
Known Bugs in ETEC Version 2.10

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma opimization_boundary_all
if there is concern that an interrupt
may cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function)
is eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable
C functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V2.10B-1
(2012-May-
24)

internal When reading/writing a 32-bit value through a
pointer, in a case when the pointer is a
complex expression (more than just a
symbol), can result in a compilation failure.

3 If necessary, use a temporary
int32 pointer variable to perform
the read/write, so as to avoid that
complex expression that helps
trigger the problem.

V2.10A-B V2.10C

V2.10C-1
(2012-Sep-
13)

internal A structure of only _Bool type members, or
that ends with _Bool type members, could fail
to compile.

3 Either use a union (with a struct of
_Bool members under it, as well as
a dummy member of the
appropriate size), or use bitfields
instead.

All versions V2.20A

V2.10C-2
(2012-Sep-
13)

internal The ability to disable autostruct file generation
is not working. (-autostruct- linker option)

2 None; ignore generated file. V2.10A-C V2.20A

V2.10C-3
(2012-Sep-
26)

customer Array indexing via an index variable generates
incorrect code in the following case : the index
variable is of type int8/char (signed), and the
array element size is greater or equal to 128
bytes.

3 Use an index variable that is
unsigned or bigger than 8 bits in
size.

All versions V2.20A

V2.10C-4
(2012-Nov-
13)

customer In certain program flow situations that form a
'Fork' (e.g. if/else) where the first instructions
along all paths are matching and parallelizable
channel instructions [e.g.
ClearMatchALatch();, ClearMatchBLatch();]
and the channel instructions along ALL paths
match, except that the earlier segment(s)
contains more parallelizable channel sub-
instructions than the last segment that fit in
the same opcode, then it is possible that the
additional sub instructions in the first segment
that are not found in the last segment can get
incorrectly eliminated. For example, the
following code is affected by this optimization
bug - the ClearMatchBLatch() sub-instruction
gets removed erroneously:

if (IsMatchBLatched())
{
 ClearMatchALatch();
 ClearMatchBLatch();
 someVar = 0x23;
}
else
{
 ClearMatchALatch();
 someVar = 0x77;
}

2 One work-around is to protect the
set of channel sub-instructions that
can get packed into a single
opcode with an explicit atomic
region - this can be done as
follows:
if (IsMatchBLatched())
{
#pragma atomic_begin;
 ClearMatchALatch();
 ClearMatchBLatch();
#pragma atomic_end;
 someVar = 0x23;
}
else
{
 ClearMatchALatch();
 someVar = 0x77;
}

Or, the code can be modified
slightly to avoid the problem:
- reversing the ClearMatchALatch()
and the ClearMatchBLatch() lines
in the if-clause above avoids the
issue.
- bringing the common
ClearMatchALatch() out before the
if statement also avoids the issue.

V2.00A - V2.10C V2.20A

V2.10C-5
(2012-Dec-
20)

internal
A bug can occur in a switch statement under a
fairly unusual set of circumstances. If the first
statement in a 'case:' is a read from data ram
that uses the DIOB register, and the last use
of the diob register prior to the 'switch' was
also a read of this same data ram location, the
bug may occur. The bug is that the data ram
read in the case statement can get incorrectly
eliminated.

3 Place an optimization boundary
just after "case:". E.g., add the line
"#pragma
optimization_boundary_all".

All versions V2.20A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

