
Known Bugs in ETEC Version 2.30

Bug
Identifier

Source Problem/Bug Description Severity Workaround Description Affected
Releases

Fixed Release

V1.00D-5
(2009-Dec-
15)

internal When the sizeof operator is applied to a
constant the wrong size may result, e.g.
sizeof(1) may result in "1" rather than the
expected "3" bytes.

2 Take the sizeof the desired type
instead: sizeof(int)

All versions TBD

V1.20A-14
(2009-May-
20)

internal Chan interrupt opcodes may be moved
relative to adjacent RAM instructions by the
optimizer. This may cause unexpected
results, particularly in the case of a DMA
interrupt.

3 Use _OptimizationBoundaryAll() or
#pragma
opimization_boundary_all if there
is concern that an interrupt may
cross a critical RAM access.

All versions TBD

V1.25A-11
(2009-Sep-
28)

internal If pointer arithmetic generates a negative
result, and the object pointed to is larger than
1 byte in size, ETEC code will generate an
incorrect result. This is because an unsigned
shift (or unsigned divide) is applied after the
pointer arithmetic to convert from byte
addressing to object indexing.

3 Keep pointer arithmetic results in
the non-negative domain.

All versions TBD

V1.25B-6
(2009-Dec-9)

internal The _STACK_SIZE_ defines macro gets the
calculated value of the worst-case stack
depth. In certain rare cases, this value can be
slightly larger than the actual worst-case. This
can occur when a stack usage of a register
save and restore (e.g. in a called C function) is
eliminated via optimization. Such a register
save requires 4 bytes of stack space, but the
removal of it is not currently getting accounted
for in the stack size calculation.

4 Care should be taken in that in
some rare cases, a
_STACK_SIZE_ value that is non-
zero can still mean that no stack is
actually utilized. Another way to
verify that no stack is used is to
make sure that no <func/class
name>__STACKBASE_ macros
are defined.

All versions TBD

V1.25B-7
(2009-Dec-
11)

internal &
customer

The optimizer/analyzer does not yet support
reentrant functions, whether they be callable C
functions or ETEC code fragments.
Reentrance is supposed to be detected and
cause an error, but in some cases this
detection failed, allowing for optimization to
continue. Sometimes the result could be a
linker crash, or sometimes invalid code
generation, or in some cases working code
resulted.

3 Avoid writing reentrant functions
until the ETEC optimizer/analyzer
fully supports them.

All versions V1.25C
(reentrance
detection),
TBD (support
reentrance)

V2.23B-5
(2014-Mar-
18)

internal In some cases when making a fragment call,
and the fragment is contiguous with the calling
code (i.e. jump can be eliminated), the link-
time optimizer mistakenly optimizes out code it
should not.

2 This situation, if encountered, can
be corrected by re-arranging the
code to prevent the fragment call
and fragment code from being
continguous.

V2.00A and newer TBD

V2.23B-7
(2014-Jun-6)

customer The C preprocessor is currently allowing the
same macro to be expanded in multiple
replacement passes, which causes the
preprocessor to break when such "recursion"
is encountered.

3 Avoid self-referencing
preprocessor macros.

All versions TBD

V2.30A-1
(2014-Jun-
27)

internal When an output path/file is specified that is
different than the source file directory when
compiling a source file that contains inline
assembly, the inline assembly debug
information does not come through correctly
nor does the listing file generate correctly.
The code does compile correctly.

3 Use same directory, or ignore the
issue.

All versions V2.30B

V2.30B-1
(2014-Jul-22)

customer The 32-bit fract type is documented, but was
actually unsupported. Like the 32-bit int type,
the only allowed operations are load/store.

4 Use the 32-bit int type if wanting to
load/store 32 bits.

All versions V2.30C

V2.30B-2
(2014-Jul-30)

customer The register re-use optimization can produce
buggy executable in the case where an 'if'
statement (not 'if-else') contains a call to
fragment, return, or break under the 'if'. This
case may lead to falsely determining that two
variables usage does not overlap, allowing
them incorrectly to utilize the same register.

2 There are two ways to work-
around this problem. One is to
disable the optimization by using
the compiler option "-
optDis=0x27". The second is to
create a dummy else condition:
 if (x)
 {
 // ...
 return;
 }
 else // work-around bug V2.30B-
2
 ;

V2.30A and newer V2.30C

V2.30B-3
(2014-Jul-31)

customer Overflow of global/engine scratchpad memory
is not being detected properly, which can lead
to overlapping memory usage and execution
bugs. The bugs only occur if global memory
(1024 bytes) or engine memory (512 bytes) is
exceeded by scratchpad memory at the start
of the linking stage (note that link-time
optimizations can compress scratchpad
useage).

One way the problem can be detected is by
looking at the map file
.globalscratchpad/.enginescratchpad segment
- addresses for same-size objects should
always be ascending, but if they descend at
any point in the ordered list, this bug may
have been activated.

2 The only work-around is to reduce
global (or engine) data and
scratchpad memory usage to
below the limit. This can be done
by moving items to channel frame
memory, moving functions inline,
or other techniques.

All versions V2.30C

V2.30B-4
(2014-Aug-
11)

customer The compiler executable (ETEC_cc.exe) is
incorrectly checking the validity of any search
paths passed to it, which may lead to a
warning and having the search path filtered
out (which then leads to a compile failure
when the needed include file cannot be
located). The search path is being checked
against the current working directory rather
than the source file directory. When C
preprocessing is done via ETEC_cpp.exe, the
correct seacrh path is checked. The invalid
and uneeded ETEC_cc.exe check will be
removed.

3 There are multiple workarounds.
One is to create an empty
directory to allow the incorrect
ETEC_cc.exe check to pass.
Another is to change the build
process so that the current
working directory and source file
directory are the same when
building.

V2.30B V2.30C

V2.30B-5
(2014-Aug-
11)

customer When a pragma write is outputting the value of
an enumeration literal, and the enumeration
type is defined in multiple object files that are
being linked, the literal value gets replicated
resulting in an incorrectly generated pragma
write file.

3 No simple work-around for pragma
write files, but the problem does
not exist in the auto-defines host
interface file.

All versions V2.30C

V2.30D-1
(2014-Nov-
26)

customer The register re-use optimization can produce
incorrect executable code in two cases. In
one case, if two local variables are used in the
same expression but do not otherwise overlap
in usage, they may incorrectly get assigned to
the same register. The second case can
occur when one variable is declared at a
higher scope, and then is accessed both
before and after an inner scope variable,
which may incorrectly get assigned to the
same register.

2 There are generally work-arounds
for any of these types of problems
encountered. One way to work-
around an issue is declare the
conflicting local variables in the
same scope. A second way may
be to reverse operands in an
expression to make the
optimization think there is an
overlap. For example, in the
following code x and y are
presenting the conflict bug:
 t = x + 1;
 if (x > y) ...
Can be changed to:
 t = x + 1;
 if (y < x) ...
in order to force the determination
of an x/y overlap. Detection of
both variables in use
simultaneously in an expression is
in the current algorithm, but the
check was not getting activated in
all the necessary cases. A third
way is to disable the register re-
use optimization by passing the "-
optDis=0x27" option to the
compiler.

V2.30A and newer V2.31A

V2.30D-2
(2015-Jan-7)

customer The duplicate expression optimization can
cause problems in certain specific cases
where the detected duplicate expression gets
converted under the hood to a test opcode.
The most likely case for this to occur is when
a single bit of a variable/expression is being
tested using a bitwise and operator.

3 Disable the duplicate expression
optimization in the compilation of
the problem file by specifying "-
optdis=0x21" on the command
line.

V2.00A and newer V2.31A

V2.30D-3
(2015-Jan-
22)

customer If state enumerations (ETEC state switch
extension) are used in multiple translation
units (separately compiled C files) and have
enumeration literals that share exactly the
same name, the literals can resolve incorrectly
at link time.

3 Make sure all state enumeration
literals have unique names across
all source code to be compiled into
an executable (unique to all
regular and state enumerations).
The fix to this bug will be to make
sure such diuplicate cases are
caught and flagged as an error.

All versions with
state enumeration
feature

V2.31A

V2.30D-4
(2015-Apr-1)

customer In some cases using relational operations with
one operand being a constant 0 are resulting
in code being generated that is not correct for
all inputs. This happens when the variable
('x') operand is signed and is at the maximum
negative value, and the expression is one of
the following: (x <= 0), (0 >= x), (x > 0), (0 <
x).

2 The problem can be worked
around in general by first putting
the constant value 0 in a
temporary variable, and then using
that variable in the relational
expression.

All versions V2.31C

V2.30D-5
(2015-Apr-
14)

customer The linker can hang in certain unusual cases
with loops and threads calling threads.

3 The problem may be able to be
worked around by disabling
optimizations over sections of
code.

All versions V2.40A

V2.30D-6
(2015-Jun-9)

internal Compilation of signed division can under
certain ciurcumstances fail due to a shortage
of registers.

3 Eliminate use of inefficient signed
division.

All versions V2.40A

Bug Severity Level Descriptions:

1 – Problem causes complete work stoppage. No work-around is possible. The problem is likely to be hit by most users. This level of bug will

typically trigger a new release or patch in a short time frame.

2 – A difficult problem to track down, such as incorrectly generated code. Typically there is a work-around available for this kind of bug.

3 – A bug that is easy to spot, and/or generally has a straight-forward work-around, or has minimal impact.

4 – Not truly a bug (i.e. tool is within spec.), but rather something that might affect compatibility or usability. Work-arounds available.

