-volatile registers (registers C and D), it saves
them to scratchpad.

· Last, passed parameters are moved to their final locations, if they are different
than the location via which they were passed. For example, a parameter may be
moved to a register.

The ETEC compiler does provide a mechanism that allows users some control as to how
parameters are passed. Function parameters can be designated with a named register
storage class, and thus the specified parameter will be passed in the specified register.
This capability should be used with caution, however. This capability is available in either
the stack-based or scratchpad-based programming model.

The ETEC compiler pre-defines a macro __ETEC_EABI_ SCRATCHPAD _V1_0__
when the above calling convention is in use. Should the calling convention ever change in
future versions of the compiler, this macro’s version number will also be changed. This

5. eTPU Programming Model

Compiler Reference Manual, page 85 (C) 2008-2023 ASH WARE, Inc.

allows users who write code (e.g. inline assembly) that depends upon the calling convention
to detect a change and prevent to possible compilation of non-functional code.

The compiler option -passParamByReg can be used to make the generated code more
efficient by passing some parameters via register rather than scratchpad. See the stack
programming model calling convention to see which registers and how parameters are
selected to passed by register. When this option is active, the compiler pre-defines the
macro __ETEC_EABI_PARAM_BY_REG__.

5.11 In-Line Assembly

The ETEC compiler supports an in-line assembly capability. However, it is important to
note that whenever C code and assembly are mixed, the potential for buggy code
increases. It is recommended that other avenues, such as the use of intrinsic functions, be
explored before resorting to inline assembly. That being said, there are times where only
inline assembly can solve the problem at hand. This reference manual describes the syntax
for specifying inline assembly, but not the actual assembly syntax itself; see the assembler
reference manual for those details.

Inline assembly can be specified in one of two ways. Single-line assembly instructions can
be packaged in #asm():

#asm(ram p -> by diob.)

For multiple lines of inline assembly, the better technique is to bracket the text with a
#asm / #endasm pair:

#asm
 /* if (hd_common->timer==HD_TCR1) */
 ram diob <- hd_common.
 alu diob = diob + 0x04.
 ram p31_24 <- by diob++. // p = timer
 alu nil = p31_24, ccs.
#endasm

In either case, C pre-processing is applied to the text just like any other portion of the
source. The #asm, #endasm, and #asm() directives do not have to be the first text on a
source line, thus they can be used in macros to group sets of inline assembly instructions.
Note that the C preprocessor is run in ETPUC mode, and thus treats “#asm” and
“#endasm” text special, allowing them to pass as-is within function-like macros.

Inline assembly can make references to C global variables and channel frame variables.
References to static symbols can be made in either RAM instructions, or in ALU

5. eTPU Programming Model

page 86, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

instructions where a register is getting loaded with an address of a symbol. In these cases,
ETEC supports symbol reference expressions of the form <complex symbol reference> [+
offset] [+ offset] […] where items in [] are optional. A complex symbol reference can
include the “.” and “[]” operators if the symbol is of the appropriate type : struct/union or
array. The referenced address must be static.

Assembly and C treat code labels in a similar way. Labels have function scope and thus
jumps/gotos outside of the current function scope do not work. C functions can be called
from assembly code, and pure assembly “functions” can be called from see (the assembler
reference manual contains details on how to create these assembly functions.

The Inline Assembly Porting Guide contains additional detailed information on ETEC’s
support of inline assembly.

5.11.1 Calling the Error Handler from User Code

The entry points into the error handler are exposed in the eTpu_Lib.h standard header file:

_eTPU_thread _Error_handler_entry();
_eTPU_thread _Error_handler_scm_off_weeds();
_eTPU_thread _Error_handler_fill_weeds();

In ETEC mode, users can specify these entry points in any of their entry tables. When
user code calls one of these, ETEC actually generates a jump opcode under the hood since
these “eTPU threads” end with a “seq end” thread exit.

5.12 ETEC Standard Header Files

The ETEC distribution contains three standard header files. ETEC does not implement the
C Standard Library. The ETEC standard header files are:

ETpu_Hw.h – contains key programming model definitions required by most code.

ETpu_Std.h – macros built on top of the programming model to make code more readable.
 Since this includes both ETpu_Hw.h and ETpu_Lib.h, it is the only standard header that
actually needs to be included.

ETpu_Lib.h – function prototypes for the built-in “library” functions, including the fixed
point library functions.

6. C Preprocessing

Compiler Reference Manual, page 87 (C) 2008-2023 ASH WARE, Inc.

6
C Preprocessing

In the ETEC compiler toolkit, C preprocessing is performed by a standalone tool called
ETEC_cpp.exe. When source code is put through the ETEC compiler, it automatically
spawns ETEC_cpp.exe as a process and passes the source through the C preprocessor
first.

The following macros are pre-defined in the compilation environment and passed to
ETEC_cpp.exe when spawned by ETEC_cc.exe:

__ETEC__

__ETEC_VERSION__ is defined to a text string of the compiler version. The form is
<major version>.<minor version><build letter>.

One of __TARGET_ETPU1__, __TARGET_ETPU2__ depending upon the –target
option specified.

ETEC_cpp has other pre-defined macros per the C99 specification:

_ _DATE_ _ The date of translation of the preprocessing translation unit: a character
string literal of the form "Mmm dd yyyy", where the names of the months are the
same as those generated by the asctime function, and the first character of dd is a
space character if the value is less than 10. If the date of translation is not available, an
implementation-defined valid date shall be supplied.

6. C Preprocessing

page 88, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

_ _FILE_ _ The presumed name of the current source file (a character string
literal).

_ _LINE_ _ The presumed line number (within the current source file) of the current
source line (an integer constant).

_ _STDC_ _ The integer constant 1, intended to indicate a conforming
implementation.

_ _STDC_HOSTED_ _ The integer constant 1 if the implementation is a hosted
implementation or the integer constant 0 if it is not.

_ _STDC_VERSION_ _ The integer constant 199901L.

_ _TIME_ _ The time of translation of the preprocessing translation unit: a character
string literal of the form "hh:mm:ss" as in the time generated by the asctime
function. If the time of translation is not available, an implementation-defined valid time
shall be supplied.

The ETEC compiler also specifies the “–mode=ETPUC” to ETEC_cpp.exe. This triggers
some minor exceptions to regular C preprocessing in order work with existing code better.

ETEC_cpp.exe can be used as a standalone tool to perform C preprocessing. See section
8.1.1 for details on ETEC_cpp.exe command-line options.

7. Auto Code Generation

Compiler Reference Manual, page 89 (C) 2008-2023 ASH WARE, Inc.

7
Auto Code Generation

The linker can generate C code files that contains information for the host CPU build. This
includes information such as variable offset information, code image information, function
number, etc.

The auto-struct header file is generated by default, and provides C structures for the host-
side code that overlay the actual memory layout. Auto-struct generation can be disabled.

The auto-defines header file is automatically generated by default (but can be disabled),
and the text within the file is generated by concatenating things like the user-assigned
function name with the user-assigned variable name. Additionally, the user can specify a
global mnemonic that is pre-pended to all generated text for the purpose of avoiding
clashes.

The auto-code files provide a template for complete eTPU module and application
initialization, and make use of the auto-defines and auto-struct generated files as well as
additional files supplied with the tools install.

7.1 Auto-Struct File

The global memory space, engine memory space (eTPU2 only) and each channel frame
are output in the form of structures that from the host-side overlay the corresponding
portions of the Shared Data Memory (SDM) between the host CPU and eTPU. These
structures allow for simple reading/writing of SDM from the host via structure member

7. Auto Code Generation

page 90, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

references. Note that this file only contains data structures – the auto-defines file contains
many other eTPU interface items such as function numbers that are needed. The auto-
struct is generated by default, but can be disabled on request via the linker option –
autostruct. By default, the name is the base executable output file name extended by
“_struct.h”, but the user can also specify a name by supplying it with –autostruct=<auto-
struct file name>.

For example, an auto-struct generated from the NXP PWM function may look like:

typedef struct

{

/* 0x0000 */

etpu_if_sint32 Period;

/* 0x0004 */

etpu_if_sint32 ActiveTime;

/* 0x0008 */

etpu_if_sint32 Coherent_Period;

/* 0x000c */

etpu_if_sint32 Coherent_ActiveTime;

/* 0x0010 */

etpu_if_sint32 LastFrame;

/* 0x0014 */

etpu_if_sint32 NextEdge;

} etpu_if_PWM_CHANNEL_FRAME_PSE;

Assuming in the host code a pointer of type “etpu_if_PWM_CHANNEL_FRAME_PSE”
has been initialized correctly (named “etpu_pwm_pse_chan_7” for sake of example), the
host code could initiate a coherent update of the PWM signal with code like:
etpu_pwm_pse_chan_7->Coherent_Period = new_period_data;

etpu_pwm_pse_chan_7->Coherent_ActiveTime = new_active_time_data;

// set coherent update host service request

Additionally, host debugging tools will be able to cleanly see the eTPU data through these
structures for an enhanced debugging experience.

7.1.1 24-bit vs. Non-24-bit Accesses

For each memory space (global, engine, channel frames), up to two data overlay structures
may be auto-generated. The first is for accessing non-24-bit data, and the other is for
accessing 24-bit data. The idea is that the 24-bit data struct will overlay the PSE
(parameter sign extended) mirror, which allows easy read/write of 24-bit parameters
through 32-bit accesses on the host side. The non-24-bit data struct is meant to overlay the
regular SDM (shared data memory) window. One important item to note regarding 24-bit
data, is that on readback through the PSE, the data is always sign extended regardless of

7. Auto Code Generation

Compiler Reference Manual, page 91 (C) 2008-2023 ASH WARE, Inc.

whether the data type is signed or unsigned. Unsigned data read through the PSE should
still have the top 8 bits masked off.

In order to simplify the access of signed and unsigned 24-bit data through the PSE mirror,
up to 3 different overlay structures are generated for PSE access. One includes all 24-bit
data, while the other two are signed and unsigned only (and are only generated if there is
24-bit signed data, and/or 24-bit unsigned data).

Note that for non-PSE data a little endian based structures will be generated along with the
default big endian based overlay structures. When the MULTI endian option is selected in
the linker, the two structures are set up to be conditionally compiled based upon the endian
macro setting (see the file etpu_endian_api.h in the tool Include directory).

7.1.2 Naming Conventions

The auto-generated structures are typedef’ed to the following names:

// global non-24-bit data
etpu_if_GLOBAL_DATA;

// global 24-bit data (PSE access)
etpu_if_GLOBAL_DATA_PSE;

// engine non-24-bit data (eTPU2-only)
etpu_if_ENGINE_DATA;

// engine 24-bit data (eTPU2-only)
etpu_if_ENGINE_DATA_PSE;

// <func/class name> non-24-bit data
etpu_if_<func/class name>_CHANNEL_FRAME;

 // <func/class name> 24-bit data
etpu_if_<func/class name>_CHANNEL_FRAME_PSE;

Every data member has one of 6 basic types. Rather than use raw C type names, another
naming convention is used. Users of the auto-struct file must provide their own type
definitions for these type names.

etpu_if_sint8; // signed 8-bit data
etpu_if_uint8; // unsigned 8-bit data
etpu_if_sint16; // signed 16-bit data
etpu_if_uint16; // unsigned 16-bit data

7. Auto Code Generation

page 92, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

 // signed 32-bit data
 // (also used for 24-bit data)
etpu_if_sint32;
 // unsigned 32-bit data
 // (also used for 24-bit data)
etpu_if_uint32;

For every auto-struct that is generated, a macro is also defined. The macro is defined to
the expected size of the structure. The idea is that the user should use this to perform a
run-time check to ensure that the structure is compiling correctly under their host compiler.
 The auto-naming convention of the macros is as follows:

#define etpu_if_GLOBAL_DATA_EXPECTED_SIZE <size>

#define etpu_if_GLOBAL_DATA_EXPECTED_SIZE_PSE <size>

#define etpu_if_ENGINE_DATA_EXPECTED_SIZE <size>

#define etpu_if_ENGINE_DATA_EXPECTED_SIZE_PSE <size>

#define etpu_if_<func/class name>_CHANNEL_FRAME_EXPECTED_SIZE <size>

#define etpu_if_<func/class name>_CHANNEL_FRAME_EXPECTED_SIZE_PSE <size>

7.1.3 eTPU Data in Auto-Structs

For eTPU variables of basic type, the variable name is used as-is as the member name in
the auto-generated data overlay structure. For example, the NXP PWM function has the
following eTPU code that defines its channel frame:

void PWM(int8 Flag, int24 Period, int24 ActiveTime,
 int24 Coherent_Period,
 int24 Coherent_ActiveTime)
{

static int24 LastFrame;
static int24 NextEdge;
// …

}

As can be seen, the variable names become the member names in the data overlay
structure (note that the 8-bit “Flag” variable ends up in the non-24-bit data structure, which
is not shown):

typedef struct
{

/* 0x0000 */
etpu_if_sint32 Period;
/* 0x0004 */
etpu_if_sint32 ActiveTime;
/* 0x0008 */
etpu_if_sint32 Coherent_Period;

7. Auto Code Generation

Compiler Reference Manual, page 93 (C) 2008-2023 ASH WARE, Inc.

/* 0x000c */
etpu_if_sint32 Coherent_ActiveTime;
/* 0x0010 */
etpu_if_sint32 LastFrame;
/* 0x0014 */
etpu_if_sint32 NextEdge;

} etpu_if_PWM_CHANNEL_FRAME_PSE;

The exception to this naming convention is for eTPU data of struct, union or _Bool type –
these cases are discussed in the ensuing sections.

Often there are gaps in the data overlay where no named data to be referenced exists.
These gaps are filled by appropriately sized unnamed bit-fields.

7.1.4 eTPU Structures/Unions

When eTPU variables of struct or union type are encountered, they are “flattened” by
concatenating the variable and member name (or members of there are multiple levels to
the struct/union). The original eTPU struct type cannot be re-generated on the host side
because eTPU structures can have size and alignment that are not possible to replicate in
host code. For example, the global variable definition:

struct CBA
{

char a, b;
unsigned int c;

} cba;

Results in:

typedef struct
{

/* 0x0000 */
etpu_if_uint8 cba_a;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
/* 0x0004 */
etpu_if_uint8 cba_b;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;

} etpu_if_GLOBAL_DATA;
typedef struct

7. Auto Code Generation

page 94, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

{
/* 0x0000 */
etpu_if_uint32 cba_c;
/* 0x0004 */
etpu_if_uint32 : 32;

} etpu_if_GLOBAL_DATA_PSE;

Unions present additional challenges to auto-struct generation. The algorithm for
generating an auto-struct when a union is encountered is as follows. For a given byte
address, find the first union member located at that address and use it to determine the
auto-struct member name and type. Note that this is done for both the 24-bit pas and the
non-24-bit pass. So a union such as:

union Utype
{

signed char s8;
short s16;
int s24;
int32 s32;

} g_u1;

Results in:

typedef struct
{

/* 0x0000 */
etpu_if_sint8 g_u1_s8;
etpu_if_uint8 : 8;
etpu_if_sint16 g_u1_s16;

} etpu_if_GLOBAL_DATA;
typedef struct
{

/* 0x0000 */
etpu_if_sint32 g_u1_s24;

} etpu_if_GLOBAL_DATA_PSE;

Through ordering of the union members, users can potentially get the auto-struct output
they are looking for.

Bit-field members present special issues and are discussed in the next section. Note that
arrays of struct/union types are not supported at this time.

7. Auto Code Generation

Compiler Reference Manual, page 95 (C) 2008-2023 ASH WARE, Inc.

7.1.5 Arrays in Auto-Structs

Arrays are handled two different ways by auto-struct, depending upon the element type of
the array and the packing of the array. If it all possible the array defined in eTPU-space is
output into the auto-struct as an array. This can be done when the following conditions are
met: (1) the element type is a basic type, and (2) the stride size and element size are the
same (exception: an array of 24-bit basic typed elements can be output as an array through
the PSE). Here are a few examples of this, compiled with default "packtight" memory-
packing options:

char g_a1[4];
char g_a2[2][2];

Yields the following in the auto-struct:

/* 0x00a4 */
etpu_if_uint8 g_a1[4];
/* 0x00a8 */
etpu_if_uint8 g_a2[2][2];

The memory architecture of the eTPU prevents all array cases being handled as cleanly as
the above, unfortunately. In all other cases the array is "flattened" like struct and union
type variables are handled. In the array case, the element index gets appended to the base
array name. The most typical case where this must be done is when arrays of elements of
type struct or union are encountered. The other case is that of "gapped" arrays. Gapped
arrays can occur when other memory-packing modes besides "packtight" are used
("fastaccess"). For example, arrays of 8-bit integers get packed in the upper byte of each
4-byte word, leaving 3-byte gaps between elements. These gaps can be filled by other
data. When the following declarations are compiled in "fastaccess" mode:

int8 g_s8_array[4];
int16 g_s16;

They yield the following in the auto-struct:

typedef struct
{

/* 0x0000 */
etpu_if_sint8 g_s8_array_0;
etpu_if_uint8 : 8;
etpu_if_sint16 g_s16;
/* 0x0004 */
etpu_if_sint8 g_s8_array_1;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;

7. Auto Code Generation

page 96, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

/* 0x0008 */
etpu_if_sint8 g_s8_array_2;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
/* 0x000c */
etpu_if_sint8 g_s8_array_3;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;

} etpu_if_GLOBAL_DATA;

In the case of an array of struct type, the declaration below

typedef struct
{

unsigned int8 a;
unsigned int16 b;
unsigned int24 c;
unsigned int32 d;

} S1;
S1 g_s1[2];

generates the following section of auto-struct (non-PSE only; the PSE struct contains the
references to member 'c'):

/* 0x0048 */
etpu_if_uint8 g_s1_0_a;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
/* 0x004c */
etpu_if_uint32 g_s1_0_d;
/* 0x0050 */
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint16 g_s1_0_b;
/* 0x0054 */
etpu_if_uint8 g_s1_1_a;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
/* 0x0058 */
etpu_if_uint32 g_s1_1_d;
/* 0x005c */

7. Auto Code Generation

Compiler Reference Manual, page 97 (C) 2008-2023 ASH WARE, Inc.

etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint16 g_s1_1_b;

7.1.6 Bit-field and _Bool Variables

Bit-field struct/union members and _Bool variables (_Bool variables can act like bit-fields
in that they are assigned to an 8-bit unit, and in some cases, multiple _Bool variable can be
packed into different bits of one unit) are handled differently than other members of the
auto-struct. One reason for this is that compilers can pack bit-fields in different manners –
one way is to pack from the MSB of the enclosing data unit, and the other is to pack from
the LSB of the enclosing data unit. The auto-struct capability supports both techniques by
enclosing bit-field/_Bool member declarations in conditional compilation clauses controlled
by the macros MSB_BITFIELD_ORDER and LSB_BITFIELD_ORDER. The user of
the auto-struct header file must define one of these two macros for the code to compile.

#if defined(MSB_BITFIELD_ORDER)
etpu_if_uint8 : 5;
etpu_if_uint8 _b3 : 1;
etpu_if_uint8 _b2 : 1;
etpu_if_uint8 _b1 : 1;

#elif defined(LSB_BITFIELD_ORDER)
etpu_if_uint8 _b1 : 1;
etpu_if_uint8 _b2 : 1;
etpu_if_uint8 _b3 : 1;
etpu_if_uint8 : 5;

#else
#error Users of auto-struct must define either
MSB_BITFIELD_ORDER or LSB_BITFIELD_ORDER
#endif

A second reason for handling bit-fields different from other members of the auto-struct is
that host code may need access to the enclosing data unit of the bit-field. This is because
writing a bit-field member generates read-modify-write code that is not coherent – this may
not be acceptable in some cases. Or, a user may need to write/read multiple bit-fields
simultaneously. Thus bit-fields (and _Bools) are placed under a union in the auto-struct,
along with the data unit. This union is given an auto-generated name _BF_UNIT_<addr
offset>, where <addr offset> is the byte offset within the data overlay segment of the bit-
field unit. An entire bit-field unit declaration looks like:

7. Auto Code Generation

page 98, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

union {
etpu_if_uint8 _UNIT;
struct {

#if defined(MSB_BITFIELD_ORDER)
etpu_if_uint8 : 5;
etpu_if_uint8 _b3 : 1;
etpu_if_uint8 _b2 : 1;
etpu_if_uint8 _b1 : 1;

#elif defined(LSB_BITFIELD_ORDER)
etpu_if_uint8 _b1 : 1;
etpu_if_uint8 _b2 : 1;
etpu_if_uint8 _b3 : 1;
etpu_if_uint8 : 5;

#else
#error Users of auto-struct must define either
MSB_BITFIELD_ORDER or LSB_BITFIELD_ORDER
#endif

} _BF;
} _BF_UNIT_0018;

The host could read or write all three bits simultaneously through the construct

global_data_ptr->_BF_UNIT_0018._UNIT

Individual bits are accessed via constructs like

global_data_ptr->_BF_UNIT_0018._BF._b1

7.1.7 Example Code

Below is a short sample of code that initializes global memory section data mapping
structure pointers, and then accesses eTPU shared code memory via them.

// initialize data overlay pointers for global memory

etpu_if_GLOBAL_DATA* GDM = (etpu_if_GLOBAL_DATA*)ETPU_PRAM_BASE;

etpu_if_GLOBAL_DATA_PSE* GDM_PSE = (etpu_if_GLOBAL_DATA_PSE*)

ETPU_PRAM_PSE_BASE;

// check the data overlay structs (auto-struct)

if (sizeof(etpu_if_GLOBAL_DATA) != etpu_if_GLOBAL_DATA_EXPECTED_SIZE)

return FAIL;

if (sizeof(etpu_if_GLOBAL_DATA_PSE) !=

etpu_if_GLOBAL_DATA_PSE_EXPECTED_SIZE)

return FAIL;

// write and read some global data

GDM->g_s8 = 0x12;

GDM->g_s16 = 0x1234;

GDM_PSE->g_s24 = 0x123456;

7. Auto Code Generation

Compiler Reference Manual, page 99 (C) 2008-2023 ASH WARE, Inc.

GDM->g_a2[1][1] = 0x34;

if (GDM->g_s1_s8 != (signed char)0x87)

ErrorEncountered();

if (GDM->g_s1_s16 != (signed short)0x8765)

ErrorEncountered();

if (GDM_PSE->g_s1_s24 != 0xff876543)

ErrorEncountered();

7.2 Auto-Defines File

The auto-defines header file contains all the compiler-generated information necessary for
the host to initialize & control the eTPU, and to place & find data. The contents of this file
is explained in detail in the ensuing sections.

7.2.1 Global Prepended Mnemonic

A global mnemonic is prepended to all generated text. The default global mnemonic is the
underscore character, ‘_’. This can be overridden with the linker command line option "-
GM=<text>" - see the linker reference manual for more information.

7.2.2 Auto Header File Name

The name of the auto-generated defines header file is the constructed as shown below.
This can be overridden using the linker option "-defines=<FileName>" - see the linker
reference manual for more details.

<ExectutableFileName>_defines.h

7.2.3 Endian Support

With the announcement of the S32K39x parts, which are Arm-based, ETEC has been
updated to provide better auto-generated code support for little endian host processors.
This new support is enabled by specifying the -endian=<MODE> option to the linker. But
before delving into the tools endian support, what is the issue? For word accesses from the
host, there is no difference whether the host processor is big endian (MPC) or little endian
(Arm). This includes reading/writing 24-bit data via the PSE memory window. For these

7. Auto Code Generation

page 100, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

32-bit accesses, the byte addresses are on quad-word boundaries. However, issues arise
when 8 or 16-bit accesses are required as within a word the byte order is reversed. The
table below summarizes the differences.

Data Size and eTPU-relative
Offset (within a word)

Big Endian Byte Offset
Within Word

Little Endian Byte Offset
Within Word

8-bit, 0 (MSB) 0 3

8-bit, 1 1 2

8-bit, 2 2 1

8-bit, 3 (LSB) 3 0

16-bit, 0 0 2

16-bit, 2 2 0

24-bit, 1 1 0

32-bit, 0 0 0

In order to support these differences, when the MULTI endian mode is specified, location
(address / address offset) information in the auto-defines file as well as in files generated
via #pragma write (::ETPUlocation macros) output the data in a form that resolves to the
correct address depending upon whether the macro ETPU_HOST_BIG_ENDIAN or
ETPU_HOST_LITTLE_ENDIAN is defined. This is supported by the file
etpu_endian_api.h which is distributed in the tools installation Include directory.

Besides the location information, the auto-struct capability which outputs C struct
declarations that can be used to overlay and access eTPU global and channel frame
memory also supports multi-endian. In default mode a new little endian struct is generated,
while in MULTI mode the big and little endian struct declarations are controlled by the
ETPU_HOST_BIG_ENDIAN/ETPU_HOST_LITTLE_ENDIAN macros.

The last endian issue dealt with is code and initialized data. In general these are provided
in 32-bit words, and so there are no endian issues. However, options exist to output this
data in 8-bit format, in which case the order has to be massaged between big and little
endian. Thus if the -data8 linker option is used, or if in #pragma writes
::ETPUcode, ::ETPUengineinit, ::ETPUglobalimage, ::ETPUglobalinit or ::ETPUstaticinit is
used, the output supports both big and little endian, controlled by the
ETPU_HOST_BIG_ENDIAN/ETPU_HOST_LITTLE_ENDIAN macros.

7. Auto Code Generation

Compiler Reference Manual, page 101 (C) 2008-2023 ASH WARE, Inc.

One final note: 8 and 16-bit data array access from a little endian host processor requires
special care w/ regards to addressing. Take additional care when dealing with such
objects.

7.2.4 Text Generation

The purpose of the auto generated text is to produce a series of #defines that are used on
the host CPU side code to initialize and run the eTPU function. A series of the #defines
are generated that appear as follows.

#define <Name> <Value>

The <name> is generated by concatenating the global mnemonic, the function or class
name (if applicable), the settings mnemonic, and any additional text that is available (such
as the variable name.) Additionally, each concatenation is separated by underscores, as
follows.

<GlobalMnemonic><SettingMnemonic>_><FunctionName>_<Misc>_

Note that when the class and the table name are identical then the table name is not
included. With regards to variables and their type information, the settings mnemonic is a
concatenation of address space and mnemonic.

7.2.5 Type Information

For every variable and tag type member, type information is provided. The possible type
values are

T_bool
T_sint8
T_uint8
T_sint16
T_uint16
T_sint24
T_uint24
T_sint32
T_uint32
T_sfract8
T_ufract8
T_sfract16
T_ufract16
T_sfract24
T_ufract24

7. Auto Code Generation

page 102, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

T_ptr
T_array
T_struct
T_union

For arrays, the element type is provided, as is done for struct and union members. The
base type for pointers is also provided. For both arrays and pointers, the element/base type
may be found through multiple dimensions or multiple levels of indirection.

#define _GLOB_VAR_TYPE_g_s8_ T_uint8

#define _GLOB_VAR_TYPE_g_s16_ T_sint16

#define _CHAN_MEMBER_TYPE_DefinesTest_Stype_s16_ T_sint16

#define _CHAN_MEMBER_TYPE_DefinesTest_Stype_s24_ T_sint24

#define _CPBA_TYPE_DefinesTest__a1_ T_array

#define _CPBA_TYPE_ARRAY_DefinesTest__a1_ T_uint8

#define _GLOB_VAR_TYPE_g_s24_ptr_ T_ptr

#define _GLOB_VAR_TYPE_PTR_g_s24_ptr_ T_sint24

7.2.6 Array Variables

Offsets to variables of array type are output in similar manner to basic type variables,
except that the settings mnemonic contains ARRAY (CPBA_ARRAY, ERBA_ARRAY
or GLOB_ARRAY). The element typeAdditionally, for each dimension of the array two
additional definitions are supplied – the number of elements in the dimension and the stride
size. For these <Misc> takes the form <var name>_DIM_<dimension #>_LENGTH and <var

name>_DIM_<dimension #>_STRIDE

For example,

int24 g_s24_array[10];

may yield

#define _GLOB_ARRAY_g_s24_array_ 0x01
#define _GLOB_ARRAY_g_s24_array_DIM_1_LENGTH 0x10
#define _GLOB_ARRAY_g_s24_array_DIM_1_STRIDE 0x04

7. Auto Code Generation

Compiler Reference Manual, page 103 (C) 2008-2023 ASH WARE, Inc.

7.2.7 _Bool Type Variables

Besides the byte offset of the variable’s location, _Bool types also list the bit offset within
the 8-bit unit of the variable with the mnemonic BOOLBITOFFSET:

#define _CPBA8_Test__b4_ 0x00
#define _CPBA8_BOOLBITOFFSET__b4_ 0x05

7.2.8 Struct/Union Variables

Again, offsets to variables of struct/union type are output in a similar manner to other
variables. The aggregate type of the variable is encoded in the settings mnemonic.

struct S1 g_GlobalStructVar;
union U1 _ChanFrameUnionVar; // in eTPU Function TESTIO

The above variable definitions would be exported in the defines file as something like:

#define _GLOB_STRUCT_g_GlobalStructVar_ 0x10
#define _CPBA_UNION_TESTIO__ChanFrameUnionVar_ 0x05

Individual members of these variables can then be located using the additional type
information provided, as described in section 6.2.8.

7.2.9 Tag Types (Structures, Unions, Enumerations)

When global (GLOB mnemonic), engine-relative (eTPU2 only, ENG mnemonic) or channel
frame (CHAN mnemonic) variables have a tag type, struct, union, or enum, information on
that type will be exported in the auto header file. In the case of structs & unions, this
information can be used to build up the exact location of each member. Size and alignment
information is also included. Two pieces of size data are provided – one is the size that the
sizeof() operator would return, which includes any padding in order to reach the array
stride size of the struct/union. The second is the raw size used by the structure, and does
not include padding. The alignment data indicates the offset, within a 32-bit word, where
the struct/union begins. A struct that consists of two 24-bit members would have an
alignment of 1, and a raw size of 7. From a host perspective, the number of 32-bit words
that must be allocated to hold an eTPU structure is ((<alignment> + <raw size> + 3) >> 2).
 For example, given the following type definitions:

struct S1
{

int x;
int y;

};

7. Auto Code Generation

page 104, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

struct S3
{

struct S1 s1_1;
int x;
char a;
struct S1 s1_2;

};

 If used for global variables, this would yield the following in the _defines file:

// defines for type struct S1
// size of a tag type
// (including padding as defined by sizeof operator)
// value (sizeof) = _GLOB_TAG_TYPE_SIZE_S1_
#define _GLOB_TAG_TYPE_SIZE_S1_ 0x08
// raw size (padding not included) of a tag type
// value (raw size) = _GLOB_TAG_TYPE_RAW_SIZE_S1_
#define _GLOB_TAG_TYPE_RAW_SIZE_S1_ 0x07
// alignment relative to a double even address
// of the tag type (address & 0x3)
// value = _GLOB_TAG_TYPE_ALIGNMENT_S1_
#define _GLOB_TAG_TYPE_ALIGNMENT_S1_ 0x01
// offset of struct/union members
// from variable base location
// the offset of bitfields is specified in bits,
// otherwise it is bytes
// address = SPRAM + [variable SPRAM offset]
// + _GLOB_MEMBER_BYTEOFFSET_S1_x_
#define _GLOB_MEMBER_BYTEOFFSET_S1_x_ 0x00
#define _GLOB_MEMBER_BYTEOFFSET_S1_y_ 0x04
// defines for type struct S3
#define _GLOB_TAG_TYPE_SIZE_S3_ 0x14
#define _GLOB_TAG_TYPE_RAW_SIZE_S3_ 0x14
#define _GLOB_TAG_TYPE_ALIGNMENT_S3_ 0x00
#define _GLOB_MEMBER_BYTEOFFSET_S3_s1_1_ 0x01
#define _GLOB_MEMBER_BYTEOFFSET_S3_x_ 0x09
#define _GLOB_MEMBER_BYTEOFFSET_S3_a_ 0x00
#define _GLOB_MEMBER_BYTEOFFSET_S3_s1_2_ 0x0D

Bitfield member offsets are specified in bits, and also have bit size information:

struct S3
{

struct S1 s1_1;
int m : 10;

7. Auto Code Generation

Compiler Reference Manual, page 105 (C) 2008-2023 ASH WARE, Inc.

int n : 10;
int o : 10; // must go in next "unit"
int p : 1;
int q : 1;
int : 4;
int r : 1;
struct S1 s1_2;

};

Yields:

// defines for type struct S3
#define _CHAN_TAG_TYPE_SIZE_S3_ 0x10
#define _CHAN_TAG_TYPE_RAW_SIZE_S3_ 0x0F
#define _CHAN_TAG_TYPE_ALIGNMENT_S3_ 0x01
#define _CHAN_MEMBER_BYTEOFFSET_Test_S3_s1_1_ 0x00
#define _CHAN_MEMBER_BITOFFSET_Test_S3_m_ 0x4E
#define _CHAN_MEMBER_BITSIZE_Test_S3_m_ 0x0A
#define _CHAN_MEMBER_BITOFFSET_Test_S3_n_ 0x44
#define _CHAN_MEMBER_BITSIZE_Test_S3_n_ 0x0A
#define _CHAN_MEMBER_BITOFFSET_Test_S3_o_ 0x6E
#define _CHAN_MEMBER_BITSIZE_Test_S3_o_ 0x0A
#define _CHAN_MEMBER_BITOFFSET_Test_S3_p_ 0x6D
#define _CHAN_MEMBER_BITSIZE_Test_S3_p_ 0x01
#define _CHAN_MEMBER_BITOFFSET_Test_S3_q_ 0x6C
#define _CHAN_MEMBER_BITSIZE_Test_S3_q_ 0x01
#define _CHAN_MEMBER_BITOFFSET_Test_S3_r_ 0x67
#define _CHAN_MEMBER_BITSIZE_Test_S3_r_ 0x01
#define _CHAN_MEMBER_BYTEOFFSET_Test_S3_s1_2_ 0x04

Enumeration information is exported using the settings mnemonic ENUM_LITERAL and
with a <Misc> portion that is the enum name and literal concatenated. For example:

enum timebase_t
{
 tcr1_base,
 tcr2_base
};

Yields:

// defines for type enum timebase_t

// values of the literals of an enum type

// value = _CHAN_ENUM_LITERAL_FPM_timebase_t_tcr1_base_

#define _CHAN_ENUM_LITERAL_FPM_timebase_t_tcr1_base_ 0x00

7. Auto Code Generation

page 106, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

#define _CHAN_ENUM_LITERAL_FPM_timebase_t_tcr2_base_ 0x01

7.2.10 Global Mnemonic

The GlobalMnemonic is text that is prepended to #ifdef’s and #define’s in the auto header
file. It is intended to be used to avoid clashes with similar constructs in other files. The
default GlobalMnemonic is the underscore character, ‘_’.

7.2.11 Settings, Register Fields, and Mnemonic

Setting Register/Field Mnemonic Units

Entry Table Base
Address

ETPUECR.ET
B

ENTRY_TABLE_BASE_ADDR Byte
Address

Entry Table Type
(standard/alternat
e)

CXCR.ETCS ENTRY_TABLE_TYPE 0==Std
1==Alt

Entry Table Pin
Direction
(input/Output)

CXCR.ETPD ENTRY_TABLE_PIN_DIR 0=Input
1=Outpu
t

Function Number CXCR.CFS FUNCTION_NUM None

8-bit Channel
Variable Offset

CXCR.CPBA CPBA8

CPBA_BOOLBITOFFSET

Bytes

Bits

16-bit Channel
Variable Offset

CXCR.CPBA CPBA16 Bytes

24-bit Channel
Variable Offset

CXCR.CPBA CPBA24 Bytes

7. Auto Code Generation

Compiler Reference Manual, page 107 (C) 2008-2023 ASH WARE, Inc.

Setting Register/Field Mnemonic Units

32-bit Channel
Variable Offset

CXCR.CPBA CPBA32 Bytes

Array Channel
Variable Offset &
Length/Stride

CXCR.CPBA CPBA_ARRAY

CPBA_TYPE_ARRAY

DIM_<N>_LENGTH

DIM_<N>_STRIDE

Bytes

<type>

Count

Bytes

Struct Channel
Variable Offset

CXCR.CPBA CPBA_STRUCT Bytes

Union Channel
Variable Offset

CXCR.CPBA CPBA_UNION Bytes

Struct/Union
Member Offsets

CHAN_MEMBER_TYPE

CHAN_MEMBER_BYTEOFFSET

CHAN_MEMEBR_BITOFFSET

CHAN_MEMBER_BITSIZE

CHAN_MEMBER_<name>_DIM_<>

<type>

Bytes

Bits

Bits

Tag Type Data CHAN_TAG_TYPE_SIZE

CHAN_TAG_TYPE_RAW_SIZE

CHAN_TAG_TYPE_ALIGNMENT

Bytes

Enum literal
values

CHAN_ENUM_LITERAL

Variable Type CPBA_TYPE <type>

7. Auto Code Generation

page 108, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Register/Field Mnemonic Units

Channel Frame
Size

CXCR.CPBA FRAME_SIZE Bytes

Initialized Frame
Constants

RAM FRAME_CONTENTS Bytes

8-bit Channel
Variable Offset

ECRX.ERBA ERBA8

ERBA_BOOLBITOFFSET

Bytes

Bits

16-bit Channel
Variable Offset

ECRX.ERBA ERBA16 Bytes

24-bit Channel
Variable Offset

ECRX.ERBA ERBA24 Bytes

32-bit Channel
Variable Offset

ECRX.ERBA ERBA32 Bytes

Array Channel
Variable Offset &
Length/Stride

ECRX.ERBA ERBA_ARRAY

ERBA_TYPE_ARRAY

DIM_<N>_LENGTH

DIM_<N>_STRIDE

Bytes

<type>

Count

Bytes

Struct Channel
Variable Offset

ECRX.ERBA ERBA_STRUCT Bytes

Union Channel
Variable Offset

ECRX.ERBA ERBA_UNION Bytes

Struct/Union
Member Offsets

ENG_MEMBER_TYPE

ENG_MEMBER_BYTEOFFSET

<type>

Bytes

7. Auto Code Generation

Compiler Reference Manual, page 109 (C) 2008-2023 ASH WARE, Inc.

Setting Register/Field Mnemonic Units

ENG_MEMEBR_BITOFFSET

ENG_MEMBER_BITSIZE

ENG_MEMBER_<name>_DIM_<>

Bits

Bits

Tag Type Data ENG_TAG_TYPE_SIZE

ENG_TAG_TYPE_RAW_SIZE

ENG_TAG_TYPE_ALIGNMENT

Bytes

Enum literal
values

ENG_ENUM_LITERAL

Variable Type ERBA_TYPE <type>

8-bit Global
Variable Offset

RAM GLOB_VAR8

GLOB_VAR8_BOOL_BIT_OFFSET

Bytes

Bits

16-bit Global
Variable Offset

RAM GLOB_VAR16 Bytes

24-bit Global
Variable Offset

RAM GLOB_VAR24 Bytes

32-bit Global
Variable Offset

RAM GLOB_VAR32 Bytes

Array Channel
Variable Offset &
Length/Stride

RAM GLOB_ARRAY

GLOB_TYPE_ARRAY

DIM_<N>_LENGTH

DIM_<N>_STRIDE

Bytes

<type>

Count

Bytes

7. Auto Code Generation

page 110, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Register/Field Mnemonic Units

Struct Channel
Variable Offset

RAM GLOB_STRUCT Bytes

Union Channel
Variable Offset

RAM GLOB_UNION Bytes

Struct/Union
Member Offsets

GLOB_MEMBER_TYPE

GLOB_MEMBER_BYTEOFFSET

GLOB_MEMEBR_BITOFFSET

GLOB_MEMBER_BITSIZE

GLOB_MEMBER_<name>_DIM_<>

<type>

Bytes

Bits

Bits

Tag Type Data GLOB_TAG_TYPE_SIZE

GLOB_TAG_TYPE_RAW_SIZE

GLOB_TAG_TYPE_ALIGNMENT

Bytes

Enum literal
values

GLOB_ENUM_LITERAL

Variable Type GLOB_VAR_TYPE <type>

Global Variable
Size

RAM GLOBAL_VAR_SIZE Bytes

Global Scratchpad
Size (when global
scratchpad
programming
model is enabled)

RAM GLOBAL_SCRATCHPAD_SIZE Bytes

Global Data Size RAM GLOBAL_DATA_SIZE Bytes

7. Auto Code Generation

Compiler Reference Manual, page 111 (C) 2008-2023 ASH WARE, Inc.

Setting Register/Field Mnemonic Units

Global Data Init
Address

RAM GLOBAL_INIT_DATA_ADDR Bytes

Maximum Stack
Size

RAM STACK_SIZE Bytes

Engine Variable
Size

RAM ENGINE_VAR_SIZE Bytes

Engine
Scratchpad Size
(when engine
scratchpad
programming
model is used)

RAM ENGINE_SCRATCHPAD_SIZE Bytes

Engine Data Size RAM ENGINE_DATA_SIZE Bytes

Code Image (‘C’-

array)
SCM SCM_CODE_MEM_ARRAY None

MISC

ValueError!

Bookmark not
defined.

MISCCMPR MISC_VALUE None

Fill Value N/A FILL_VALUE None

Jump Table
Indices

N/A <TableName>

Constant Lookup
Table Base
Address

SCM Address CONSTANT_LOOKUP_ADDR_<Na
me>

Bytes

7. Auto Code Generation

page 112, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Register/Field Mnemonic Units

HSR Number CXHSRR.HSR N/A

Function Mode6

Bits

CXSCR.FM N/A

7.2.12 Include Race Keepout

In order to avoid the possibility of infinite recursive inclusion of header file, the following
text precedes all other #defines.

#ifndef <GlobalMnemonic>_<FileName>_H__
#define <GlobalMnemonic>_<FileName>_H__

For the same reason, the following is found at the end of the file.

#endif // <GlobalMnemonic>_<FileName>_H__

7.2.13 NXP API compatibility

NXP provides a set of API for interfacing to eTPU code. The auto-generated file is
included into the source code for that API.

7.2.14 ASH WARE Simulator Compatibility

All auto-header generated text is compatible with the eTPU simulator such that the header
file can be included into the simulator and the resulting #defines can be used as arguments
in the script command line. Additionally, ETEC provides supporting macros that when
combined with the auto-defines file, make simulator script writing a simpler task. The
simulator macro library can be found in the etec_sim_autodefs.h file found under the Sim
directory in the ETEC installation.

7.2.15 Support for Additional Languages

Currently the auto header capability is targeted at “C”. Please contact the factory should
you require support for additional languages such as Fortran, ADA, Java, etc.

7. Auto Code Generation

Compiler Reference Manual, page 113 (C) 2008-2023 ASH WARE, Inc.

7.2.16 SCM ARRAY

The SCM_ARRAY is written to its own file <output file name>_scm.c. By default it is
output as an initialized array of 32-bit unsigned integers. The linker –data8 option causes it
to be output as an array of unsigned 8-bit data. When 8-bit data is specified, and the
endian mode MULTI is used in the linker, the data output is done in both big and little
endian format - which is used is controlled by whether the user defines the
ETPU_HOST_BIG_ENDIAN macro, or the ETPU_HOST_LITTLE_ENDIAN macro.

7.2.17 PWM Example

The following is generated from the PWM

// This file is auto-generated by ETEC.
// It contains information for host-CPU side driver code

#ifndef _PWM_ETEC_PWM_H__
#define _PWM_ETEC_PWM_H__

// Register ECR, field ETB, byte address, Each Engine
// ECR.ETB = (__ENTRY_TABLE_BASE_ADDR)>>10
#define __ENTRY_TABLE_BASE_ADDR 0x2800

// Register CXCR, Field ETCS, channels using PWM
// CXCR.ETCS = __PWM_ENTRY_TABLE_TYPE
#define __PWM_ENTRY_TABLE_TYPE 1

...(etc)

#endif // __PWM_ETEC_PWM_H__

7.3 Auto-Code Files

The auto-code feature outputs host-side C code templates for each eTPU class (function)
in the build, allowing users to more quickly get their eTPU initialization and host APIs up
and running. The auto-code feature must be enabled with the ETEC linker option "-awac".
 "AWAC" stands for ASH WARE auto-code, and the "awac" designator is a part of all file
names associated with the feature.

7. Auto Code Generation

page 114, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

7.3.1 Key Files

The auto-generated AWAC files are as follows:

· For each eTPU function/class, a file "etpu_awac_<func/class name>.c_" and
"etpu_awac_<func/class name>.h_" are created. These are generated into the same
directory as the auto-struct file. The files define two key data structures that hold
instance and configuration data, and also define an initialization function. These files will
always require some customization, so it is anticipated when the user edits them they will
remove the underscore from the file name extension.

· For the entire set two additional template files are generated. These are named
etpu_awac_app_init.c_ and etpu_awac_app_init.h_. These files contain template data
structure instance definitions with initializers, one set for (instance and config) for each
eTPU function/class. Theses files also define a function that can be called to initialize all
eTPU application instances. Frequently, of course, a system will contain multiple
instances of an eTPU application type. For this reason, and also that the auto-generated
data structures will almost surely require modification, these template files will need to
edited, and also renamed to eliminate the underscore. Note the renaming process also
helps eliminate the risk of overwriting edited files when the eTPU code is re-built.

The AWAC feature expects the eTPU build name to be "etpu_set" - other names can be
used but will require further editing of template files. Also, if the eTPU-C module is being
used, that build should be named "etpu_c_set".

Some of the AWAC support files are not generated, but instead reside under the ETEC
installation directory. The appropriate files should be copied from their install location to
the host project location, and then edited as needed. .h files are in the Include directory, .c
files are in the Lib directory. Below the files are listed and described.

· The etpu_awac_main.[c, h] files contain the eTPU module configuration data and
startup routines. These templates will need to be modified for the system and MCU -
timing information, register settings, etc.

· The etpu_awac_utilities.[c, h] files provide an API between the eTPU host application
code and the eTPU hardware. These files will not require any modification.

· The file etpu_awac_auto_api.h consolidates and configures the auto-defines and auto-
struct code used by AWAC. It will need modification if a non-standard build name (not
"etpu_set") is used.

· Files etpu_struct.h and typedefs.h are standard files from NXP that support the eTPU.

7. Auto Code Generation

Compiler Reference Manual, page 115 (C) 2008-2023 ASH WARE, Inc.

· The mpc5<xxx>_vars_awac.h files - the one matching the MCU version needs to be
included in etpu_awac_main.c.

7.3.2 Editing Template Files

As noted in the previous section, a number of the AWAC files are template files that will
require editing by the user in order to compile and execute correctly. In most cases where
user intervention is required, #error pre-processor directives have been added to alert the
user. Modifications should be made at these points and then the #error directives removed.

7.3.3 System Simulation Support

In order to test and debug the eTPU module and application initialization code in simulation,
an additional file is provided that supports simulated host startup and calls the AWAC
eTPU initialization code. The file is called "main_awac_sim.c" and is located in the Lib
sub-directory in the tool install. See the AWAC demo for an example of how it works.

page 116, Compiler Reference Manual

8. Initialized Data Files

Compiler Reference Manual, page 117 (C) 2008-2023 ASH WARE, Inc.

8
Initialized Data Files

The initialized data files contains data structures that, in conjunction with the memcpy()
function, can be used to initialize your global and channel-frame memory.

Note that there may be “holes” in the initialized data. Holes are areas where un-initialized
variables are located, or areas (due to the funny 24-bit nature of the eTPU) where there
are simply no variables located. Holes get initialized to zero. Holes may be interspersed
between valid initialized data.

The data itself is packaged in macros output into the <output file name>_idata.h file.
These macros take the form of MacroName(address_or_offset , data_value). In the
<output file name>_idata.c file the macros are used to create initialized arrays, ready for
use by host-side eTPU initialization code.

By default the data is packaged as 32-bit unsigned integers. The linker option –data8 can
be used to output the data as unsigned 8-bit instead.

8.1 Initialized Global Memory

The global memory data structure has the following form:

unsigned int <GlobalMnemonic>global_mem_init[] =
{

0x00A02433, …,
};

8. Initialized Data Files

page 118, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

The start address is the DATA RAM base plus the offset found in the auto-defines file.
The actual text in the _idata.c file is different because the array initialization is done using
the macros from the matching _idata.h, as follows:

// Global Memory Initialization Data Array
unsigned int _global_mem_init[] =
{
#undef __GLOBAL_MEM_INIT32
#define __GLOBAL_MEM_INIT32(addr , val) val,
#include "DeclTest_B_idata.h"
#undef __GLOBAL_MEM_INIT32
};

8.2 Initialized Channel Memory

Each channel (and sometimes groups of channels) has a private copy of its own memory.
It is this private memory that allows (say) a channel running the PWM function to have its
own unique Period and Pulse Width, even when many channels may be running the same
PWM function. The data structure has the following form, where name is the name of the
class (in ETEC mode) or the eTPU Function (in Legacy Mode.)

unsigned int <GlobalMnemonic><Name>_frame_init[] =
{

0x0022A317, …,
};

As with the initialized global data, the actual arrays in the _idata.c file are built up from
macros in the matching _idata.h file (eTPU Function “Test”):

// Test Channel Frame Initialization Data Array
unsigned int _Test_frame_init[] =
{
#undef __Test_CHAN_FRAME_INIT32
#define __Test_CHAN_FRAME_INIT32(addr , val) val,
#include "DeclTest_B_idata.h"
#undef __Test_CHAN_FRAME_INIT32
};

8. Initialized Data Files

Compiler Reference Manual, page 119 (C) 2008-2023 ASH WARE, Inc.

8.3 Using the Initialized Data Macros in the Simulator

The initialized data macros in the _idata.h file can be used in the eTPU Stand-Alone
simulator to simulate the host-side initialization of global data and channel frames. An
example is show below:

// load the global initialized data
#undef __GLOBAL_MEM_INIT32
#define __GLOBAL_MEM_INIT32(address, value) \
 *((ETPU_DATA_SPACE U32 *) address) = value;
#include "DeclTest_B_idata.h"
#undef __GLOBAL_MEM_INIT32

// load the “Test” channel frame for one channel
// in this example the channel frame base
// is hardcoded to 0x100
#undef __Test_CHAN_FRAME_INIT32
#define __Test_CHAN_FRAME_INIT32(offset, value) \
 * ((ETPU_DATA_SPACE U32 *) \
 0x100+offset) = value;
#include "DeclTest_B_idata.h"
#undef __Test_CHAN_FRAME_INIT32

page 120, Compiler Reference Manual

9. Global Error Handling

Compiler Reference Manual, page 121 (C) 2008-2023 ASH WARE, Inc.

9
Global Error Handling

A variety of causes including alpha particles, coding errors, and silicon defects could cause
eTPU code to execute in un-intended ways. The key issues to consider are error detection
and error correction.

Undetected errors are the bane of electronic reliability because the probability of their
presence accumulates over time, code size, hours spent coding, etc. Therefore ETEC
places primary emphasis on error detection and has built in hooks for detection of many
errors.

Error correction, on the other hand, is considered to be in the user’s domain and ASH
WARE strongly recommends that each system designer carefully design their systems with
error correction strategies in place. Having said that, ETEC does support “default” error
correction mechanisms. If these default mechanisms are not overridden, they will correct
a variety of detected error cases. The default error handling mechanism is disabled or
overridden by using the -ErrorLib- linker command line option.

ASH WARE recommends that users create specially-named error handlers for a variety of
possible error scenarios. These handlers are generally written in assembly, and have the
following names.

_Error_handler_entry.
_Error_handler_scm_off_weeds
_Error_handler_fill_weeds
_Error_handler_unexpected_thread

9. Global Error Handling

page 122, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

These error handlers should be used to correct the error conditions described later in this
section.

9.1 Global Error Data

If an error is detected, information helpful in diagnosing the source of the error is placed in
an automatically-generated global variable named as follows:

_Global_error_data.

This 32-bit variable is used to encode error information as shown in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EESB Spare

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EEVS EECL EECN

EESB – Encoded Error Source Bits

Bit = 1 indicates that such an error has been detected
Bit = 0 indicates that such an error has not been detected.

Bit 31 indicates that _Error_handler_entry has executed.
Bit 30 indicates that _Error_handler_scm_off_weeds has executed.
Bit 29 indicates that _Error_handler_fill_weeds has executed.
Bit 28 indicates that _Error_handler_unexpected_thread has executed
Bit 27-22 set aside for user-defined errors (custom extension of error handler)

EEVS – Encoded Event States

Bit = 1 indicates that an event is active
Bit = 0 indicates that an event is not active

Bit 15 contains the LINK state
Bit 14 contains the Transition B state

9. Global Error Handling

Compiler Reference Manual, page 123 (C) 2008-2023 ASH WARE, Inc.

Bit 13 contains the Transition A state
Bit 12 contains the Match B state
Bit 11 contains the Match A state
Bit 10 contains zero (future expansion)
Bit 9 contains zero (future expansion)

EECL – Encoded Error Conditionals

Bit 8 contains the sampled input pin state
Bit 7 contains the current output pin state
Bit 6 contains the flag 1 state, if available (eTPU2)
Bit 5 contains the flag 0 state, if available (eTPU2)

EECN - Encoded Error Channel Number

This is the active channel number of the last event handler. New incoming event handlers
overwrite this value such that if error handlers are executed multiple times, then the
number contains the last-executed time.

When an error the above error data is written to _Global_error_data, all service
latches are cleared, and the thread exits. In general, for the error handler to be truly useful
for a user, it should be enhanced to issue the microcode global exception, which can trigger
the host global exception handler to execute if the interrupt has been enabled - see specific
microcontroller documentation for details. This interrupt handler can decode the error data
and take an appropriate actions, such as shutting down a channel or eTPU module. The
easiest way to do this is to start from the default handler source code and add the global
exception, bringing this new file into the build, and disabling the default via the -ErrorLib-
linker option.

9.2 Error Handling Library

The ASH WARE defined error handlers are defined in a library named
“_global_error_handler.lib" (for eTPU1) and "_global_error_handler_etpu2.lib" (for
eTPU2) which is provided as part of ETEC. The linker automatically includes one of these
two libraries based on whether the linker is building for eTPU1 or eTPU2.

The error handling library can be disabled from being included in the linking process via the
-ErrorLib- command line option.

9. Global Error Handling

page 124, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

9.3 Invalid Entry Error Handling

Threads get executed based on pointers found in the entry table. The entry table supports
up to 32 functions but it is rare to actually use all 32 functions. The unused entries are
considered to be invalid and in normal operation would never get accessed.

It is an error to access an unused function in the entry table. When possible, unused
entries are filled with the following address.

_Error_handler_entry.

It is not always possible to fill unused entries with this address because unused portions of
the entry table can be used to hold code. So this address is used where the entry table
contains neither eTPU functions nor eTPU code.

9.4 In the SCM OFF Weeds Error Handling

The address space of the eTPU is 64K, but NXP generally only fills a very small portion of
this code space with physical memory. For example, the very first MPC5554 version had
only 12K of code memory. So what happens if, due to an error, the thread of execution
should occur in the unused 52K of code space?

It is an error to execute from the unused portion of the SCM code memory and when this
happens the actual opcode that gets executed is specified by the SCMDATAOFFR
register. ETEC provides an SCMDATAOFFR register value (see the
SCM_OFF_OPCODE #define in the auto-defines header section) that will cause the
following error handler to execute.

_Error_handler_scm_off_weeds

Note that this error handler will only execute if the #define SCM_OFF_OPCODE <value>
provided in the automatically-generated header file is used to program the
ETPUSCMOFFDATAR register.

9.5 In the FILL Weeds Error Handling

Say you have 18K of available code memory but use only 15K. The remaining 3K of code
memory is essentially spare capacity. So what happens if the thread of execution
somehow moves to this extra 3K of code memory?

9. Global Error Handling

Compiler Reference Manual, page 125 (C) 2008-2023 ASH WARE, Inc.

It is an error to execute from this spare memory. ETEC defaults to filling this spare
memory with a jump to the error handler listed below. Note that a jump is used instead of
a call so that the user can possibly determine an address (based on the return address
register, RAR) of any possible originating return that might have caused this code to get
executed in the first place.

_Error_handler_fill_weeds

A related issue is the fill opcode specified on the command line. If a fill-opcode value is
specified on the command line then this overrides the default fill opcode that ETEC would
have used to jump to this error handler. It is therefore an error to both specify a fill opcode
and to override this error hander, and in fact if a fill opcode is specified then ETEC will
neither provide, nor allow, this error handler to exist.

9.6 Unexpected Thread Error Handling

Say you have a function that does not support an incoming link event. If a link does occur
this is an error condition and should be made observable to the host software so that the
problem does not remain undetected. The 'Unexpected Thread' error handler can be used
both in ETEC mode and legacy mode 'C' as well to detect these types of unexpected
errors. Note that no overhead is incurred using the methods described below. The address
of the error handler is injected directly into the entry table.

In ETEC mode simply add the following to any unused entries.

< . . . >

5 | X | X | X | input=X | X | X | low | enable | ::_Error_handler_unexpected_thread

< . . . >

In Legacy mode call the _Error_handler_unexpected_thread as a fragment from any
unused threads. For example, the following could be done if HSR is not used:

if(hsr==1)
{

// Call the error handler as if a fragment
// The address will be injected
// directly into the entry table
// thereby incurring no overhead
_Error_handler_unexpected_thread();

}

The most typical place to reference this error thread would be in the final "else" catch-all
clause:

// ...

9. Global Error Handling

page 126, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

else
{

_Error_handler_unexpected_thread();
}

In the assemble entry table place the unexpected thread error handler directly in the table
as follows.
hsr | lsr | transitionB | transitionA | pin | flag1 | flag0 | load | matches |

 1 | X | X | X | input=0 | X | 0 | low | enable |

::_Error_handler_unexpected_thread

9.7 Extending the Error Handler

It is possible to extend the custom error handler in assembly by adding assembly code that
uses 'user-defined' error bits to extend the error library. Care must be taken to use error
bits set aside for the user, and not those set aside for future extension.

Note that the existing error library is accessed by jumping to label
'_Error_handler_save_states'. When entering this location the P_31_0 register contains
the error bits that the user wishes to set.

// File: UserErrorHandler.sta

// declare the external error handler data bit that will be
set
extern int32 _Global_error_data;

_Error_handler_user:

// Set user-defined error bit 2
// and leave it in p_31_24
ram p_31_0 = _Global_error_data;;
seq goto _Error_handler_save_states;;
alu p_31_24 = p_31_24 | 0x1;; // Set user-defined

error 2

9. Global Error Handling

Compiler Reference Manual, page 127 (C) 2008-2023 ASH WARE, Inc.

9.8 Accessing the Error Handler

It is possible to access the existing error handler library in both 'ETEC' as well as 'Legacy'
mode.

To access the factory-supplied error handlers directly in either mode, they are called suchly

// Link service requests are not supported
// Make this error observable by calling a factory-defined
error handler
if (IsLinkServiceRequestEvent())
{

// Error Detected,
// the ETEC global error handler in etpuc mode
_Error_handler_entry();

}

Note that the three factory-defined error handlers are defined in factory-provided header
file 'ETpu_Lib' as follows

_eTPU_thread _Error_handler_entry(_eTPU_matches_enabled);
_eTPU_thread
_Error_handler_scm_off_weeds(_eTPU_matches_enabled);
_eTPU_thread
_Error_handler_fill_weeds(_eTPU_matches_enabled);

To access a user-defined error handler from 'C' that was written in assembly, the error
handler must be declared as a fragment as follows.

_eTPU_thread _Error_handler_user(_eTPU_matches_enabled);

In ETEC mode these factory-defined and user-defined error handlers can also be directly
injected into the event vector table as follows.

DEFINE_ENTRY_TABLE(TestClass, TestClass, standard,
inputpin, autocfsr)
{

// HSR LSR M1 M2 PIN F0 F1 vector
ETPU_VECTOR1(1, x, x, x, 0, 0, x,

_Error_handler_user),
<... SNIP ...>

ETPU_VECTOR1(5, x, x, x, x, x, x,
_Error_handler_user),

ETPU_VECTOR1(6, x, x, x, x, x, x,
_Error_handler_entry),

ETPU_VECTOR1(7, x, x, x, x, x, x, MyThread),

9. Global Error Handling

page 128, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

ETPU_VECTOR1(0, 1, 1, 1, x, 0, x,
_Error_handler_user),

<... SNIP ...>
ETPU_VECTOR1(0, 1, 1, 0, x, 1, x,

_Error_handler_user),
};

9.9 Creating a User-Defined Error Handler

A user defined error handler can be defined using a fragment. Use of a fragment is an
efficient method because a fragment reduces (and in this case eliminates) the call/return
overhead. From within the thread, simply call the fragment as follows.

// Declare the global error handler as a fragment
// to eliminate the call/return overhead
_eTPU_fragment Global_Error_Func()
{

int l_error = chan;
if (LinkServiceRequest == 1) l_error+=0x0100;
if (MatchALatch == 1) l_error+=0x0200;
if (MatchBLatch == 1) l_error+=0x0400;
if (TransitionALatch == 1) l_error+=0x0800;
if (TransitionBLatch == 1) l_error+=0x1000;
Global_Error = l_error;
ClearAllLatches();

}

// Legacy mode function that accesses the user-defined
error handler
if (IsLinkServiceRequestEvent())
{

// Test accessing
// a user error handler in etpuc mode
Global_Error_Func();

}

In ETEC mode, a user-defined global error handler is declared as a thread, then inserted
directly into the event vector table as follows.

// Get a pointer to the global error handler data
extern int _Global_error_data;

_eTPU_thread MyGlobalErrorHandler(_eTPU_matches_enabled)

9. Global Error Handling

Compiler Reference Manual, page 129 (C) 2008-2023 ASH WARE, Inc.

{
// Set bit 22, this is user-defined error #2
_Global_error_data |= (1<<22);

}

// Set one or more invalid entries to point the the user-
defined error handler
DEFINE_ENTRY_TABLE(TestClass, TestClass, standard,
inputpin, autocfsr)
{

// HSR LSR M1 M2 PIN F0 F1 vector
<... SNIP ...>

ETPU_VECTOR1(0, 1, 1, 1, x, 0, x,
MyGlobalErrorHandler),

<... SNIP ...>
};

The other way to create a custom handler is to disable import of the default with the -
ErrorLib- linker option, but include in the link error handling code that declares the 3 key
labels: _Error_handler_entry, _Error_handler_scm_off_weeds, and
_Error_handler_fill_weeds.

page 130, Compiler Reference Manual

10. Command Line Options

Compiler Reference Manual, page 131 (C) 2008-2023 ASH WARE, Inc.

10
Command Line Options

This section covers the command line options for both the compiler and the preprocessor.

10.1 Compiler Command Line Options

The compiler is called ETEC_cc.exe, and it has the following format:

ETEC_cc.exe <options> <source file name>

where options can be any of the following:

Setting Option Default Example

Display Help

This option overrides all
others and when it
exists no compilation is
actually done.

-h, /? or -? Off -h

Open Manual

Opens the electronic
version of this

-man Off -man

10. Command Line Options

page 132, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

Assembler Reference
Manual.

Open a Specific Manual

Opens an electronic
version of the specified
manual.

-man=<MANUAL>

where MANUAL is one
of the following:

TOOLKIT: Toolkit
User Manual.

COMP: Compiler
Reference Manual

LINK: Linker
Reference Manual.

ASMFS: eTPU
Assembler Reference
Manual - NXP
Syntax.

ASMAW: eTPU
Assembler Reference
Manual - ASH
WARE Syntax.

ETPUSIM: Stand-
Alone eTpu Simulator
Reference Manual.

MTDT: Common
reference manual
covering all
simulator/debugger
products EXCEPT the
eTPU Stand-Alone
simulator.

LICENSE: License
reference manual

Off -man=ETPUCIM

10. Command Line Options

Compiler Reference Manual, page 133 (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

Display Version

Displays the tool name
and version number and
exits with a non-zero
exit code without
compilation.

-version Off -version

Display Licensing Info

Outputs the licensing
information for this tool.

-license Off -license

Target Selection

Select the destination
processor for the
compilation.

-target=<TARGET>

where TARGET can be:

- ETPU1 : compile for
the baseline eTPU
processor.

- ETPU2 : compile for
the eTPU2 processor
version. (TBD)

ETPU1 -target=ETPU2

Console Message
Verbosity

Control the verbosity of
the compiler message
output.

-verb=<N>

where N can be in the
range of 0 (no console
output) to 9 (verbose
message output).

5 -verb=9

Console Message
Suppression

Suppress console
messages by their
type/class. Multiple
types can be specified

-verbSuppress=<TYPE>

where TYPE can be:

- BANNER : the ETEC
version & copyright
banner.

Off -
verbSuppress=SU
MMARY

10. Command Line Options

page 134, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

with multiple –
verbSuppress options.

- SUMMARY : the
success/failure
warning/error count
summary line

- WARNING : all
warning messages

- ERROR : all error
messages (does not
affect the tool exit
code)

- INFO : all
informational messages
will be supressed

Console Message Style

Controls the style of the
error/warning output
messages, primarily for
integration with IDEs

-msgStyle=<STYLE>

where STYLE can be:

- ETEC : default ETEC
message style.

- GNU : output
messages in GNU-
style. This allows the
default error parsers of
tools such as Eclipse to
parse ETEC output and
allow users to click on
an error message and
go to the offending
source line.

- DIAB : output
messages in the style
used by Diab
(WindRiver) compilers.

- MSDV : output in
Microsoft Developer

ETEC -msgStyle=MSDV

10. Command Line Options

Compiler Reference Manual, page 135 (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

Studio format so that
when using the
DevStudio IDE
errors/warnings can be
clicked on to bring
focus to the problem
source code line.

Console Message Path
Style

Controls how the path
and filename are
displayed on any
warning/error messages
that contain filename
information.

-msgPath=<STYLE>

where STYLE can be:

- ASIS : output the
filename as it is input
on the command line
(or found via #include
or search).

- ABS : output the
filename with its full
absolute path.

ASIS -msgPath=ABS

Console Message Limit

Controls the number of
messages output
(warning or error),
before output goes
silent. Note that if the
first error occurs after
the message limit is
exceeded, that first
error is still output.

-msgLimit=<CNT> 50 -msgLimit=20

Source File Search Paths

Specifies any
directories, after the
current one, to be

-I=<PATH>

where PATH is a text
string representing either
a relative or absolute

None -I=..\Include

10. Command Line Options

page 136, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

searched for included
files. Multiple paths
can be specified and
they are searched in the
order of their
appearance in the
command line.

directory path. The
entire option must be in
quotes if the path
contains spaces.

Source File Search Path
Mode

Specifies any
directories, after the
current

-IMode=<MODE>

where MODE can be:

- SOURCEREL : search
paths specified with -I
are relative to the source
file being compiled.

- CWDREL : search
paths specified with -I
are relative to the current
working directory.

SOURCER
EL

-
IMode=CWDRE
L

Macro Definition

Supplies a macro
definition to the pre-
processing stage of
compilation.

-d=<MACRO>

where if MACRO is an
identifier than it is pre-
defined to a value of 1,
otherwise it can be of the
form macro=definition,
where macro gets the
value specified in
‘definition’.

None -d=DBG_BUILD

Output File

Overrides the default
behavior of generating
an object file with the

-out=<FILENAME>

where FILENAME is
written with the
compilation output. If

None -out=file.obj

10. Command Line Options

Compiler Reference Manual, page 137 (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

same base name as the
source file, but with the
.eao extension.

FILENAME does not
have an extension, .eao is
added automatically. The
entire option must be in
quotes if FILENAME
contains spaces.

Static Data Packing

Allow control of the
style for
packing/allocating static
channel frame data. It
does not apply to global
variables, which are
packed as if
FASTACCESS were
applied to them.

-packstatic=<OPTION>

where OPTION can be:

- PACKTIGHT : packs
data as tight as
possible; locations of
sequentially declared
variables are not
necessarily sequential.
 Additionally, accesses
to some data types
may not be coherent
with regards to
neighboring data, when
this setting is used.

- FASTACCESS : packs
data so as to provide
the fastest access
possible by allocating
space in optimal spots.
 Uses more memory
but increases code
speed and removes
coherency conflicts.

PACKTIG
HT

-
packstatic=FAST
ACCESS

Array Data Packing

Controls how data in
arrays is packed for arrays

-packarray=<OPTION>

where OPTION can be:

PACKTIG
HT

-
packarray=FAST
ACCESS

10. Command Line Options

page 138, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

of 8 and 16-bit types. This
setting also affects the
corresponding pointer type
arithmetic (i.e. pointers
increment/decrement by
the same amount as the
corresponding array stride
size)

- PACKTIGHT : for 8
and 16-bit types, the
array stride size is the
same as the base size
(1 and 2 bytes
respectively).

- FASTACCESS : the
stride size for 8 or 16
bit type arrays is
always 4 bytes,
resulting in optimal
load/store performance
but potentially
increased memory
usage.

Struct Data Packing

Control how members
are placed in a
structure.

-packstruct=<OPTION>

where OPTION can be:

- PACKTIGHT : packs
members as tight as
possible; offsets of
sequentially declared
members are not
necessarily sequential.
 Additionally, accesses
to some members may
not be coherent with
regards to neighboring
data, when this setting
is used.

- FASTACCESS : packs
members so as to
provide the fastest
access possible by
locating data in optimal

PACKTIG
HT

-
packstruct=FAST
ACCESS

10. Command Line Options

Compiler Reference Manual, page 139 (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

spots. Uses more
memory but increases
code speed and
removes coherency
conflicts.

- LEGACY : packs
members similar to
PACKTIGHT, but
with slight differences
as it attempts to
exactly mimic legacy
tools structure packing
algorithms.

ANSI Mode

Enforces ANSI
behavior with structure
& array packing.
Where ANSI-compliant
code is not generated a
warning is issued. Care
should be taken using
this is it can reduce
code efficiency and
increase memory
usage.

-ansi Off -ansi

Preprocessor Only

This option stops
compilation after the C
preprocessing stage. If
an output file has been
specified via –out, the
results go to that,
otherwise the

-ppOnly Off -ppOnly

10. Command Line Options

page 140, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

preprocessed source is
output on stdout.

Signed Char

When specified, “char”
variables are treated as
signed. The ETEC
default is to treat
“char” as unsigned.

-signedchar Off -signedchar

Unsigned Char

When specified, “char”
variables are treated as
unsigned. This is the
ETEC default so this
option is superfluous.

-unsignedchar On -unsignedchar

Use Global Scratchpad
Model

When specified, code is
compiled using the
scratchpad
programming model
rather than the stack-
based programming
model. The scratchpad
is located in global
memory, and thus care
must be taken to avoid
conflicts on dual-eTPU
systems.

-globalScratchpad Off -globalScratchpad

Use Engine Scratchpad
Model

-engineScratchpad Off -engineScratchpad

10. Command Line Options

Compiler Reference Manual, page 141 (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

When specified, code is
compiled using the
scratchpad
programming model
rather than the stack-
based programming
model. The scratchpad
is located in engine-
relative address space.
 This option is only
available on the
eTPU2.

Enable Full Fract Precision

Historically, some
multiplication with
signed fractional type
parameters truncate the
LSB bit. Using this
option generates code
that provides full
precision results. Note
the full precision code is
less efficient.

-fractFullPrec Off -fractFullPrec

Enable Parameter Passing
via Register in Scratchpad
Mode

When specified, the
scratchpad model is
enhanced to pass some
parameters by register
like the stack model.
This option has no
effect in stack mode.

-passParamByReg Off -
passParamByReg

10. Command Line Options

page 142, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

Set Register to General
Purpose

This option is used to
indicate that the
specified special
register(s) can instead
be allocated for general
use. The registers for
which this applies are
TPR, TRR, TCR1 and
TCR2. For example, in
a system that does not
use TCR2, its use as a
timebase can be
disabled and it can be
used by the compiler to
generate faster and
tighter code.

-
setRegGP=<REG[,REG..
.]>

Off, all
registers are
assigned
their regular
functions.

-
setRegGP=TPR,T
RR,TCR2

Error on Warning

Turn any warning into a
compilation error.
Note: this is the same
option as -warnError
which has been
deprecated.

-strict Off -strict

Warning Disable

Disable a specific
compilation warning via
its numerical identifier.
Applies to informational
messages as well.

-
warnDis=<WARNID[,W
ARNID...]>

Off (all
warnings
enabled)

-warnDis=343

10. Command Line Options

Compiler Reference Manual, page 143 (C) 2008-2023 ASH WARE, Inc.

Note that the source file name is not constrained to be the last command line argument, but
that is the standard practice. Also note that command line options are not case-sensitive,
however, there can be no spaces between the option, the ‘=’ (if any) and the option data.
Option data that contains spaces must be enclosed in quotes (the whole option).

10.2 C Preprocessor Command Line Options

The C Preprocessor executable is called ETEC_cpp.exe, and it has the following format:

ETEC_cpp.exe <options> <source file>

Where available options are listed & described below. Note that the source file name is
not constrained to follow the list of options. Also note that command line options are not
case-sensitive, however, there can be no spaces between the option, the ‘=’ (if any) and
the option data. Option data that contains spaces must be enclosed in quotes (the whole
option).

Setting Option Default Example

Display Help

This option overrides all
others and when it exists
no compilation is actually
done.

-h or /? Off -h

Macro Definition

Supplies a macro
definition for use during
preprocessing.

-d=<MACRO>

where if MACRO is an
identifier than it is pre-
defined to a value of 1,
otherwise it can be of the
form macro=definition,
where macro gets the
value specified in
‘definition’.

None -d= DBG_BUILD

Source File Search Paths

Specifies any directories,
after the current one, to

-I=<PATH> None -I=..\Include

10. Command Line Options

page 144, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

be searched for included
files. Multiple paths can
be specified and they are
searched in the order of
their appearance in the
command line.

where PATH is a text
string representing either
a relative or absolute
directory path. The
entire option must be in
quotes if the path
contains spaces.

Mode (Compatibility)

Tells the C preprocessor
to run in the specified
mode.

-mode=<MODE>

where MODE can be:

- ETPUC : handle
existing code better.

Off -mode=ETPUC

Preprocessor Output File

Sends the preprocessed
source to the specified
file, rather than placing it
on stdout per the default.

-out=<FILENAME>

where FILENAME is
written with the source
file preprocessing
result.

Off -out=etpu_pwm.i

Console Message Verbosity

Control the verbosity of
the compiler message
output.

-verb=<N>

where N can be in the
range of 0 (no console
output) to 9 (verbose
message output).

5 -verb=9

Console Message
Suppression

Suppress console
messages by their
type/class. Multiple types
can be specified with
multiple –verbSuppress
options.

-verbSuppress=<TYPE>

where TYPE can be:

- BANNER : the ETEC
version & copyright
banner.

- SUMMARY : the
success/failure

Off -verbSuppress=
SUMMARY

10. Command Line Options

Compiler Reference Manual, page 145 (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

warning/error count
summary line

- WARNING : all
warning messages

- ERROR : all error
messages (does not
affect the tool exit
code)

- INFO : all
informational messages

Console Message Style

Controls the style of the
error/warning output
messages, primarily for
integration with IDEs

-msgStyle=<STYLE>

where STYLE can be:

- ETEC : default ETEC
message style.

- GNU : output
messages in GNU-
style. This allows the
default error parsers of
tools such as Eclipse to
parse ETEC output
and allow users to click
on an error message
and go to the offending
source line.

- DIAB : output
messages in the style
used by Diab
(WindRiver) compilers.

- MSDV : output in
Microsoft Developer
Studio format so that
when using the
DevStudio IDE

ETEC -msgStyle= MSDV

10. Command Line Options

page 146, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

errors/warnings can be
clicked on to bring
focus to the problem
source code line.

Console Message Path Style

Controls how the path
and filename are
displayed on any
warning/error messages
that contain filename
information.

-msgPath=<STYLE>

where STYLE can be:

- ASIS : output the
filename as it is input
on the command line
(or found via #include
or search).

- ABS : output the
filename with its full
absolute path.

ASIS -msgPath=ABS

Console Message Limit

Controls the number of
messages output
(warning or error), before
output goes silent. Note
that if the first error
occurs after the message
limit is exceeded, that
first error is still output.

-msgLimit=<CNT> 50 -msgLimit=20

Display Version

Displays the tool name
and version number and
exits with a non-zero exit
code without compilation.

-version Off -version

Display Licensing Info -license Off -license

10. Command Line Options

Compiler Reference Manual, page 147 (C) 2008-2023 ASH WARE, Inc.

Setting Option Default Example

Outputs the licensing
information for this tool.

Error on Warning

Turn any warning into a
preprocessing error.

-warnError Off -warnError

Warning Disable

Disable a specific
preprocessing warning
via its numerical
identifier. Applies to
informational messages
as well.

-warnDis=<WARNID> Off (all
warnings
enabled)

-warnDis=343

10.3 Console Message Verbosity (-Verb)

A value of zero causes all error and warning messages to be suppressed. The only
feedback from the tool suite is the exit code which is zero on success and non-zero on
error.

A value of one causes only the number of errors and warnings to be printed to the screen.
The actual error and warning messages are suppressed.

CC Success (3 Warnings) EntryTable.c -> EntryTable.eao

Asm Success EntryTable.sta -> EntryTable.eao

Link Success EntryTable,Shift,... -> EntryTable.gxs

A value of three:

[NOTE: the console utility will buffer up the first line, “Assembling file Shift.sta” …, and
only prints it out on detection of one or more errors.]

CC Success EntryTable.c -> EntryTable.eao
Assembling file Shift.sta ...
Warning: blah blah blah
Warning: blah blah blah

10. Command Line Options

page 148, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Warning: blah blah blah
Asm Success (3 warnings) Shift.sta -> Shift.eao

Linking file Shift.eao ...
Linking file Pwm.eao ...
Linking file Test2.eao
Warning: blah blah blah
Warning: blah blah blah

Link Success EntryTable,Shift,... -> EntryTable.gxs

A value of five, which is the default.

Version …asdffasf
Assembling file Shift.sta ...
Optons …
Build stats …
Success! 0 errors, 13 warnings.

A value of greater than five prints out more information in a way that is specific to each
tool in the suite.

10.4 Version (-Version)

This command line option displays the tool name and version number and exits with a non-
zero exit code without doing anything other than generating this message (no compile, no
link, etc.) A non-zero (failing) exit code is returned in case the user has accidentally
injected this command line argument into a make. The output is guaranteed to appear as
follows so that a user can develop a parsing tool to determine the version of the tool being
used a particular build.

<ToolName> Version <MajorRevNum>.<MinorRevNum> Build <BuildLetter>

Where ToolName is the name of the tool being used and is either “ETEC Compiler”,
“ETEC Assembler” or “ETEC Linker.” MajorRevNum is the tool’s major revision
number. MinorRevNum is the tools minor revision number, and Build Letter is the build
number of the tool. The following is an example using the ETEC Linker.

C:\Mtdt\TestsHigh\ETEC_linker.exe –Version

The following output is generated using an early prototype linker.

ETEC Linker Version 0.27 Build C

11. Limitations

Compiler Reference Manual, page 149 (C) 2008-2023 ASH WARE, Inc.

11
Limitations

Generally, the latest support details can be found at http://www.ashware.com. The sections
below do outline some limitations that are expected to never change.

11.1 Restrictions to the ISO/IEC 9899 C Definition

No floating point (float or double types) support.

The ETEC system does not provide any portions of the C standard library.

page 150, Compiler Reference Manual

12. Supported Features

Compiler Reference Manual, page 151 (C) 2008-2023 ASH WARE, Inc.

12
Supported Features

The following 'C' language features are supported by the ETEC compiler.

12.1 General C Language Support

The current ETEC version has some limitations. The list below details the portions of the
C language that are as yet unsupported.

· Function pointers

· Structure initializers

· Designators

· Variable-length arrays

· _Accum type not supported; subset of _Fract capability supported

12.2 eTPU Programming Model Support

Fully supported.

12. Supported Features

page 152, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

12.3 Compatibility Mode Support

This section refers to constructs and syntax specific to existing code.

12.3.1 Entry Table Support

The if-else block entry table model is fully supported.

12.3.2 #pragma support

Items in [] are optional. Only one of the items in a { } is allowed.

#pragma ETPU_function

Syntax:

#pragma ETPU_function <function name>
 [, {standard | alternate}]
 [, {etpd_input | etpd_output}]
 [@ <function number>];

<function name> must match and precede a function in the source code of the same name,
with a void return type and whose parameters represent the eTPU function’s channel
variables.

The standard / alternate setting controls the entry table type for the function (standard is
default).

The entry table pin direction auto-defines macro generation is controlled by the etpd_input /
etpd_output item. If not specified, nothing is generated into the auto-defines file (default of
input).

<function number> is processed and passed to the linker. Function numbers are
automatically assigned at link time if a static number was not specified.

It is assumed the function called out has an appropriate format of if/else blocks to defined
the entry table, and compilation will fail if not, or if they do not match the standard or
alternate setting.

No other legacy #pragma options are supported at this time.

13. Appendix A : Pragma Support

Compiler Reference Manual, page 153 (C) 2008-2023 ASH WARE, Inc.

13
Appendix A : Pragma Support

This section covers the #pragmas supported by the ETEC compiler. Note that these are
generally also supported by the ETEC assembler. There are two classes of #pragmas -
one class are "code" pragmas. The code pragmas affect how code is generated and
optimized AND their location within the code is important. The second class is everything
else. Currently, the following are the supported code pragmas:

· atomic_begin

· atomic_end

· optimization_boundary_all

· optimization_disable_start

· optimization_disable_end

· wctl_loop_iterations

The code pragmas syntactically work like C statements, and thus they must be placed
within the source code like a C statement. The examples below show an incorrect
placement and a valid code pragma placement.

if (...)

{

}

#pragma optimization_boundary_all // will fail

13. Appendix A : Pragma Support

page 154, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

else

{

}

While the below would work:

if (...)

{

}

else

{

#pragma optimization_boundary_all // ok

...

}

13.1 Verify Version

A #pragma to verify that the proper version of the ETEC Compiler is being used to
generate a particular piece of source code is available.

#pragma verify_version <comparator>, "<version string>",
"<error message>"

When such a #pragma is processed by the compiler, a comparison is performed using the
specified <comparator> operation, of the ETEC Compiler’s version and the specified
"<version string>". The supported comparators are:

GE – greater-than-equal
GT – greater-than
EQ – equal
LE – less-than-equal
LT – less-than

The specified version string must have the format of "<major version number>.<minor
version number (2 digits)><build letter (letter A-Z)>". The last token of the #pragma
verify_version is a user-supplied error message that will be output should the comparison
fail.

For example, if the compiler were to encounter the following in the source code

#pragma verify_version GE, "1.20C", "this build requires
ETEC version 1.20C or newer"

The ETEC Compiler will perform the test <ETEC Compiler version> >= "1.20C", and if the
result is false an error occurs and the supplied message is output as part of the error. With
this particular example, below are some failing & passing cases that explain how the
comparison is done

// (equal to specified "1.20C")

13. Appendix A : Pragma Support

Compiler Reference Manual, page 155 (C) 2008-2023 ASH WARE, Inc.

ETEC Compiler version = 1.20C => true

// (major version is less than that specified)
ETEC Compiler version = 0.50.G => false

// (minor version 21 greater than that specified)
ETEC Compiler version = 1.21A => true

// (build letter greater than that specified)
ETEC Compiler version = 1.20E => true

13.2 Disabling Optimization in Chunks of Code

If it is desired to disable optimization on a section of code, the pragmas

#pragma optimization_disable_start

and

#pragma optimization_disable_end

can be used to do so. All optimizations are disabled within the specified region, so this
feature should be used with care.

13.3 Disabling Optimizations by Type

The ETEC optimizer operates by applying a series of optimizations to the code, thereby
reducing code size, improving worst case thread length, reducing the number of RAM
accesses, etc. Although these optimizations are generally disabled en-masse from the
command line using -opt-, it is also possible (but hopefully never) required to individually
disable specific optimizations within a source code file using the following option.

#pragma disable_optimization <Num>

This disables optimization number, <num>, in entire translation unit(s) in which the source
code or header file is found.

The optimization numbers are not documented and must be obtained directly from ASH
WARE. Note that the purpose of disabling specific optimizations is to work-around
optimizer bugs in conjunction with ASH WARE support personnel.

13. Appendix A : Pragma Support

page 156, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

13.4 Atomicity Control

An atomic region can be specified by the enclosing pragmas

#pragma atomic_begin
// code to be atomic
// ...
#pragma atomic_end

The contents of an atomic region must compile into a single opcode or an error results.
This atomic opcode is guaranteed to be kept together throughout the optimization process.

13.5 Optimization Boundary (Synchronization) Control

The pragma

#pragma optimization_boundary_all

prevents any opcodes or sub-instructions from moving across the #pragma point in the
source code. Generally this should not be used as it will result in degraded performance,
but if a case arises wherein optimization produces unwanted behavior, it can be a useful
construct.

13.6 Thread Length Verification (WCTL)

The verify_wctl pragma are used for the following:

· No thread referenced from a Class or eTPU Function (including both member
threads and global threads) exceed a specified number of steps or RAM accesses.

· A specific thread does not exceed a specified number of steps or ram accesses.

· For classes with multiple entry tables, the worst-case thread of any entry table can
be specified (currently only available in ETEC mode.)

· A global ‘C’ function or member ‘C’ function does not exceed a specified number
of steps or ram accesses.

The syntax is as follows:

#pragma verify_wctl <eTPUFunction> <MaxSteps>
steps <MaxRams> rams

13. Appendix A : Pragma Support

Compiler Reference Manual, page 157 (C) 2008-2023 ASH WARE, Inc.

#pragma verify_wctl <eTPUFunction>::<Thread> <MaxSteps>
steps <MaxRams> rams

#pragma verify_wctl <Class> <MaxSteps> steps
<MaxRams> rams
#pragma verify_wctl <Class>::<Thread> <MaxSteps> steps
<MaxRams> rams
#pragma verify_wctl <Class>::<Table> <MaxSteps> steps
<MaxRams> rams
#pragma verify_wctl <Class>::<CFunc> <MaxSteps> steps
<MaxRams> rams

#pragma verify_wctl <GlobalCFunc> <MaxSteps> steps
<MaxRams> rams

Note that global threads must be scoped with a class that references it. In other words,
say there is a common global thread referenced from several different classes entry tables.
 The following syntax would be required where the class name is the name of one class
that references the global thread.

#pragma verify_wctl <Class>::<GlobalThread> <MaxSteps>
steps <MaxRams> rams

Some called functions (‘C’ functions or member functions) may have routes that return to
the caller but also may end the thread. In such causes the verify_wctl acts on the longer
of these two.

The WCTL analyses assumes that called functions are well-behaved in terms of call-stack
hierarchy. For instance, if Func() calls FuncB() and FuncB() calls FuncC(), a return in
FuncA() will go to the location in FuncB() where the call occurred. Additionally, a return
within FuncB() will then return to Func() where that call occurred. In order for this to
occur, the rar register must be handled correctly, which is guaranteed in ETEC compiled
code, as long as inline assembly does not modify the RAR register. It is also guaranteed in
assembly as long as RAR save-restore operations are employed in a function’s prologue
and epilogue.

The WCTL calculations remain valid even when a thread ends in a called function.

The following are examples uses of verify_wctl:

// Verify WCTL of a global function
#pragma verify_wctl mc_sqrt 82 steps 0 rams

// Verify WCTL of a specific thread within a class
#pragma verify_wctl UART::SendOneBit 25 steps 7 rams

13. Appendix A : Pragma Support

page 158, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

// Verify WCTL of the longest thread within an entire class
#pragma verify_wctl UART 30 steps 9 rams

13.7 Forcing the WCTL

In some cases a thread, eTPU function, or an eTPU class may not be able to be analyzed.
 This can occur when multiple loop are encountered or when the program flow is too
convuluted for a static analyses. In these cases, the maximum WCTL can be forced using
the following #pragma.

#pragma force_wctl <Name> <max_steps> steps <max_rams> rams

An example of this is the square root function in the standard library used in NXP set 4.
This has two loops where the maximum number of times through each of the loops is inter-
dependent, and this complicated loop limit relationship is well, not supported ETEC's worst
case thread length analyses. The following #pragma is used to establish this limit

#pragma force_wctl mc_sqrt 82 steps 0 rams

13.8 Excluding a thread from WCTL

A thread can be excluded from the WCTL calculation of a function. This is normally used
for initialization or error handling threads that in normal operation would not contribute to
the Worst Case Latency (WCL) calculation. The format is as follows:

#pragma exclude_wctl <eTPU Function>::<ExcludedInitThread>

For example the following excludes a UART's initialization thread from the worst case.

#pragma exclude_wctl UART::init

13.9 Loop Iteration Count

Loops in eTPU code are generally not a good programming practice because the eTPU is
an event/response machine in which long threads (such as those caused by loops) can
prevent the quick response time to meet many applications’ timing requirements.

However, loops are occasionally required, and are therefore supported by the optimizer.

But there is no way to analyze the worst case thread length for threads that contain loops,
and therefore loops prevent analyses unless loop bounding iteration tags are added.

13. Appendix A : Pragma Support

Compiler Reference Manual, page 159 (C) 2008-2023 ASH WARE, Inc.

#pragma wctl_loop_iterations <max_loop_count>
<Some Loop>

It is critical that this pragma be placed right before the loop construct, so that the
connection is properly found - here is a simple example:

#pragma wctl_loop_iterations 10
while (delayCount < threshold) { delayCount++; }

13.10 Code Size Verification

The code size verification pragma, verify_code_size, allows the user to verify at build time
that their code meets size requirements. Code size verification is done on a function scope
basis. The pragma has the syntax options

#pragma verify_code_size <Function> <MaxSize> bytes

#pragma verify_code_size <Function> <MaxSize> words

#pragma verify_code_size <Class>::<Function> <MaxSize> bytes

#pragma verify_code_size <Class>::<Function> <MaxSize> words

The maximum allowable size for a given function can be specified in bytes or words
(opcodes, 4 bytes each). If the actual size of the function exceeds MaxSize, the linker
issues an error.

This pragma is available in both the Assembler and Compiler.

13.11 Memory Size (Usage) Verification

The memory usage verification pragma, verify_memory_size, allows the user to verify at
build time that their memory usage meets size requirements. Memory usage is verified on
a memory section basis. The pre-defined (default) memory sections are named &
described below:

GLOBAL_VAR - user-declared global variables

GLOBAL_SCRATCHPAD - local variables allocated
 out of global memory (scratchpad)

GLOBAL_ALL - all global memory usage

ENGINE_VAR - user-declared variables
 in engine-relative memory space
 (eTPU2 only)

13. Appendix A : Pragma Support

page 160, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

ENGINE_SCRATCHPAD - local variables allocated
 out of engine-relative memory
 (engine scratchpad, eTPU2 only)

ENGINE_ALL - all engine-relative memory usage
 (eTPU2 only)

STACK - maximum stack size

User-defined memory sections can also be verified. Currently only channel frames are
supported – these are verified by specifying the appropriate eTPU class or function name.

 The pragma has the following syntax options

#pragma verify_memory_size <memory section> <MaxSize> bytes

#pragma verify_memory_size <memory section> <MaxSize> words

#pragma verify_memory_size <eTPU class/function> <MaxSize> bytes

#pragma verify_memory_size <eTPU class/function> <MaxSize> words

The maximum allowable size for a given memory section (or channel frame) can be
specified in bytes or words (4 bytes/word). If the actual size of the memory section
exceeds MaxSize, the linker issues an error.

This pragma is available in both the Assembler and Compiler.

13.12 Same Channel Frame Base Address

When multiple channels use the same channel frame base address, there is no need to re-
load channel variables when the channel is changed. In certain cases this can result in
improvements in code speed and size. The following tells the compiler that the CPBA
register value will be the same for all channel changes of within the specified function.

#pragma same_channel_frame_base <etpu_function>

The etpu_function argument is the name of an eTPU function, C function, or eTPU class.

An example where this is useful is in the NXP set 1 SPI function, which controls multiple
channels that all share the same channel frame base address. The SPI function can
compile tighter when the ETEC tools know about this, which can be done by adding:

#pragma same_channel_frame_base SPI

13. Appendix A : Pragma Support

Compiler Reference Manual, page 161 (C) 2008-2023 ASH WARE, Inc.

13.13 Auto-defines Export

Two #pragmas allow export of macros in the eTPU compilation environment, or user-
defined text, into the auto-defines file. The export macro pragma has the following syntax:

#pragma export_autodef_macro "<output_macro_name>",
<output_macro_value>

The following lines in eTPU source:

#define TEST_INIT_HSR 7
#define TEST_STR "xyz"
#pragma export_autodef_macro "ETPU_TEST_INIT_HSR",
TEST_INIT_HSR
#pragma export_autodef_macro "TEST_STR", TEST_STR

Results in the following in the auto-defines file:

// exported autodef macros from user "#pragma
export_autodef_macro" commands
#define ETPU_TEST_INIT_HSR 7
#define TEST_STR "xyz"

The standard header file "ETpu_Std.h" has a few "helper macros" available that can
potentially make the eTPU source easier to read. Using the macros like:

#define TEST_ODD_PARITY_FM 1
#pragma export_autodef_macro
EXPORT_AUTODEF_MACRO(TEST_ODD_PARITY_FM)
#pragma export_autodef_macro
EXPORT_AUTODEF_MACRO_PRE("ETPU_", TEST_ODD_PARITY_FM)

Results in:

// exported autodef macros from user "#pragma
export_autodef_macro" commands
#define TEST_ODD_PARITY_FM 1
#define ETPU_TEST_ODD_PARITY_FM 1

There is also a pragma to export any user-defined text. Note that this text must be
parseable by whatever compiler processes the auto-defines file when compiling host code,
or it will break the compilation. The export text #pragma has this syntax:

#pragma export_autodef_text "<user_defined_text>"

The text must use C escape sequences when necessary, and can even include newlines for
the output. For example:

#pragma export_autodef_text "#define EXPORT_AUTODEF_VAL 1"

13. Appendix A : Pragma Support

page 162, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

#pragma export_autodef_text "#define EXPORT_AUTODEF_STR
\"abc\""
#pragma export_autodef_text "#define
EXPORT_AUTODEF_FUNC_MACRO(ARG1, ARG2) \\\n ARG1 = ARG2;"

Yields the following in the auto-defines file:

// exported autodef text from user "#pragma
export_autodef_text" commands
#define EXPORT_AUTODEF_VAL 1
#define EXPORT_AUTODEF_STR "abc"
#define EXPORT_AUTODEF_FUNC_MACRO(ARG1, ARG2) \
 ARG1 = ARG2;

13.14 Private Channel Frame Variables

When using the eTPU-C programming model, channel frame variables can be kept
"private", that is, their information is not exported in the auto-defines file, by declaring them
via the "static" technique and using the private channel frame pragma (#pragma
private_static_channel_frame). The default behavior (no pragma) is to have all channel
frame variables in an eTPU-C function be public. See the example below.

#pragma ETPU_function PWM, alternate;
#pragma private_static_channel_frame

void PWM(int24 Flag, // all parameters always exported to
auto-defines
 int24 Period,
 int24 ActiveTime,
 int24 Coherent_Period,
 int24 Coherent_ActiveTime)
{

static int24 LastFrame; // not exported to auto-
defines because of pragma above

static int24 NextEdge;

// ...

A matching pragma to switch back to the default public model is:

#pragma public_static_channel_frame

13. Appendix A : Pragma Support

Compiler Reference Manual, page 163 (C) 2008-2023 ASH WARE, Inc.

13.15 Explicit Locating

Global symbols can be located at explicit addresses via #pragma.

#pragma locate_symbol <Symbol Name> <Address>

The pragma must occur in the source before and definition or declaration of the symbol.
The address can be anywhere in SDM - thus explicitly located variables in eTPU code can
be located outside the default low memory global address range of 0x0 - 0x400, and all
accesses will be made using the architecture's indirect addressing mode. It is the main
purpose of this capability to allow data (particularly large data buffers) to be placed at the
end of memory, thereby leaving the low memory available for regular global variables or
scratchpad. The address can be specified in octal, decimal or hexadecimal, and it must be
a single constant (no expressions allowed). Some examples:

#pragma locate_symbol g_el_array 0x601

int24 g_el_array[16];

#pragma locate_symbol g_el_struct2 0x700

struct GS g_el_struct2;

or

// header file extern declaration

#pragma locate_symbol g1 0x400

extern int8 g1;

#pragma locate_symbol g2 0x406

extern int16 g2;

The address specified must have the proper alignment (address modulo 4) given the symbol
type. Given the global scope, 8 bit variables have an alignment of 0 bytes, 16 bit variables
have an alignment of 2 bytes, 24 bit align at an offset of 1 byte, and 32 bit variables of
course align on the word boundary (0). Aggregate types will depend upon the exact
contents and packing. A compilation error is thrown if the alignment is wrong.

Explicitly located symbols can overlay each other, but when detected, a warning is issued
by the linker.

Regular global symbols/variables are treated as a block and will try to be located in the
lowest memory address possible (ideally, starting at 0). Explicitly located symbols in low
memory can push this off. Any global scratchpad is also treated as a contiguous block and
will also try to be located in the lowest memory slot possible, after regular global variables
are located. It is recommended that explicitly located globals not be placed into low
memory as it can lead to holes, and possible cause regular globals and scratchpad to run
out of memory.

The defines file has macros for the addresses for explicitly located symbols, but they are
not counted as part of the global data size macros UNLESS they (some) are placed in low

13. Appendix A : Pragma Support

page 164, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

memory before regular global symbols. Note also that the macros for recommended
channel frame and stack addresses do not account for explicitly located symbols, so take
care. They are also listed in the .map file, but again not as part of the regular global data
section. Last, explicitly located variables do not appear in the auto-struct output.

13.16 ByteCraft #pragma write Support

Essentially all #pragma write syntax for generating host API files is supported in ETEC.
See the Pragma Write Manual for all the details.

14. Appendix B : Data Packing Details

Compiler Reference Manual, page 165 (C) 2008-2023 ASH WARE, Inc.

14
Appendix B : Data Packing

Details

This appendix provide further detail on the non-default data packing modes
(FASTACCESS), and more details on how ANSI mode affects packing. Again, note that
these algorithms are not set in stone and code that uses them (and more specifically host
code) should use the auto-defines data for working with data in the SDM.

14.1 Channel Frame FASTACCESS Mode

In FASTACCESS mode channel variables are allocated at address locations where they
can be most efficiently accessed & operated on. Like TIGHT mode, larger objects are
packed first. Note that 1-byte parameters can also occupy the low byte of the 3 LSByte
area.

Given a set of channel frame variables:

int x, y; // 24-bit vars
char c1, c2, c3, c4, c5, c6, c7;
short a, b, c; // 16-bit vars
struct SomeStruct somestruct;
 // sizeof(SomeStruct) == 8

The packing would look like:

SDM Channel Frame MSByt 3 LSBytes

14. Appendix B : Data Packing Details

page 166, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Address Offset e

0 c1 x

4 c2 y

8 somestruct

12

16 c3 unused a

20 c4 unused b

24 c5 unused c

28 c6 unused c7

14.2 Structure FASTACCESS Mode

The FASTACCESS struct packing algorithm is again similar to FASTACCESS channel
frame pack mode. A few examples are shown below:

struct TwoCharStruct
{

char x; // offset 0
char y; // offset 3
}; // sizeof() == 4

struct Int16_8Struct
{

int16 twobytes; // offset 2
int8 onebyte; // offset 0

}; // sizeof() == 4

struct Int16_8_8Struct

14. Appendix B : Data Packing Details

Compiler Reference Manual, page 167 (C) 2008-2023 ASH WARE, Inc.

{
int16 twobytes; // offset 2
int8 onebyte_1; // offset 0

int8 onebyte_2; // offset 4
}; // sizeof() == 5

Otherwise, see the FASTACCESS mode packing example in section 12.1.

14.3 Structure PACKTIGHT with ANSI Mode Enabled

The ANSI pack modes have similar rules to the non-ANSI versions, except that each
struct member is considered in order for packing, and must have an offset greater than its
predecessor. Note that member order can have significant impact on how tightly the data
packs.

The set of channel frame variables:

int x, y; // 24-bit vars
char c1, c2, c3, c4, c5, c6;
short a, b, c; // 16-bit vars
struct SomeStruct somestruct; // sizeof(SomeStruct) == 8

Would get packed like:

Struct Offset MSByt
e

3 LSBytes

0 (-1 actually since
the base struct
address is considered
to start at x)

unused x

4 (3) unused y

8 (7) c1 c2 c3 c4

12 (11) c5 c6 a

16 (15) b c

14. Appendix B : Data Packing Details

page 168, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

20 (19) somestruct

24 (23)

14.4 Structure FASTACCESS with ANSI Mode Enabled

This mode is similar to FASTACCESS packing, but with guaranteed ascending order of the
member offsets. Note that member order can have significant impact on how tightly the
data packs.

The set of channel frame variables:

int x, y; // 24-bit vars
char c1, c2, c3, c4, c5, c6, c7;
short a, b, c; // 16-bit vars
struct SomeStruct somestruct; // sizeof(SomeStruct) == 8

Would get packed like:

Struct Offset MSByte 3 LSBytes

0 (-1 actually since
the base struct
address is
considered to start at
x)

unused x

4 (3) unused y

8 (7) c1 unused c2

12 (11) c3 unused c4

16 (15) c5 unused c6

20 (19) c7 unused a

24 (23) unused b

14. Appendix B : Data Packing Details

Compiler Reference Manual, page 169 (C) 2008-2023 ASH WARE, Inc.

28 (27) unused c

32 (31) somestruct

36 (35)

14.5 Array FASTACCESS Mode

With array FASTACCESS mode the array stride size is always a multiple of 4. This also
means that when using this mode, incrementing a pointer to char changes the address by 4
bytes rather than 1! Thus care must be taken when using this mode, however, it can
generate significantly more efficient code when array access is required. Arrays of
elements with a size of 1 byte are aligned on modulo 4 addresses. Elements of size 2 bytes
are aligned at modulo 4 plus 2.

Some example declarations and the ensuing memory allocations are shown below:

char a[6]; // although only burns 6 bytes, sizeof() == 24
int b[3];
struct FiveByteStruct
{
char f1;
int f2;
char f3;
} c[2];
int24 x;
int8 y;
int16 z;

The resulting memory allocation map would look like:

SDM Channel Frame
Address Offset

MSByte 3 LSBytes

0 a[0] b[0]

4 a[1] b[1]

8 a[2] b[2]

14. Appendix B : Data Packing Details

page 170, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

12 a[3] x

16 a[4] unused z

20 a[5] unused y

24 c[0].f1 c[0].f2

28 c[0].f3 unused

32 c[1].f1 c[1].f2

36 c[1].f3 unused

15. Appendix C : eTPU Annotated Object File Format

Compiler Reference Manual, page 171 (C) 2008-2023 ASH WARE, Inc.

15
Appendix C : eTPU Annotated

Object File Format

The eTPU Annotated Assembly format (.EAO) file format is an open format developed
for the purpose of providing an object file format that a compiler or assembler outputs and
that is an input to a linker or optimizer. This format is based on the existing and well
documented GNU file format output by the GNU compiler when the –S (retain assembly
file) is specified (COFF output only). A few distinguishing features of this format are listed
below.

Text format that is human readable (no special visualization tool is required)

Not re-inventing the wheel, the existing GNU format is the baseline.

Where required, additional tags are invented (e.g. valid p_31_24 values on a dispatch
operation)

All required debugging information is included such as originating source file names, line
numbers, data, scoping, etc.

Format Example

.file
“FileName”

.file
"main.c"

Name of the source code file from
which all proceeding .line (line
number) tags refer. Relative
pathing relative to CWD is
employed.

15. Appendix C : eTPU Annotated Object File Format

page 172, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

.line
<LineNum>

.line 8 Source code line number from
which proceeding opcodes are
generated. Numbering goes from
1 to N.

.dispatch .dispatch
0-3,7,9

Indicates valid p_31_24 dispatch
values. Tag precedes the single
dispatch instruction that it
describes. A range is indicated
using the <StartVal>-<EndVal>.
 Ranges are separated by commas

.opten <opt #> Optimization Enable

.optdis <opt
#>

Optimization Disable

.region <type>
“RegionName”

<type> is the region type
(coherency, ramsyncpoint,
intsyncpoint, atomic,
chanchange). RegionName
should match at region start and
end.

.regionend
“RegionName”

.version
<major>,
<minor>,
<build>

Version of assembler or compiler
that generated the .eao file.

.producer { cc
| asm }

.def <name> Begins debugging information for

a symbol name. The definition

15. Appendix C : eTPU Annotated Object File Format

Compiler Reference Manual, page 173 (C) 2008-2023 ASH WARE, Inc.

extends until the .endef directive
is encountered.

.def .bb Begins a new block.

.def .bf Begins a function block.

.def .eb Ends a block.

.def .ef Ends a function block.

.def .eos Ends a struct, union, or enum
definition. The members of such
are listed between the initial
object .def/.endef and the .def
.eos.

.endef Ends a symbol definition begun
with a .def directive.

.global
<symbolName
>

Makes symbol with symbolName
visible for linking (extern).

.scl <class #> Sets the storage-class value for a
symbol. It can only be used
inside a .def/.endef pair.

.size <size #> Sets the storage size of a symbol.
The numbers is in bytes, except if
the symbol represents a bitfield,
in which case it is in buts. It can
only be used inside a .def/.endef
pair.

.tag
<structName>

Used to name and link to
structure/union/enum definitions.

15. Appendix C : eTPU Annotated Object File Format

page 174, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

 It can only be used inside a .def/
.endef pair.

.type <type #> Provides the type attribute for a
symbol. It can only be used
inside a .def/.endef pair.

.val
<address>

Sets the address, offset, or value
of a symbol. It can only be used
inside a .def/.endef pair.

.etpufunction
<functionNam
e>

Marks a symbol as a channel
frame variable and associates
with the proper eTPU function. It
can only be used inside a .def/
.endef pair.

.defentry Used to begin the definition of a
single entry in an entry table.

.ettype
{ standard |
alternate }

Type of entry table

.etpin{ input |
output }

Optional entry table pin direction
conditional. Used by auto-header
for setting the CxCr. ETPD —
Entry Table Pin Direction

.etpuclass
<name>

Optional name of the eTpuClass
to which this entry is associated.

.ettable
<name>

Optional name of the entry table.
 Note that in some applications a
class may have multiple entry
tables.

15. Appendix C : eTPU Annotated Object File Format

Compiler Reference Manual, page 175 (C) 2008-2023 ASH WARE, Inc.

.etlabel
<name>

Code label name that is the
destination of this label. [If it is
not mangled, the label must exist
within the class or must be
global]

.index <N> Index of this entry, valid range is
0 to 31

.val <Value> Value of this entry where the
Preload Parameter (PP) and
Match Enable (ME) have been
encoded, but the Microcode
Address has not.

.etcfsr
<Value>5

Optional entry table channel
function select value. This
handles the (hopefully rare) case
when the user specifies a specific
CFSR value for a function

.endentry Ends the entry definition.

.init <val>,…
,<val>

For initializing global and
channel variables

Storage class values have the following meaning:

15. Appendix C : eTPU Annotated Object File Format

page 176, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Value Storage Class

0 No storage class

1 Automatic variable

2 External symbol

3 Static (internal linkage)

4 Register variable

5 External definition

6 Label

7 Undefined label

8 Member of a structure

9 Function argument (parameter)

10 Structure tag

11 Member of a union

12 Union tag

13 Type definition

14 Uninitialized static

15 Enumeration tag

15. Appendix C : eTPU Annotated Object File Format

Compiler Reference Manual, page 177 (C) 2008-2023 ASH WARE, Inc.

16 Member of an enumeration

17 Register parameter

18 Bit field

19 Tentative definition

20 Static .label symbol

21 External .label symbol

100 Beginning or end of a block

101 Beginning or end of a function

102 End of structure (or union, enumeration)

103 Filename

104 Used only by utility programs

Type attributes have the following meaning:

Value Type Attribute

0 Void type

1 Signed character

2 Character

3 Short integer

15. Appendix C : eTPU Annotated Object File Format

page 178, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

4 Integer

5 Long integer

6 Floating point

7 Double word

8 Structure

9 Union

10 Enumeration

11 Long double precision

12 Unsigned character

13 Unsigned short integer

14 Unsigned integer

15 Unsigned long integer

15.1 Code Labels

Code labels have the following form

.codelabel <name> .type <N> .codelabelend;

Where <name> is the mangled name of the code label, <N> is the code label type where a
type of 0 indicates a natural label, and a type of 1 indicates a compiler contrived type. An
example of a contrived type is the labels generated by an if-else “C” construct.

The following is an example of a code label that is generated by the assembler.

.codelabel _Add_AW613E_Main_; .type 0; .endcodelabel;

15. Appendix C : eTPU Annotated Object File Format

Compiler Reference Manual, page 179 (C) 2008-2023 ASH WARE, Inc.

15.2 Entries

Each entry table entry must have the following form. The .index directive indicates which
of the 32-entries for this table is being defined. All 32 entries must be defined.

.defentry; .ettype standard; .etpin input; .etpuclass Add;

.ettable AW6B2D_NAMELESS_ENTRY_TABLE; .etlabel DanglingElse; .index 0;

.val 0x4000; .line 70; .etcfsr 5; .endentry;

page 180, Compiler Reference Manual

16. Appendix D : Error, Warning and Information Messages

Compiler Reference Manual, page 181 (C) 2008-2023 ASH WARE, Inc.

16
Appendix D : Error, Warning and

Information Messages

The ETEC tool suite provides a lot of feedback with regards to compilation errors,
warnings and informational messages. The tables below list the messages that can be
issued by the tools.

16.1 Compiler Error Messages

Message
Identifier

Explanation

001 Currently unsupported feature; planned to be supported in the
future.

002 Factory error – should never occur, but if it does report error to
the factory.

100 Invalid command line option encountered.

110 Could not open specified source file.

16. Appendix D : Error, Warning and Information Messages

page 182, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Message
Identifier

Explanation

120 Overflow of the C preprocessor buffer (may be passing too
many long –d options, or to many long –I paths).

121 The C Preprocessor could not be run (is installation correct?).

122 The C Preprocessor could not be run (is installation correct?).

123 Preprocessing error occurred; message will provide further
details.

200 Syntax error.

210 Invalid declaration.

220 Multiple default labels found in a switch statement.

221 A break statement found outside any enclosing switch or
iteration statement.

222 A continue statement found outside any enclosing iteration
statement.

230 Invalid if-else statement found.

231 Invalid switch statement found.

232 Case expression invalid (note that case expressions must be
constant expressions).

240 For loop test expression is invalid.

241 For loop initialization expression is invalid.

16. Appendix D : Error, Warning and Information Messages

Compiler Reference Manual, page 183 (C) 2008-2023 ASH WARE, Inc.

Message
Identifier

Explanation

242 For loop iteration expression is invalid.

245 While loop expression is invalid (do-while included).

250 Invalid function scope.

251 Invalid function definition.

252 Scoping error (mismatch) detected.

260 Duplicate label found.

270 No return for non-void function.

271 Return type does not match the function definition return type.

16.2 Compiler Warning Messages

Message
Identifier

Explanation

001 Currently unsupported feature (that can be ignored).

100 Empty source file sent through compiler – no tokens found.

101 A bad command line option found that can be ignored.

110 An unrecognized #pragma encountered.

16. Appendix D : Error, Warning and Information Messages

page 184, Compiler Reference Manual (C) 2008-2023 ASH WARE, Inc.

Message
Identifier

Explanation

111 An invalid optimization ID was specified with –optEn or –
optDis; it is ignored.

120 C preprocessing warning message.

200 An identifier longer than 255 characters found and truncated to
255 significant characters.

210 Warn about non-ANSI/ISO compliant generated code (-ansi
mode only)

300 An incomplete global array definition encountered; it is assumed
to have only one element.

310 An inner scope identifier name is masking the same name from
an outer scope.

320 An array string initializer is too large to fit in the array; it is
truncated.

330 Multiple of the same type qualifiers detected.

340 No function return type is specified; defaulting to int return type.

350 A declared local variable encountered that is not ever used.

400 Signed and unsigned values are being compared and thus may
yield unexpected results (comparison is unsigned).

401 Value to be assigned is not of the same type; an implicit
conversion is done.

410 Shift by a negative constant is ignored.

16. Appendix D : Error, Warning and Information Messages

Compiler Reference Manual, page 185 (C) 2008-2023 ASH WARE, Inc.

Message
Identifier

Explanation

411 Shift by a zero constant is ignored.

420 Constant conversion results in truncation.

421 Constant conversion to fact was saturated.

422 Constant truncated to fit in bitfield.

	1 Introduction
	2 Supported Targets
	3 References
	4 Keywords and Abbreviations
	5 eTPU Programming Model
	5.1 Legacy Mode
	5.1.1 Accessing Channel Variables From Outside eTPU Function Scope
	5.1.2 Legacy Mode Issues

	5.2 Enhanced ETEC Mode (eTPU Class)
	5.2.1 eTPU Class Example
	5.2.2 Threads
	5.2.2.1 Enabling/Disabling Matches in the Thread
	5.2.2.2 Controlling the Preload Parameter Bit (PP)

	5.2.3 Entry Tables
	5.2.4 Member Functions (Methods)
	5.2.4.1 Member Function Fragments

	5.2.5 Channel Variables
	5.2.5.1 Hiding Channel Variables (Public/Private)
	5.2.5.2 Initial Values
	5.2.5.3 Access Oustide Class Scope

	5.2.6 Channel Groups
	5.2.7 Extension Syntax Details

	5.3 eTPU Types
	5.4 Pointers
	5.5 eTPU Data Packing
	5.5.1 Global Variables
	5.5.2 Static Variables in Callable C-Functions
	5.5.3 Explicitly Locating Global Variables
	5.5.4 eTPU2 Engine Relative Address Space
	5.5.5 eTPU Channel Frame Variables
	5.5.6 Channel Frame PACKTIGHT Mode
	5.5.7 Local/Stack Variables
	5.5.8 Structures & Unions
	5.5.9 Structure PACKTIGHT Mode
	5.5.10 Structure Bit Fields
	5.5.11 Arrays
	5.5.12 Array PACKTIGHT Mode
	5.5.13 ANSI Mode

	5.6 eTPU Hardware Access
	5.6.1 Channel Hardware Access
	5.6.2 Baseline eTPU Channel Hardware Programming Model
	5.6.3 eTPU+ Extensions to the Channel Hardware Programming Model
	5.6.4 eTPU2 Extensions to the Channel Hardware Programming Model
	5.6.5 Register Access
	5.6.6 Using Special Registers for General Purpose
	5.6.7 ALU Condition Code Access
	5.6.8 Built-in / Intrinsic Functions
	5.6.8.1 Compatibility Functions
	5.6.8.2 ETEC Coherency & Synchronization Control
	5.6.8.3 TR18037 Fixed-point Library Support
	5.6.8.4 ALU/MDU Intrinsics
	5.6.8.4.1 Rotate Right Support
	5.6.8.4.2 Absolute Value Support
	5.6.8.4.3 Shift Register Support
	5.6.8.4.4 Shift By 2(N+1) Support
	5.6.8.4.5 Set/Clear Bit Support
	5.6.8.4.6 Exchange Bit Support
	5.6.8.4.7 MAC/MDU Support

	5.7 Code Fragments
	5.7.1 _eTPU_thread Calls

	5.8 State Switch Constructs
	5.8.1 State Enumeration
	5.8.2 State Variable
	5.8.3 State Switch
	5.8.4 Additional Notes

	5.9 eTPU Constant Tables
	5.10 ETEC Local Variable Model & Calling Conventions
	5.10.1 Stack-based Model
	5.10.2 Calling Convention
	5.10.3 Scratchpad-based Model
	5.10.4 Calling Convention

	5.11 In-Line Assembly
	5.11.1 Calling the Error Handler from User Code

	5.12 ETEC Standard Header Files

	6 C Preprocessing
	7 Auto Code Generation
	7.1 Auto-Struct File
	7.1.1 24-bit vs. Non-24-bit Accesses
	7.1.2 Naming Conventions
	7.1.3 eTPU Data in Auto-Structs
	7.1.4 eTPU Structures/Unions
	7.1.5 Arrays in Auto-Structs
	7.1.6 Bit-field and _Bool Variables
	7.1.7 Example Code

	7.2 Auto-Defines File
	7.2.1 Global Prepended Mnemonic
	7.2.2 Auto Header File Name
	7.2.3 Endian Support
	7.2.4 Text Generation
	7.2.5 Type Information
	7.2.6 Array Variables
	7.2.7 _Bool Type Variables
	7.2.8 Struct/Union Variables
	7.2.9 Tag Types (Structures, Unions, Enumerations)
	7.2.10 Global Mnemonic
	7.2.11 Settings, Register Fields, and Mnemonic
	7.2.12 Include Race Keepout
	7.2.13 NXP API compatibility
	7.2.14 ASH WARE Simulator Compatibility
	7.2.15 Support for Additional Languages
	7.2.16 SCM ARRAY
	7.2.17 PWM Example

	7.3 Auto-Code Files
	7.3.1 Key Files
	7.3.2 Editing Template Files
	7.3.3 System Simulation Support

	8 Initialized Data Files
	8.1 Initialized Global Memory
	8.2 Initialized Channel Memory
	8.3 Using the Initialized Data Macros in the Simulator

	9 Global Error Handling
	9.1 Global Error Data
	9.2 Error Handling Library
	9.3 Invalid Entry Error Handling
	9.4 In the SCM OFF Weeds Error Handling
	9.5 In the FILL Weeds Error Handling
	9.6 Unexpected Thread Error Handling
	9.7 Extending the Error Handler
	9.8 Accessing the Error Handler
	9.9 Creating a User-Defined Error Handler

	10 Command Line Options
	10.1 Compiler Command Line Options
	10.2 C Preprocessor Command Line Options
	10.3 Console Message Verbosity (-Verb)
	10.4 Version (-Version)

	11 Limitations
	11.1 Restrictions to the ISO/IEC 9899 C Definition

	12 Supported Features
	12.1 General C Language Support
	12.2 eTPU Programming Model Support
	12.3 Compatibility Mode Support
	12.3.1 Entry Table Support
	12.3.2 #pragma support

	13 Appendix A : Pragma Support
	13.1 Verify Version
	13.2 Disabling Optimization in Chunks of Code
	13.3 Disabling Optimizations by Type
	13.4 Atomicity Control
	13.5 Optimization Boundary (Synchronization) Control
	13.6 Thread Length Verification (WCTL)
	13.7 Forcing the WCTL
	13.8 Excluding a thread from WCTL
	13.9 Loop Iteration Count
	13.10 Code Size Verification
	13.11 Memory Size (Usage) Verification
	13.12 Same Channel Frame Base Address
	13.13 Auto-defines Export
	13.14 Private Channel Frame Variables
	13.15 Explicit Locating
	13.16 ByteCraft #pragma write Support

	14 Appendix B : Data Packing Details
	14.1 Channel Frame FASTACCESS Mode
	14.2 Structure FASTACCESS Mode
	14.3 Structure PACKTIGHT with ANSI Mode Enabled
	14.4 Structure FASTACCESS with ANSI Mode Enabled
	14.5 Array FASTACCESS Mode

	15 Appendix C : eTPU Annotated Object File Format
	15.1 Code Labels
	15.2 Entries

	16 Appendix D : Error, Warning and Information Messages
	16.1 Compiler Error Messages
	16.2 Compiler Warning Messages

