
Known Bugs in ETEC Version 2.01

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V2.01A-1
(2011-Dec-
19)

customer There is a bug when named register variables
for p31_0 or p31_24 are used for memory
store operations (load is ok). The compiler is
incorrectly throwing an error that an invalid
register is being used for a load/store
operation. The 24-bit p register store (and
load) operation works fine via named register
variable. The code below results in a compile
error due to this bug:
 register_p31_0 p31_0;

 // ...

 some32BitChannelFrameVariable = p31_0;
// causes compiler error

3 Using named register variables is
almost like mixing C and assembly.
The workaround is to in fact use
some inline assembly. Replace
the failing code below:

some32BitChannelFrameVariable
= p31_0;
 *some32BitPtr = p31_0;

With:

 #asm(ram p31_0 ->
some32BitChannelFrameVariable.)
 #asm(ram diob <- some32BitPtr.)
 #asm(ram p31_0 -> by diob.)

All versions V2.10A

V2.01A-2
(2012-Jan-5)

internal Signed fract operands are being treated as
unsigned when doing compares (>, >=, <, <=),
for 8, 16 and 24-bit types. This will result in
an incorrect result when negative fract values
are involved in the operation.

3 The workaround is when
comparing signed fract operands,
cast them to the signed integer of
the appropriate size first. This cast
does not generate any code or
change the values, but will allow
the compare to be generated
correctly as a signed compare.

All versions V2.10A

V2.01A-3
(2012-Jan-
17)

customer When 8-bit data is being written to memory via
an array or pointer, it can end up getting
written in the first 4 bytes of eTPU memory
rather than the intended destination. It is most
likely for this to occur when the 8-bit data is
being written as the result of a post increment
(++) or post-decrement (--) operation. The
optimizations of V2.00A made this bug more
likely to show, although it has existed all
along.

2 The recommended work-around, if
it is occuring in conjunction with a
post-increment or post-decrement
operation, is to change from using
that operation. Also, use of
temporary variables will likely work
around the problem.

All versions (but
more likely to
occur in V2.00A
and newer)

V2.10A

V2.01A-4
(2012-Feb-
21)

customer If the last program flow (jump) in a called
function is caused by a 'MAC Spin Loop,' and
the function is called multiple times, and every
call (seq call instruction) is followed
immediately by a thread end (seq end
instruction) then the thread can be early-
terminated at the 'MAC Spin Loop' such that
code after and including the 'MAC Spin Loop'
is improperly eliminated.

3 Placing a "#pragma
optimization_boundary_all" after
the MAC instruction (multiply or
divide expression) that triggers the
problem provides a low-impact
work-around.

All versions V2.10A

V2.01A-5
(2012-Mar-9)

internal Found a bug in which an errant error is being
falsely detected RAR-Writes are only allowed
within an 'RAR Restore Region. The error
occurs when the RAR write moves from inside
to outside the region, for instance due to a
neighbor joins. Likely only occurs in small
two-deep functions.

3 Placing a "#pragma
optimization_boundary_all" at the
end of the function works around
the optimization issue.

All versions V2.10A

V2.01A-6
(2012-May-
21)

customer There are cases where a 32-bit data variable
in the p register can get moved to a 24-bit
register, thereby getting corrupted or
triggering compilation errors. Given the
nature of the bug, it is most likely to trigger a
compilation error in the
_CoherentWrite24_32() API.

3 Coherent read/writes of a 24-bit
and 32-bit combination must be
done with user-crafted code rather
than the
_CoherentRead/Write24_32()
interfaces. It may have to be done
using inline assembly.

All versions V2.10B

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

