
Known Bugs in ETEC Version 1.30

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.00D-7
(2008-Dec-
15)

internal It appears that ETEC integer promotion rules
are not correct in all cases. For example, the
code { unsigned char a = 1; unsigned char b =
2; int c = a-b; } should yield a value of -1 in c
but instead ETEC-generated code results in
255.

2 Cases such as the example shown
can be corrected through the use
of explicit typecasts, e.g. int c =
(int)a - (int)b;

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V1.30A-1
(2010-Apr-
26)

customer When the source file being compiled is
referenced via a path AND it contains inline
assembly, the debugging information for that
file may come out invalid. This is most likely
to occur if the path contains forward slashes.
For example, if the following is executed :
"ETEC_cc.exe ../src/etpuc_somefunction.c",
and etpuc_somefunction.c contains inline
assembly, this bug will be encountered.

3 Two different work-arounds. One
is to not use a relative or absolute
path in the build script or makefile
(do the build directly from the
source directory). The second is
to use backslashes in the path.
This may not be possible in some
cases, e.g. makefiles do not like
backslashes.

V1.25A-V1.30B
(pre-V1.25A
releases would
have had a
somewhat different
set of pathing
issues with inline
assembly)

V1.30C

V1.30C-1
(2010-Jun-7)

internal Enumerator name clashes are not generating
a compilation error. E.g. the following code
should fail to compile.
enum ENUM1 { LIT1, LIT2 };
enum ENUM2 {
 ENUM2_VAL,
 LIT1, // should error due to conflict with
previous LIT1 definition
};

3 Avoid name conflicts in
enumerators. One typical way to
do this is to always prepend the
enumeration tag name to each
enumerator, thereby ensuring a
unique name.

All versions V1.31A

V1.30C-2
(2010-Jun-9)

customer In a rare case an int8 channel variable located
at offset 5,6, or 7 (relative to the CPBA) can
get overwritten with a garbage value. It is
theoretically possible that there are other
instances of this bug, however the compiler
code generator does not appear to generate
the code sequence that triggers the optimizer
bug in any other situation. The optimizer
incorrectly uses the diob preload instead of
the load to the P register. The P register is
required because the ALU cannot access
individual bytes in the diob register.

2 Disable optimization on the
problem line of code by
encapsulating it with optimization
boundaries. E.g.
#pragma
optimization_boundary_all
u8_var = 5;
#pragma
optimization_boundary_all

All versions V1.31A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

