
ASH WARE, Inc.

by

Version 2.75

6/8/2024

(C) 2012-2024 ASH WARE, Inc.

MC33816 Assembler

John Diener and Andy Klumpp

Reference Manual

MC33816 Assembler, page 3 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

Table of Contents

ASH WARE, Inc. Saturday, June 8, 2024

Table of Contents

Foreword 9

Part 1 Introduction 10

.. 111.1 Installation

.. 111.2 System Requirements

.. 111.3 High-Level Programming Features

... 12Variables

Part 2 Command Line Options 13

.. 172.1 File Naming Conventions

.. 172.2 The Build Process

Part 3 Pragmas 18

.. 193.1 Disabling the 'Unused Label' Warning

.. 203.2 Disabling the 'Unused Variable' Warning

Part 4 Notation and Syntax 21

Part 5 Auto-Header File 23

Part 6 Code RAM Files 26

Part 7 Data RAM Files 29

Part 8 Listing Files 32

Part 9 Label Tags 34

Part 10 Variables 36

.. 3710.1 Immediate/Global Variables

.. 3810.2 Enabling Initialized Data in the Simulator

.. 3810.3 Data Banks Variables

Part 11 Extended Instructions 40

MC33816 Assembler, page 4 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

Part 12 Instruction Set 42

Part 13 Wait 44

.. 4513.1 CWEF - create wait table entry far

.. 4813.2 CWER - create wait table entry relative

.. 5013.3 Fill a 'Wait Table' row with an event and an event-handling thread's code-address (extended instruction)

.. 5313.4 WAIT - wait until a condition is verified

Part 14 Call/Return 55

.. 5614.1 JTSF - Jump far to subroutine

.. 5714.2 JTSR - Jump relative to subroutine

.. 5714.3 Call a subroutine (extended instruction)

.. 5814.4 RFS - Return from subroutine

Part 15 Program Flow 59

.. 6015.1 LDJR1 - Load jump register 1

.. 6015.2 LDJR2 - Load jump register 2

.. 6115.3 JMPF - Unconditional jump far

.. 6115.4 JMPR - Unconditional jump relative

.. 6215.5 Unconditionally jump (extended instruction)

.. 6215.6 JARF - Jump on arithmetic register far

.. 6315.7 JARR - Jump on arithmetic register relative

.. 6415.8 Conditionally jump on ALU and related flags (extended instruction)

.. 6515.9 JCRF - Jump on control register far

.. 6615.10 JCRR - Jump on control register relative

.. 6715.11 Conditionally jump on 'Control Register' bit values (hi/lo) (extended instruction)

.. 6815.12 JSRF - Jump on status register far

.. 6915.13 JSRR - Jump on status register relative

.. 7015.14 Conditionally jump on 'Status Register' bit values (hi/lo) (extended instruction)

.. 7115.15 JOSLF - Jump on start-latch far

.. 7315.16 JOSLR - Jump on start-latch relative

.. 7515.17 Conditionally jump based on the state of the start pins latched states (extended instruction)

.. 7715.18 JOCF - Jump on condition far

.. 7915.19 JOCR - Jump on condition relative

.. 8215.20 Conditionally jump based on a variety of conditions such as Flag state, Start state, above/below a Current Sense Threshold, ... (extended instruction)

.. 8415.21 JFBKF - Jump on feedback far

.. 8515.22 JFBKR - Jump on feedback relative

.. 8615.23 Conditionally jump based on the state of a 'Diagnostic Feedback Comparator' output (extended instruction)

MC33816 Assembler, page 5 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

Table of Contents

ASH WARE, Inc. Saturday, June 8, 2024

.. 8715.24 JOIDF - Jump on current core far

.. 8815.25 JOIDR - Jump on current core relative

.. 8815.26 Conditionally jump based on the ID of the currently-executing core (extended instruction)

.. 8915.27 JUMP<_type> - Jump on specified conditions

Part 16 Interrupts 91

.. 9216.1 ICONF - Configure automatic interrupt return

.. 9316.2 REQI - Request software interrupt

.. 9416.3 IRET - Return from interrupt

.. 9516.4 STIRQ - Write IRQB output pin

Part 17 Data RAM Accesses 96

.. 9717.1 SLAB - Selects the register to be used in Indexed addressing mode

.. 9817.2 STAB - Write the 'base_add' register

.. 9817.3 LOAD - Load a register with a 16-bit value from the Data RAM

.. 10017.4 STORE - Store a value from an ALU register into the Data RAM

.. 10217.5 STDRM - Set data RAM read mode

Part 18 Math 103

.. 10418.1 STAL - set arithmetic logic

.. 10518.2 CP - Copy one register to another

.. 10718.3 LDIRH - Load immediate register's MSB

.. 10818.4 LDIRL - Load immediate register's LSB

.. 10818.5 Load the full 16-bit IR register (extended instruction)

.. 10918.6 ADD - Addition of two registers

.. 11018.7 ADDI - Addition of a register with a 4-bit unsigned immediate

.. 11018.8 SUB - Substraction of two registers

.. 11118.9 SUBI - Subtraction by a 4-bit unsigned immediate

.. 11218.10 MUL - Multiplication of two registers, result goes in 'mh' and 'ml'

.. 11318.11 MULI - Multiplication with 4-bit immediate, result goes in 'mh' and 'ml'

.. 11418.12 SWAP - Swap a register's high and low bytes

.. 11418.13 TOC2 - Conditional conversion to 2's complement format with sign enforcement

.. 11518.14 TOINT - Convert from 2's complement

Part 19 Bitwise 117

.. 11819.1 AND - Bitwise AND with 'ir' register

.. 11919.2 OR - Bitwise OR with the 'ir' register

.. 12019.3 XOR - Bitwise XOR with the 'ir' register

.. 12019.4 NOT - Bitwise NOT

MC33816 Assembler, page 6 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

Part 20 Shifts 122

.. 12320.1 SHR - Shift right by register

.. 12420.2 SHRS - Shift right by register, signed

.. 12520.3 SHRI - Shift right by immediate

.. 12620.4 SHRSI - Shift right by immediate, signed

.. 12720.5 SHR8 - Shift right by 8

.. 12720.6 SH32R - Shift right 'mh' and 'ml' by register

.. 12820.7 SH32RI - Shift right 'mh' and 'ml' by 4-bit immediate

.. 12820.8 SHL - Shift left by register

.. 12920.9 SHLS - Shift left by register, signed

.. 13020.10 SHLI - Shift left by immediate

.. 13120.11 SHLSI - Shift left by immediate, signed

.. 13220.12 SHL8 - Shift left by 8

.. 13220.13 SH32L - Shift left 'mh' and 'ml' by register

.. 13320.14 SH32LI - Shift left 'mh' and 'ml' by 4-bit immediate

Part 21 Control, Status, Flags, and the Inter Core
Communications 'rxtx' register 134

.. 13521.1 STCRB - Write control register bit

.. 13621.2 STSRB - Write status register bit

.. 13721.3 STF - Write flag register bit

.. 13821.4 STCRT - Configure which cores' 'rxtx' register gets read

.. 13921.5 RSTREG - Reset registers

.. 13921.6 RSTSL - Reset the start-latch register

Part 22 Shortcuts 140

.. 14122.1 DFCSCT - Define the core's current sense block shortcut

.. 14222.2 DFSCT - Define the core's three output driver shortcuts

.. 14422.3 STOS - Synchrounously control three output drivers using shortcuts

Part 23 Current Sense Blocks 146

.. 14723.1 STADC - Select 'Analog to Digital' or 'Digital to Analog' mode

.. 14823.2 STDCCTL - Set the DC to DC Converter's Control mode

.. 14923.3 STDM - Set DAC register access mode

.. 15023.4 STGN - Set amplifier gain of a Current Sense Block

.. 15123.5 STOC - Set offset compensation of a Current Sense Block

Part 24 Output Drivers 153

MC33816 Assembler, page 7 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

MC33816 Assembler

Table of Contents

ASH WARE, Inc. Saturday, June 8, 2024

.. 15424.1 BIAS - Set load current bias

.. 15524.2 STEOA - Set end of actuation mode

.. 15624.3 STFW - Set freewheeling mode between a pair of output drivers

.. 15724.4 STO - Set one output driver

.. 15824.5 STSLEW - Set output drivers' slew rates

Part 25 Diagnostics 159

.. 16025.1 CHTH - Change diagnostic comparator's threshold

.. 16125.2 ENDIAG - Enable or disable output driver diagnostics, ONE

.. 16225.3 ENDIAGA - Enable or disable output driver diagnostics, ALL

.. 16325.4 ENDIAGS - Enable or disable output driver diagnostics, SHORTCUTS

.. 16425.5 SLFBK - Select the power source to monitor for Vds Diagnostics

Part 26 Timers 165

.. 16626.1 LDCA - Load a counter's 'Terminal Count' from a register and write two output drivers

.. 16726.2 LDCD - Load a counter's 'Terminal Count' from data RAM and write two output Drivers

Part 27 SPI Backdoor 170

.. 17127.1 SLSA - SPI backdoor set address register

.. 17227.2 RDSPI - SPI backdoor read

.. 17227.3 WRSPI - SPI Backdoor write

MC33816 Assembler, page 9 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.
MC33816 Assembler, page 9

MC33816 Assembler

MC33816 Assembler, page 10 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Introduction

Part

I

MC33816 Assembler, page 11 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

1. Introduction

ASH WARE, Inc. 6/8/2024

1
Introduction

The ASH WARE MC33816 Assembler supports NXP's MC33816 device. The MC33816 Assembler is a
command line tool so it can be invoked from a Windows console window. The MC33816 Assembler is also
designed to support integrated builds from within DevTool as well as being called as part of DevTool's
integrated graphical state machine.

1.1 Installation

The MC33816 assembler is installed as an integrated part of DevTool. The environment variable shown
below can be used to locate the last-installed version.

DEV_TOOL_MC33816_BIN

In the following example the assembler 'help' is envoked.

%DEV_TOOL_MC33816_BIN%asm816.exe -h

1.2 System Requirements

The MC33816 assembler is a command line tool that runs under in any Windows operating system such as
Windows XP, Windows 7, or Windows 8.

1.3 High-Level Programming Features

The ASH WARE %PRODUCT%> has several features above and beyond the basic assembler
functionality that ease the development process.

· auto-generation of a header file for inclusion in the host processor code, that simplifies initialization and
interaction with the MC33816.

· variable declarations that provide enhanced address space checking at build-time, and a better debug
experience at run-time. Additionally the variables are auto-located at ideal addresses with all location
information output into the auto-generated header file.

MC33816 Assembler, page 12 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

1. Introduction

High-Level Programming Features

· instruction extensions provide a concise method of building a series of instruction that, in many cases,
can be more efficiently generated by the assembler. For instance, a function call extension can be used
in which the assembler chooses either a far, or the more effecient relative jump instruction based on the
actual distance from the caller to the called function.

1.3.1 Variables

Symbolic variables can be used to allocate and specify data locations in the MC33816 Data RAM. The
symbolic declarations allow the assembler to auto-locate data items and output their location information in
the auto-header for proper host/simulator access. Using the variable symbols in the load/store/ldcd
instructions in user assembly make the code more readable and ensure that the proper address space is
accessed by the instruction. The MC33816 architecture supports two address space types :
immediate/global space, and indexed/banked space. Multiple "data banks" can declared and used via
indexed addressing, as the base address of this space can be changed on the fly.

See the Immediate/Global Variables section for a description on how to declare and use global variables.

See the Auto-Header section for an example of the macros that are output for data addresses for use in
host code and simulator scripts. Note that due to the auto-locating capabilities of assembler, if using
variables then all data locations should be declared using variables as otherwise there is the possibility of
conflict between auto-located data and user-located data. The auto-locating algorithm is described in the
Data Banks section.

MC33816 Assembler, page 13 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Command Line Options

Part

II

MC33816 Assembler, page 14 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options

2
Command Line Options

Type the executable name with the -h command line parameter to generate a list of the available options.

Asm816.exe –h

The assembler is called Asm816.exe, and it has the following format:

Asm816.exe <options> <AssemblyFile>

The following table is a complete listing of all supported command line options.

Setting Option Default Example

Display Help

This option overrides all
others and when it exists no
assembly is actually done.

-h Off -h

Open Manual

Opens the electronic version
of this Assembler
Reference Manual.

-man Off -man

Display Version

Displays the tool name and
version number and exits
with a non-zero exit code
without assembling.

-version Off -version

Console Message Verbosity

Control the verbosity of the
message output.

-verb=<N>

where N can be in the range
of 0 (no console output) to 9
(verbose message output).

5 -verb=9

MC33816 Assembler, page 15 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options

ASH WARE, Inc. 6/8/2024

Setting Option Default Example

Cipher File

Controls which file is used
to generate the ciphered
binary file.

-key=<FileName>

Filename is the name of the
cipher file.

none -
key=CipherDir\Key4.k
ey

Global Mnemonic

The specified mnemonic
gets pre-pended to all
names in the auto-generated
header file and executable
image array C file. This is
useful when multiple images
are to be used at host load
time, thereby avoiding
naming conflicts.

-GM=<Text> -GM=_FS_

Source File Search Paths

Specifies any directories,
after the current one, to be
searched for included files.
Multiple paths can be
specified and they are
searched in the order of
their appearance in the
command line.

-I=<PATH>

where PATH is a text string
representing either a relative
or absolute directory path.
The entire option must be in
quotes if the path contains
spaces.

None

-I=..\Include

Disable a specific warning -warnDis=<ID> where ID
is the warning's
identification number.

Off -WarnDis=41065

Console Message Suppression

Suppress console messages
by their type/class. Multiple
types can be specified with
multiple –verbSuppress
options.

-verbSuppress=<TYPE>

where TYPE can be:

BANNER : the ETEC
version & copyright
banner.

SUMMARY : the
success/failure
warning/error count
summary line

WARNING : all warning
messages

INFO: all info messages

Off -verbSuppress=
SUMMARY

MC33816 Assembler, page 16 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options

Setting Option Default Example

ERROR : all error
messages (does not
affect the tool exit code)

Console Message Style

Controls the style of the
error/warning output
messages, primarily for
integration with IDEs

-msgStyle=<STYLE>

where STYLE can be:

- ETEC : default ETEC
message style.

- GNU : output messages in
GNU-style. This allows
the default error parsers
of tools such as Eclipse to
parse ETEC output and
allow users to click on an
error message and go to
the offending source line.

- DIAB : output messages
in the style used by Diab
(WindRiver) compilers.

- MSDV : output in
Microsoft Developer
Studio format so that
when using the DevStudio
IDE errors/warnings can
be clicked on to bring
focus to the problem
source code line.

ETEC -msgStyle=MSDV

Console Message Path Style

Controls how the path and
filename are displayed on
any warning/error messages
that contain filename
information.

-msgPath=<STYLE>

where STYLE can be:

- ASIS : output the filename
as it is input on the
command line (or found
via #include or search).

- ABS : output the filename
with its full absolute path.

ASIS -msgPath=ABS

Warning Disable

Disable a specific assembly
warning via its numerical
identifier. Note that if a
warning is disabled and the -

-warnDis=<WARNID> Off (all
warnings
enabled)

-warnDis=33243

MC33816 Assembler, page 17 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

2. Command Line Options

ASH WARE, Inc. 6/8/2024

Setting Option Default Example

strict option is set, then the
warning will NOT cause the
return code to be non-zero.

Error on Warning

Turn any warning into an
assembly error.

-strict Off -strict

<AsmFile> Name of the assembly file
to assemble

None -

2.1 File Naming Conventions

.DFI Direct Fuel Injection assembly file suffix

.ELF Elf/Dwarf file suffix

.h "C" language style header file suffix

2.2 The Build Process

A single assembly file is assembled to create an elf file.

Asm816.exe MyAsmFile.dfi

Because the name of the output file was not specified, and because only a single input assembly file was
specified, the output file that is produced is named 'MyAsmFile.elf' which is the same base name but with
the 'elf' suffix.

Multiple assembly files are assembled to create an elf file.

Asm816.exe MyAsmFile1.dfi MyAsmFile2.dfi -out=MyOutputFile.elf

The assembler returns zero upon success and a non-zero return code on failure. The return code can be
tested as follows can be tested as follows.

Asm816.exe MyAsmFile.dfi
if %ERRORLEVEL% EQU 0 (goto errors)

...

:errors

MC33816 Assembler, page 18 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Pragmas

Part

III

MC33816 Assembler, page 19 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

3. Pragmas

ASH WARE, Inc. 6/8/2024

3
Pragmas

The ASH WARE MC33816 assembler supports various pragmas as described in this section.

3.1 Disabling the 'Unused Label' Warning

There are several reasons why a label might be unused. One reason is that a label can be used to help self-
document code. Another reason is that a label's address may be injected from the Host-CPU into a ram
location that the core can then load and jump to using an indirect call. A third reason is that a label might be
an entry or interrupt handler though the _ISR label tag might (see the 'Label Tags' section) be a more
appropriate method for disabling the warning in this case.

The following is an example of the use of the pragma for disabling the 'Unused Label' warning.

#pragma unused_label_ok StocOnSsscTest StocOnOsocTest

Note that multiple labels can be disabled with this pragma. Also note that multiple instance of this pragma
can be used.

The following example shows the code for loading a label's address from a variable and then calling the
label's address. Note that the label is only called when the variable is not zero so this essentially forms a
polling loop.

WaitForTestFunc:
 load TestFuncAddr ir _ofs;
 subi ir 0 ir;
 jarr WaitForTestFunc zero;
 cp ir jr1;
 jtsf jr1;
 LOAD_IR 0;
 store ir TestFuncAddr _ofs;
 jmpr WaitForTestFunc;

In order for a label to be called, the variable 'TestFuncAddr' must loaded with the label's address. In a real
system this would be done from the host MCU by writing a label's address across the SPI bus. In the ASH
WARE scripting language this can be done using the following script command.

// Include the code's auto-define's file

MC33816 Assembler, page 20 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

3. Pragmas

Disabling the 'Unused Label' Warning

// Note that this provides
#include "InstrStoc2_defines.h"
// Load the variable 'TestFuncAddr' with label
'delayed_save_current_dacs' address.
write_spi_data16(_AW816DA_IMM_TestFuncAddr_,
_AW816CL_delayed_save_current_dacs_>>1);

3.2 Disabling the 'Unused Variable' Warning

If a variable is declared but is not used a message similar to the following will be generated.

Asm816 WARNING [193] file "InstrStocSimOnly.psc" line 10: Unused
variable: 'SomeUnusedVariable'

To disable this message the following pragma can be used.

#pragma unused_variable_ok SomeUnusedVariable AnotherUnusedVariable

Note that multiple variables can be disabled with this pragma. Also note that multiple instance of this
pragma can be used.

MC33816 Assembler, page 21 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Notation and Syntax

Part

IV

MC33816 Assembler, page 22 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

4. Notation and Syntax

4
Notation and Syntax

Decimal, hexadecimal, and binary notations are supported, as follows. All of the numbers shown below
yield the same weighting of 157 decimal in their load of the ‘mh’ register.

Decimal format:

ldirh 157 _rst;

Standard hexadecimal format:

ldirh 0x9D _rst;

Alternate hexadecimal format:

ldirh 9Dh _rst;

Binary format:

ldirh 10011101b _rst;

MC33816 Assembler, page 23 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Auto-Header File

Part

V

MC33816 Assembler, page 24 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

5. Auto-Header File

5
Auto-Header File

The auto-generated header file, or auto-header (or 'defines') file is output by the assembler for inclusion in
the host processor software build. It is also meant for inclusion into simulator script files. It is a 'C'
language compatible file with all information provided as a set of pre-processor macro #defines. It
contains

· code size and CRC checksum

· label address information for programming of entry points and interrupt vectors. Note that if the
_ENTRY and _ISR tags are used, those label address macros are broken out into their own sections.

· data (variable) location information, if symbolic variables are being used.

· databank member offset information, if databanks are being used

· the total data memory used

An example auto-header file looks like

// ASH WARE GENERATED MC33816 AUTO HEADER FILE. COPYRIGHT ASH WARE INC
2013-2014

// Write this to 'Code_width'
#define _AW816AH_CODE_WIDTH_ 0x0009

// Write this to 'Checksum_h'
#define _AW816AH_CHECKSUM_HIGH_ 0xB9F4

// Write this to 'Checksum_l'
#define _AW816AH_CHECKSUM_LOW_ 0x7226

// LABEL ADDRESSES
// Label addresses initialize entry points (UcX_entry_point)
// and the following Interrupt Service Routine address regisers:
// - Diag_routine_addr
// - Driver_disabled_routine_addr
// - Sw_interrupt_routine_addr

MC33816 Assembler, page 25 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

5. Auto-Header File

ASH WARE, Inc. 6/8/2024

// NOTE1: labels addresses use BYTE addressing
// whereas the registers use WORD addresses!
// THEREFORE: right shift the addrss one bit position
// to form the word address as follows:
// *(Uc1_entry_point_pnt) = _AW816CL_My_entry_point >> 1;
// NOTE2: Interrupt addresses are specified with just 6 bits!
// THEREFORE: It is recommended to check the size of the 'label
define'
// as follows:
// #if _AW816CL_My_software_interrupt_handler_ >= 0x80
// #error The ISR address is beyond the valid (first 64 instructions)
range
// #endif
// ALTERNATIVELY (Simulator):
// verify_pd816_isr_valid(_AW816CL_My_software_interrupt_handler_);
#define _AW816CL_START_ 0x0000

// VARIABLE/DATA ADDRESSES
//
// This section provides BYTE addresses for all the global
// and indexed (banked or data frame) variables declared in the code
//
// Global (immediate) variables (BYTE addresses)
#define _AW816DA_IMM_MinCurrent_ 0x0020
#define _AW816DA_IMM_MaxCurrent_ 0x0022
#define _AW816DA_IMM_VboostHigh_ 0x0024
#define _AW816DA_IMM_VboostLow_ 0x0026
//
// Index variable (data bank) offsets (BYTE offsets)
// Data Bank declaration 'Injector' offsets
#define _AW816DA_IDX_I_boost_ 0x0000
#define _AW816DA_IDX_I_peak_ 0x0002
#define _AW816DA_IDX_I_hold_ 0x0004
#define _AW816DA_IDX_Tpeak_tot_ 0x0006
#define _AW816DA_IDX_Tpeak_off_ 0x0008
#define _AW816DA_IDX_Toff_ 0x000A
#define _AW816DA_IDX_Thold_tot_ 0x000C
#define _AW816DA_IDX_Thold_off_ 0x000E
#define _AW816DB_SIZE_Injector_ 0x0010
//
// Data bank base addresses (BYTE addresses)
#define _AW816DA_DB_Injector_Inj1_ 0x0000
#define _AW816DA_DB_Injector_Inj2_ 0x0010
//
// Total Data RAM Allocated
#define _AW816AH_DATA_SIZE_ 0x0028

MC33816 Assembler, page 26 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Code RAM Files

Part

VI

MC33816 Assembler, page 27 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

6. Code RAM Files

ASH WARE, Inc. 6/8/2024

6
Code RAM Files

The assembler automatically generates files that contain the executable code (ciphered) in the form of a C
initialized array. The data and array definition are split into two files in order to provide enhanced flexibility
for the user in case they want to create their own array definition. The file names use the base output file
name, extended with "_code_ram.c,h". Below is an example of the two files (.h first, then .c):

// Code RAM opcode data
// Data packaged for inclusion into an array initializer
/*0x000*/ 0x97CE, 0xAF54, 0xF788, 0x67BC, 0x280A, 0x088F, 0xC939,
0x3BC1,
/*0x010*/ 0xE378, 0xCBB0, 0x97D6, 0x7125, 0xC990, 0xE0F6, 0x90C1,
0xCE5D,
/*0x020*/ 0x9241, 0x1DBC, 0xA445, 0x23ED, 0x65F2, 0x8775, 0x8309,
0xACA9,
/*0x030*/ 0x7771, 0x8313, 0xF429, 0x53D7, 0x8171, 0xE846, 0x9E06,
0x5E4D,
/*0x040*/ 0x5E99, 0xF57B, 0xC1EA, 0x722B, 0x3756, 0x6217, 0x777B,
0xE9B3,
/*0x050*/ 0xC837, 0x2B92, 0x4BF4, 0xAA30, 0x168C, 0x848D, 0x04A4,
0x1C56,
/*0x060*/ 0xA946, 0x7563, 0x7A84, 0xDA97, 0x49DB, 0x2B39, 0xEEBE,
0x20D0,
/*0x070*/ 0xC9CC, 0x2602, 0xF582, 0x3157, 0xAE34, 0xDF17, 0xA9BF,
0xFAF8,
/*0x080*/ 0x5975, 0x67BB, 0x934D, 0xA4FC, 0x4AB9, 0x8833, 0x6CD7,
0xD735,
/*0x090*/ 0x8D7A, 0x1D1B, 0x546E, 0xF24B, 0x1B80, 0x62B3, 0x9458,
0x9375,
/*0x0A0*/ 0x17CE, 0xC11C, 0x3DCA, 0x7929, 0xCD53, 0xE102, 0xFAE3,
0x27E8,
/*0x0B0*/ 0x3EBD, 0x7F49, 0x2FD8, 0xB28A, 0x7A2D, 0xD885, 0x303B,
0x10CF,
/*0x0C0*/ 0x4180, 0xA704, 0x7D15, 0x4773, 0xC89D, 0xC861, 0xE2E1,
0xC06B,
/*0x0D0*/ 0xCB32, 0x7FB4, 0x8886, 0x1435, 0xBC3B, 0x1AB0, 0x3FDC,
0xCAC1,

MC33816 Assembler, page 28 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

6. Code RAM Files

/*0x0E0*/ 0x42E3, 0x1388, 0x26F5, 0x9D7C, 0x7B7A, 0xD362, 0xA1A7,
0xC444,
/*0x0F0*/ 0x6147, 0xC88A, 0xE94F, 0xF636, 0xA7ED, 0x4BCA, 0xA002,
0xAB60,
/*0x100*/ 0x1FF0, 0x2A61, 0x4EC0, 0xCA52, 0xE221, 0x60A0, 0x4121,
0xCA1C,
/*0x110*/ 0x85ED,

And the auto-generated C code that defines the array by including the above file):

// Code RAM opcode data
// NOTE: this auto-generated code assumes the type 'uint16_t' has been
defined
uint16_t AN_Diag_ch1_code_ram_array[] = {
#include "AN_Diag_ch1_code_ram.h"
};
int AN_Diag_ch1_code_ram_array_size =
sizeof(AN_Diag_ch1_code_ram_array) / sizeof(uint16_t);

Users can include this in their host MCU software in order to spin through when initializing the MC33816
via the SPI bus.

MC33816 Assembler, page 29 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Data RAM Files

Part

VII

MC33816 Assembler, page 30 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

7. Data RAM Files

7
Data RAM Files

The assembler automatically generates files that contain data RAM initial value data in the form of a C
initialized array. The data and array definition are split into two files in order to provide enhanced flexibility
for the user in case they want to create their own array definition. The file names use the base output file
name, extended with "_data_ram.c,h". Below is an example of the two files (.h first, then .c):

// Data RAM opcode data
// Data packaged for inclusion into an array initializer
// It contains macros containing data initialization information.

#ifndef __DATA_RAM_INIT16
#define __DATA_RAM_INIT16(addr, val)
#endif

// macro name (address_or_offset , data_value)
__DATA_RAM_INIT16(0x0000 , 0x0000)
__DATA_RAM_INIT16(0x0001 , 0x0000)
__DATA_RAM_INIT16(0x0002 , 0x0000)
__DATA_RAM_INIT16(0x0003 , 0x0000)
__DATA_RAM_INIT16(0x0004 , 0x0000)
__DATA_RAM_INIT16(0x0005 , 0x0000)
__DATA_RAM_INIT16(0x0006 , 0x0000)
__DATA_RAM_INIT16(0x0007 , 0x0000)
__DATA_RAM_INIT16(0x0008 , 0x0001)
__DATA_RAM_INIT16(0x0009 , 0xFFFE)
__DATA_RAM_INIT16(0x000A , 0x0003)
__DATA_RAM_INIT16(0x000B , 0x0004)
__DATA_RAM_INIT16(0x000C , 0x0005)
__DATA_RAM_INIT16(0x000D , 0x0006)
__DATA_RAM_INIT16(0x000E , 0x0007)
__DATA_RAM_INIT16(0x000F , 0x0008)
__DATA_RAM_INIT16(0x0010 , 0x0000)
__DATA_RAM_INIT16(0x0011 , 0xFF85)
__DATA_RAM_INIT16(0x0012 , 0x1800)
__DATA_RAM_INIT16(0x0013 , 0x0000)

MC33816 Assembler, page 31 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

7. Data RAM Files

ASH WARE, Inc. 6/8/2024

And the auto-generated C code that defines the array by including the above file):

// Data RAM opcode data
// NOTE: this auto-generated code assumes the type 'uint16_t' has been
defined
// It contains a data array with initialization information.
// The data array is created using data initialization macros.

uint16_t Variables_data_ram_array[] = {
#undef __DATA_RAM_INIT16
#define __DATA_RAM_INIT16(addr, val) val,
#include "Variables_data_ram.h"
#undef __DATA_RAM_INIT16
};
int Variables_data_ram_array_size = sizeof(Variables_data_ram_array) /
sizeof(uint16_t);

Users can include this in their host MCU software in order to spin through when initializing the MC33816
data RAM via the SPI bus.

The data is packaged in macro form so that it can also be included into simulator script files - use the
following macro definition to make it work:

#define __DATA_RAM_INIT16(waddr, val) write_spi_data16(waddr<<1,
val);

See the variable and databank sections for information on the syntax for specifying initialization data.

MC33816 Assembler, page 32 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Listing Files

Part

VIII

MC33816 Assembler, page 33 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

8. Listing Files

ASH WARE, Inc. 6/8/2024

8
Listing Files

The assembler generates a listing file for each source file that contains opcodes. The name of each listing
file is the base name of the original source file, with "_listing.dfi" added. The extension "dfi" is used to
indicate the file is uses original NXP assembler format (and can thus be assembled by those tools). The
output listing files are created as read-only as they should not be edited.

MC33816 Assembler, page 34 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Label Tags

Part

IX

MC33816 Assembler, page 35 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

9. Label Tags

ASH WARE, Inc. 6/8/2024

9
Label Tags

Labels can be marked with the "_ISR" tag to alert the assembler that the label represents an interrupt
service routine entry point. This serves the following purposes. First, it allows the assembler to perform a
check on the label address to make sure it is within the valid range (first 64 opcode addresses). Second, it
automatically disables the "unused label" warning as it is unlikely this label is the destination of any code
jumps. Third, the label address it output into a special section of the defines file that makes it easy to find.

_ISR ch0_auto_diag_isr:
stos off off off; // disable all drivers
// ...

Similar to the "_ISR" tag is the "_ENTRY" tag - used to denote a label that will get used as a microcore
entry point. The main purpose for this tag is to prevent the "unused label" warning, as typically these labels
will not have a jump to them from anywhere in the code. They are also broken out into their own area of
the auto-defines file.

_ENTRY entry_uc1:

MC33816 Assembler, page 36 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Variables

Part

X

MC33816 Assembler, page 37 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

10. Variables

ASH WARE, Inc. 6/8/2024

10
Variables

Variables can be used to bring some structure to the assembly language.

10.1 Immediate/Global Variables

Declaration syntax for immediate (global) variables is

<type> <variableName>;

All data in the MC33816 is 16-bit. Two types are currently supported - 'sint16' and 'uint16' - the former a
signed 16-bit integer and the latter an unsigned 16-bit integer. The type does not affect the assembly
process, and is only used when working with the variable in the simulator debug environment. Variable
names must conform to 'C' naming conventions - '_' and alphanumeric characters, must not start with a
digit.

// current threshold parameters
uint16 I_boost;
uint16 I_peak;
sint16 I_hold;

Although the address space, immediate vs. indexed, is built into the variable declaration, when variables are
referenced in load/store/ldcd instructions the offset field still needs to be specified, and will be cross-
checked against the variable's address space.

BOOST: load I_boost dac_sssc _ofs;

The immediate and global variable locations are exported into an auto-header file which is appropriate for
use by the host processor.

Initial values for the variables can be specified with C-like initializers - the values specified are output into
the auto-generated _data_ram,.[c,h] files.

// current threshold parameters
uint16 I_boost = 0x1234;
uint16 I_peak = 536;
sint16 I_hold = -67;

MC33816 Assembler, page 38 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

10. Variables

Enabling Initialized Data in the Simulator

10.2 Enabling Initialized Data in the Simulator

In the host CPU files <BaseFileName>_data.h and <BaseFileName>_data.c generate a data array that
gets copied across the SPI bus to perform the global and databank initialization.

The mechanism used in the simulator is to include the .h version of the initialized data files after defining the
macro that initializes these values. The code below can be copied into your script command file to perform
this initialization. Note that the following code works when the .elf file's name is 'MyCode.elf'.

#define __DATA_RAM_INIT16(addr, val) *((MC33816_SPI_SPACE U16 *)
(addr<<1)) = val;
#include "MyCode_data_ram.h"

10.3 Data Banks Variables

Indexed variables are declared in a two step process. First, a data bank structure is declared, followed by
defining one or more instances of the data bank. A data bank structure is used to define a cohesive set of
indexed data, and has a syntax similar to a C struct declaration.

// Declare a databank
databank Injector {

uint16 I_peak;
uint16 I_hold;

};

Once a databank has been declared, instances of it can be created. These instance symbols can then be
used in the code to set the index base address.

// Allocate two databanks of type 'Injector'
databank Injector _injector1;
databank Injector _injector2;
// ...
// set the index base address to the _injector1 databank address
stab _injector1;
// ...
// From the active databank (currently '_injector1')
// load variable 'I_peak' into register 'r0'
load I_peak r0 ofs;

Note that immediate/global variables and databank instances must be defined before being referenced in
code.

The auto-locating algorithm is straightforward. Globals/immediates and databank instances get located in
the order they are traversed in the source code.

The data bank locations and member variable offsets within the databank are exported into an auto-header
file which is appropriate for use by the host processor.

Initial values for the databank instances can be specified with C-like initializers - the values specified are
output into the auto-generated _data_ram,.[c,h] files. The number of initializers must match the number of
databank members.

// Allocate two databanks of type 'Injector'

MC33816 Assembler, page 39 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

10. Variables

Data Banks Variables

ASH WARE, Inc. 6/8/2024

databank Injector _injector1 = { 0x440, 123 };
databank Injector _injector2 = { 500, 0x230, };

The address of the databank can be loaded into the IR register as follows:

LOAD_IR @_injector1;

Be sure to set the set the IR register as the index register before accessing databank variables.

stab ir; // Set the 'ir' register as the index register
load I_peak r0 ofs;

The address of a databank variable can also be loaded directly. When accessing databank variables, do so
directly with the address set to zero.

LOAD_IR @_injector1.I_hold;
load 0 r0 ofs; // Load the I_hold parameter into register 'r0'

MC33816 Assembler, page 40 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Extended Instructions

Part

XI

MC33816 Assembler, page 41 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

11. Extended Instructions

ASH WARE, Inc. 6/8/2024

11
Extended Instructions

Extended instructions have been provided in cases where the assembler can generally choose better
opcodes than a human. Consider the case of a jump. The are are two versions; 'far' and 'near'.
Depending on the situation, one of these is always going to be optimal over the other. However, it is
difficult for humans to track (as code is added/subtracted from a design and as coders arrive/leave on a
project) which opcode choice is optimal. So this choice is best left to the assembler and the use of
extended instructions provides a mechanism for doing so.

The following extended instructions are supported. Note that these are documented alongside their native
instructions.

· CALL

· CREATE_WAIT_ENTRY

· LOAD_IR

· JUMP

· JUMP_ARITHMETIC

· JUMP_CONDITION

· JUMP_CONTROL

· JUMP_CORE_ID

· JUMP_FEEDBACK

· JUMP_START

· JUMP_STATUS

MC33816 Assembler, page 42 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Instruction Set

Part

XII

MC33816 Assembler, page 43 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

12. Instruction Set

ASH WARE, Inc. 6/8/2024

12
Instruction Set

This section covers the MC33816 Instruction Set.

MC33816 Assembler, page 44 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Wait

Part

XIII

MC33816 Assembler, page 45 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

ASH WARE, Inc. 6/8/2024

13
Wait

The MC33816 is an event/response machine. An event occurs and then code executes that handles that
event.

The wait instructions are the key to this behavior. The core waits at a 'wait' instruction for an event to
occur.

Although there are many possible event sources, such as sense current to reach a threshold or a timer to
reach its terminal count, the core can only be waiting for up to five different events to occur at any one wait
instruction.

These pending events are configured as rows in a five-row wait table. Each of the five rows the the wait
table must be configured with the 'cwef' and 'cwer' instructions.

Once a row is configured with the 'cwef' or 'cwer' instruction the row is 'sticky' in that it will not change
until re-configured with a future 'cwef' or 'cwer' instruction.

13.1 CWEF - create wait table entry far

Initializes or changes one of the five rows in the wait table used by the 'wait' instruction.

The address of the code that will execute in response to the row's event is is in either the 'jr1' or jr2' register
as specified by the 'JrSel' parameter.

The event type is specified by the 'Cond' parameter.

Note that once the wait table row is stickky such that once the jump register's address is loaded into the
wait table, the jump register is free to be used for other purposes.

Syntax

cwef JrSel Cond Entry;

Example

// Set the wait table's row 2 event
// to be the VBoost voltage reaching t's threshold
cwer vboost_hit_threshold vb row2;

MC33816 Assembler, page 46 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

CWEF - create wait table entry far

// Set the wait table's row 3 event
// to be when the core's own current sense threshold is reached
// Note that if the destination is over 16 opcodes away
// then this 2-instruction 'far' opcode pair is required
ldjr1 own_current_hit_threshold;
cwef jr1 ocur row3;
// Set the wait table's row 5 event
// to be the counter 1 reaching it's terminal count
// NOTE: This is the extended instruction that
// automatically selects the more optimal
// of either cwer or cwef
CREATE_WAIT_ENTRY counter3_terminal jr1 tc3 row5;
//Cease execution until row 2's, 3's, or 5's event occurs
wait row235;
vboost_hit_threshold:
// ... More code here ...
own_current_hit_threshold:
// ... More code here ...
counter3_terminal:
// ... More code here ...

JrSel - Specifies which jump register with which to load the wait table row.

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The event or condition that will envoke the row's event-handling code.

_f0 Flag0 (internal flag and pin) is low
_f1 Flag1 (internal flag and pin) is low
_f2 Flag2 (internal flag and pin) is low
_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flag5 (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flag11 (possibly also the 'OA_2' pin) is low
_f12 Flag12 (possibly also the 'DBG' pin) is low
_f13 Flag13 is low
_f14 Flag14 is low
_f15 Flag15 is low
f0 Flag0 (internal flag and pin) is high
f1 Flag1 (internal flag and pin) is high
f2 Flag2 (internal flag and pin) is high
f3 Flag3 (possibly also the 'Start1' pin) is high
f4 Flag4 (possibly also the 'Start2' pin) is high
f5 Flag5 (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high

MC33816 Assembler, page 47 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

CWEF - create wait table entry far

ASH WARE, Inc. 6/8/2024

f7 Flag7 (possibly also the 'Start5' pin) is high
f8 Flag8 (possibly also the 'Start6' pin) is high
f9 Flag9 (possibly also the 'IRQB' pin) is high
f10 Flag10 (possibly also the 'OA_1' pin) is high
f11 Flag11 (possibly also the 'OA_2' pin) is high
f12 Flag12 (possibly also the 'DBG' pin) is high
f13 Flag13 is high
f14 Flag14 is high
f15 Flag15 is high
tc1 Counter1 has reached it's terminal count
tc2 Counter2 has reached it's terminal count
tc3 Counter3 has reached it's terminal count
tc4 Counter4 has reached it's terminal count
_start Core's own configured start pin combination not met
start Core's own configured start pin combination is met
_sc1v Core's own output driver shortcut 1 below Drain-Source

voltage threshold
_sc2v Core's own output driver shortcut 2 below Drain-Source

voltage threshold
_sc3v Core's own output driver shortcut 3 below Drain-Source

voltage threshold
_sc1s Core's own output driver shortcut 1 below Source voltage

threshold
_sc2s Core's own output driver shortcut 2 below Source voltage

threshold
_sc3s Core's own output driver shortcut 3 below Source voltage

threshold
sc1v Core's own output driver shortcut 1 above Drain-Source

voltage threshold
sc2v Core's own output driver shortcut 2 above Drain-Source

voltage threshold
sc3v Core's own output driver shortcut 3 above Drain-Source

voltage threshold
opd Multi-cycle instruction (mul/shift,etc) has completed
vb boost voltage is above threshold
_vb boost voltage is below threshold
cur1 Channel 1, core 0 sense resistor current above threshold
cur2 Channel 1, core 1 sense resistor current above threshold
cur3 Channel 2, core 0 sense resistor current above threshold
cur4l Channel 2, core 1 sense resistor current above 'low' threshold
cur4h Channel 2, core 1 sense resistor current above 'high' threshold
cur4n Channel 2, core 1 sense resistor current above 'negative'

threshold
_cur1 Channel 1, core 0 sense resistor current below threshold
_cur2 Channel 1, core 1 sense resistor current below threshold
_cur3 Channel 2, core 0 sense resistor current below threshold
_cur4l Channel 2, core 1 sense resistor current below 'low' threshold
_cur4h Channel 2, core 1 sense resistor current below 'high' threshold
_cur4n Channel 2, core 1 sense resistor current below 'negative'

threshold

MC33816 Assembler, page 48 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

CWEF - create wait table entry far

ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

Entry - Sets the wait table's row that gets written

row1 Write row1's event and event-handling code address
row2 Write row2's event and event-handling code address
row3 Write row3's event and event-handling code address
row4 Write row4's event and event-handling code address
row5 Write row5's event and event-handling code address

13.2 CWER - create wait table entry relative

Initializes or changes one of the five rows in the wait table used by the 'wait' instruction.

The 'Dest' parameter specifies the address of the event-handling code that will execute in response to the
event.

The event type is specified by the 'Cond' parameter.

Syntax

cwer Dest Cond Entry;

Example

// Set the wait table's row 2 event
// to be the flag register's bit9 being low
cwer flag_bit_9_is_1 f9 row2;
// Set the wait table's row 3 event
// to be when the core's own current sense threshold is reached
// Note that if the destination is over 16 opcodes away
// then this 2-instruction 'far' opcode pair is required
ldjr1 own_current_hit_low_threshold;
cwef jr1 _ocur row3;
// Set the wait table's row 5 event
// to be the counter 1 reaching it's terminal count
// NOTE: This is the extended instruction that
// automatically selects the more optimal
// of either cwer or cwef
CREATE_WAIT_ENTRY counter2_terminal jr1 tc2 row5;
//Cease execution until row 2's, 3's, or 5's event occurs
wait row235;
flag_bit_9_is_1:
// ... More code here ...
own_current_hit_low_threshold:
// ... More code here ...
counter2_terminal:
// ... More code here ...

Dest - The address of the row's event-handling code.

MC33816 Assembler, page 49 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

CWER - create wait table entry relative

ASH WARE, Inc. 6/8/2024

Cond - The event or condition that will envoke the row's event-handling code.

_f0 Flag0 (internal flag and pin) is low
_f1 Flag1 (internal flag and pin) is low
_f2 Flag2 (internal flag and pin) is low
_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flag5 (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flag11 (possibly also the 'OA_2' pin) is low
_f12 Flag12 (possibly also the 'DBG' pin) is low
_f13 Flag13 is low
_f14 Flag14 is low
_f15 Flag15 is low
f0 Flag0 (internal flag and pin) is high
f1 Flag1 (internal flag and pin) is high
f2 Flag2 (internal flag and pin) is high
f3 Flag3 (possibly also the 'Start1' pin) is high
f4 Flag4 (possibly also the 'Start2' pin) is high
f5 Flag5 (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high
f7 Flag7 (possibly also the 'Start5' pin) is high
f8 Flag8 (possibly also the 'Start6' pin) is high
f9 Flag9 (possibly also the 'IRQB' pin) is high
f10 Flag10 (possibly also the 'OA_1' pin) is high
f11 Flag11 (possibly also the 'OA_2' pin) is high
f12 Flag12 (possibly also the 'DBG' pin) is high
f13 Flag13 is high
f14 Flag14 is high
f15 Flag15 is high
tc1 Counter1 has reached it's terminal count
tc2 Counter2 has reached it's terminal count
tc3 Counter3 has reached it's terminal count
tc4 Counter4 has reached it's terminal count
_start Core's own configured start pin combination not met
start Core's own configured start pin combination is met
_sc1v Core's own output driver shortcut 1 below Drain-Source

voltage threshold
_sc2v Core's own output driver shortcut 2 below Drain-Source

voltage threshold
_sc3v Core's own output driver shortcut 3 below Drain-Source

voltage threshold
_sc1s Core's own output driver shortcut 1 below Source voltage

threshold
_sc2s Core's own output driver shortcut 2 below Source voltage

threshold

MC33816 Assembler, page 50 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

CWER - create wait table entry relative

_sc3s Core's own output driver shortcut 3 below Source voltage
threshold

sc1v Core's own output driver shortcut 1 above Drain-Source
voltage threshold

sc2v Core's own output driver shortcut 2 above Drain-Source
voltage threshold

sc3v Core's own output driver shortcut 3 above Drain-Source
voltage threshold

opd Multi-cycle instruction (mul/shift,etc) has completed
vb boost voltage is above threshold
_vb boost voltage is below threshold
cur1 Channel 1, core 0 sense resistor current above threshold
cur2 Channel 1, core 1 sense resistor current above threshold
cur3 Channel 2, core 0 sense resistor current above threshold
cur4l Channel 2, core 1 sense resistor current above 'low' threshold
cur4h Channel 2, core 1 sense resistor current above 'high' threshold
cur4n Channel 2, core 1 sense resistor current above 'negative'

threshold
_cur1 Channel 1, core 0 sense resistor current below threshold
_cur2 Channel 1, core 1 sense resistor current below threshold
_cur3 Channel 2, core 0 sense resistor current below threshold
_cur4l Channel 2, core 1 sense resistor current below 'low' threshold
_cur4h Channel 2, core 1 sense resistor current below 'high' threshold
_cur4n Channel 2, core 1 sense resistor current below 'negative'

threshold
ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

Entry - Specifies which wait table row gets written

row1 Write row1's event and event-handling code address
row2 Write row2's event and event-handling code address
row3 Write row3's event and event-handling code address
row4 Write row4's event and event-handling code address
row5 Write row5's event and event-handling code address

13.3 Fill a 'Wait Table' row with an event and an event-handling thread's
code-address (extended instruction)

Call to the label, loading/using the specified jump register only if a far jump is required.

Syntax

CREATE_WAIT_ENTRY Dest JrSel Cond Entry;

Example

// Set the wait table's row 2 event

MC33816 Assembler, page 51 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

Fill a 'Wait Table' row with an event and an event-handling thread's code-address (extended instruction)

ASH WARE, Inc. 6/8/2024

// to be the flag register's bit 13 being low
// NOTE: This is the extended instruction that
// automatically selects the more optimal
// of either cwer or cwef
CREATE_WAIT_ENTRY flag_reg_bit_13_low jr1 _f13 row2;
// Set the wait table's row 5 event
// to be the counter 1 reaching it's terminal count
CREATE_WAIT_ENTRY counter1_terminal jr1 tc1 row5;
//Cease execution until row 2's, 3's, or 5's event occurs
wait row25;
flag_reg_bit_13_low:
// ... More code here ...
counter1_terminal:
// ... More code here ...

Dest - The destination label of the wait entry.

JrSel - Specifies which jump register to use if a far address load is required.

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The event or condition that will envoke the row's event-handling code.

_f0 Flag0 (internal flag and pin) is low
_f1 Flag1 (internal flag and pin) is low
_f2 Flag2 (internal flag and pin) is low
_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flag5 (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flag11 (possibly also the 'OA_2' pin) is low
_f12 Flag12 (possibly also the 'DBG' pin) is low
_f13 Flag13 is low
_f14 Flag14 is low
_f15 Flag15 is low
f0 Flag0 (internal flag and pin) is high
f1 Flag1 (internal flag and pin) is high
f2 Flag2 (internal flag and pin) is high
f3 Flag3 (possibly also the 'Start1' pin) is high
f4 Flag4 (possibly also the 'Start2' pin) is high
f5 Flag5 (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high
f7 Flag7 (possibly also the 'Start5' pin) is high
f8 Flag8 (possibly also the 'Start6' pin) is high
f9 Flag9 (possibly also the 'IRQB' pin) is high
f10 Flag10 (possibly also the 'OA_1' pin) is high

MC33816 Assembler, page 52 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

Fill a 'Wait Table' row with an event and an event-handling thread's code-address (extended instruction)

f11 Flag11 (possibly also the 'OA_2' pin) is high
f12 Flag12 (possibly also the 'DBG' pin) is high
f13 Flag13 is high
f14 Flag14 is high
f15 Flag15 is high
tc1 Counter1 has reached it's terminal count
tc2 Counter2 has reached it's terminal count
tc3 Counter3 has reached it's terminal count
tc4 Counter4 has reached it's terminal count
_start Core's own configured start pin combination not met
start Core's own configured start pin combination is met
_sc1v Core's own output driver shortcut 1 below Drain-Source

voltage threshold
_sc2v Core's own output driver shortcut 2 below Drain-Source

voltage threshold
_sc3v Core's own output driver shortcut 3 below Drain-Source

voltage threshold
_sc1s Core's own output driver shortcut 1 below Source voltage

threshold
_sc2s Core's own output driver shortcut 2 below Source voltage

threshold
_sc3s Core's own output driver shortcut 3 below Source voltage

threshold
sc1v Core's own output driver shortcut 1 above Drain-Source

voltage threshold
sc2v Core's own output driver shortcut 2 above Drain-Source

voltage threshold
sc3v Core's own output driver shortcut 3 above Drain-Source

voltage threshold
opd Multi-cycle instruction (mul/shift,etc) has completed
vb boost voltage is above threshold
_vb boost voltage is below threshold
cur1 Channel 1, core 0 sense resistor current above threshold
cur2 Channel 1, core 1 sense resistor current above threshold
cur3 Channel 2, core 0 sense resistor current above threshold
cur4l Channel 2, core 1 sense resistor current above 'low' threshold
cur4h Channel 2, core 1 sense resistor current above 'high' threshold
cur4n Channel 2, core 1 sense resistor current above 'negative'

threshold
_cur1 Channel 1, core 0 sense resistor current below threshold
_cur2 Channel 1, core 1 sense resistor current below threshold
_cur3 Channel 2, core 0 sense resistor current below threshold
_cur4l Channel 2, core 1 sense resistor current below 'low' threshold
_cur4h Channel 2, core 1 sense resistor current below 'high' threshold
_cur4n Channel 2, core 1 sense resistor current below 'negative'

threshold
ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

MC33816 Assembler, page 53 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

Fill a 'Wait Table' row with an event and an event-handling thread's code-address (extended instruction)

ASH WARE, Inc. 6/8/2024

Entry - Specifies which wait table row gets written

row1 Write row1's event and event-handling code address
row2 Write row2's event and event-handling code address
row3 Write row3's event and event-handling code address
row4 Write row4's event and event-handling code address
row5 Write row5's event and event-handling code address

13.4 WAIT - wait until a condition is verified

stop the program counter and wait until at least one of the enabled wait conditions is met; when one of the
conditions is met, the program counter is moved to the corresponding destination

the possible wait conditions, along with the corresponding destinations, are stored in the wait table (please
refer to the cwer and cwef instructions for further details)

not all wait table rows are enabled during a wait

- waitmask is a 5-bit mask; each bit identifies a row in the wait table; if the bit is set to 1 then the
correspondent condition is tested during the wait

Syntax

wait WaitMask;

Example

// Map the wait table's row1
// to the HOLD_OFF thread
// when the core's Own Current Sense comparator
// becomes high (occur)
cwer HOLD_OFF ocur row1;
//
// Map the wait table's row3
// to the IDLE thread
// on Terminal Count 2 (TC2)
cwer IDLE tc2 row3;
//
// Enable rows 1 and 3, disable the others.
// Cease core's execution until the
// event in either 1 or 3 are true
wait row13;
//
// Thread: IDLE
IDLE:
// ... (more code here) ...
//
// Thread: HOLD_OFF
HOLD_OFF:
// ... (more code here) ...

WaitMask

MC33816 Assembler, page 54 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

13. Wait

WAIT - wait until a condition is verified

always MISSING DESCRIPTION STRING
row1 MISSING DESCRIPTION STRING
row2 MISSING DESCRIPTION STRING
row12 MISSING DESCRIPTION STRING
row3 MISSING DESCRIPTION STRING
row13 MISSING DESCRIPTION STRING
row23 MISSING DESCRIPTION STRING
row123 MISSING DESCRIPTION STRING
row4 MISSING DESCRIPTION STRING
row14 MISSING DESCRIPTION STRING
row24 MISSING DESCRIPTION STRING
row124 MISSING DESCRIPTION STRING
row34 MISSING DESCRIPTION STRING
row134 MISSING DESCRIPTION STRING
row234 MISSING DESCRIPTION STRING
row1234 MISSING DESCRIPTION STRING
row5 MISSING DESCRIPTION STRING
row15 MISSING DESCRIPTION STRING
row25 MISSING DESCRIPTION STRING
row125 MISSING DESCRIPTION STRING
row35 MISSING DESCRIPTION STRING
row135 MISSING DESCRIPTION STRING
row235 MISSING DESCRIPTION STRING
row1235 MISSING DESCRIPTION STRING
row45 MISSING DESCRIPTION STRING
row145 MISSING DESCRIPTION STRING
row245 MISSING DESCRIPTION STRING
row1245 MISSING DESCRIPTION STRING
row345 MISSING DESCRIPTION STRING
row1345 MISSING DESCRIPTION STRING
row2345 MISSING DESCRIPTION STRING
row12345 MISSING DESCRIPTION STRING

MC33816 Assembler, page 55 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Call/Return

Part

XIV

MC33816 Assembler, page 56 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

14. Call/Return

14
Call/Return

This section covers the instructions that support calling and returning from subroutines.

14.1 JTSF - Jump far to subroutine

Jump to the subroutine specified by one of the jump registers, 'jr1' or 'jr2' as specified by the 'JrSel'
parameter. The subroutine's address must have been previously loaded into either 'jr1' or 'jr2'.

The return address is loaded into the auxiliary register (aux.)

Following subroutine execution the return from subroutine instruction 'rfs' is used to return to the point at
which the subroutine was called.

Syntax

jtsf JrSel;

Example

// Load the subroutine address
// into jump register 1 'jr1' and call it
ldjr1 my_far_subroutine;
jtsf jr1;
// ... (more code here) ...
// Start of subroutine
my_far_subroutine:
// ... (more code here) ...
// Return from subrouting
rfs;
//
// SUGGESTION: use this equivalent extended instruction instead:
CALL my_far_subroutine jr1;

JrSel - The subroutine's start address

jr1 Jump Register 1
jr2 Jump Register 2

MC33816 Assembler, page 57 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

14. Call/Return

JTSF - Jump far to subroutine

ASH WARE, Inc. 6/8/2024

14.2 JTSR - Jump relative to subroutine

Jump to a subroutine. The subroutine must be within -16 to +15 instructions of the address of the jump
instruction.

The return address is loaded into the auxiliary register (aux.)

Following subroutine execution the return from subroutine instruction 'rfs' is used to return to the point at
which the subroutine was called.

Syntax

jtsr Dest;

Example

// call subroutine 'my_near_subroutine'
jtsr my_near_subroutine;
// ... (more code here) ...
// Start of subroutine
my_near_subroutine:
// ... (more code here) ...
// Return from subrouting
rfs;
//
// SUGGESTION: use this equivalent extended instruction instead:
CALL my_near_subroutine jr1;

Dest - The jump destination code address.

14.3 Call a subroutine (extended instruction)

Call to the label, loading/using the specified jump register only if a far jump is required.

Syntax

CALL Dest JrSel;

Example

// Call destination label 'my_subroutine', using jr1 if necessary
CALL my_subroutine jr1;
// ... (more code here) ...
// Start of subroutine
my_subroutine:
// ... (more code here) ...
// Return from subrouting
rfs;

Dest - The call destination label.

JrSel - Specifies which jump register to use if a far call is required.

MC33816 Assembler, page 58 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

14. Call/Return

Call a subroutine (extended instruction)

jr1 Jump Register 1
jr2 Jump Register 2

14.4 RFS - Return from subroutine

Ends a subroutine. The program counter (pc) is loaded with the value from the auxiliary register (aux). The
'aux' register should have been loaded with the calling address using either the 'jtsf' or 'jtsr' instruction.

Syntax

rfs;

Example

// Save the address of the caller
// and call a two-deep subroutine
one_deep_subroutine:
cp aux r1;
ldjr1 two_deep_subroutine;
jtsf jr1;
// ... (more code here) ...
// Restore the original caller's address
// and return
cp r1 aux;
rfs;
//
two_deep_subroutine:
// ... (more code here) ...
// return from subroutine
rfs;

MC33816 Assembler, page 59 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Program Flow

Part

XV

MC33816 Assembler, page 60 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

15
Program Flow

This section covers conditional and unconditional jumps as well as loading the jump registers which is
required for 'far' jumps.

15.1 LDJR1 - Load jump register 1

Loads a code address into jump register 1 (jr1.)

Syntax

ldjr1 DestValue;

Example

ldjr1 clear_results_subroutine;
jtsf jr1;
// ...
clear_results_subroutine:

DestValue - The code address.

15.2 LDJR2 - Load jump register 2

Loads a code address into jump register 2 (jr2.)

Syntax

ldjr2 DestValue;

Example

ldjr2 my_sub_routine;
jtsf jr2;
// ...
my_sub_routine:

MC33816 Assembler, page 61 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

LDJR2 - Load jump register 2

ASH WARE, Inc. 6/8/2024

DestValue - The code address.

15.3 JMPF - Unconditional jump far

Jump to the code address specified by one of the jump registers, 'jr1' or 'jr2' as specified by the 'JrSel'
parameter. The destination code address must have been previously loaded into either 'jr1' or 'jr2'.

Syntax

jmpf JrSel;

Example

// Jump to label 'far_dest_label'
ldjr1 far_dest_label;
jmpf jr1;
// ... (more code here) ...
far_dest_label:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP far_dest_label jr1;

JrSel - Specifies which jump register contains the jump destination.

jr1 Jump Register 1
jr2 Jump Register 2

15.4 JMPR - Unconditional jump relative

Jump to a code address. The destination must be within -16 to +15 instructions of the address of the jump
instruction.

Syntax

jmpr Dest;

Example

// Jump to label 'jump_dest_label'
jmpr near_jump_dest_label;
// ... (more code here) ...
near_jump_dest_label:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP near_jump_dest_label jr1;

Dest - The jump destination code address.

MC33816 Assembler, page 62 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Unconditionally jump (extended instruction)

15.5 Unconditionally jump (extended instruction)

Jump to the label, loading/using the specified jump register only if a far jump is required.

Syntax

JUMP Dest JrSel;

Example

// Unconditionally jump to 'DEST_LABEL0'
// using jr1 if necessary
JUMP DEST_LABEL0 jr1;
// ... (more code here) ...
DEST_LABEL0:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

15.6 JARF - Jump on arithmetic register far

If the condition being tested is true, jump to the code address specified by one of the jump registers, 'jr1' or
'jr2' as specified by the 'JrSel' parameter. The code address must have been previously loaded into either
'jr1' or 'jr2'.

Syntax

jarf JrSel BitSel;

Example

// If register 'r0' contains a '7'
// then goto label 'result_is_zero'
subi r0 7 r1;
ldjr1 result_is_zero;
jarf jr1 sgn;
// ... (more code here) ...
result_is_zero:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_ARITHMETIC result_is_zero jr1 sgn;

JrSel - Specifies which jump register contains the jump destination.

jr1 Jump Register 1
jr2 Jump Register 2

BitSel - The condition being tested.

MC33816 Assembler, page 63 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JARF - Jump on arithmetic register far

ASH WARE, Inc. 6/8/2024

opd OD - Multi-cycle instruction (mul/shift,etc) has completed
ovs SO - Overflow with signed operands
uns SU - Underflow with signed operands
ovu UO - Overflow with unsigned operands
unu UU - Underflow with unsigned operands
sgn CS - Sign of result
zero RZ - Result is zero
mloss ML - Multiply precision loss
mover MO - Multiply overflow
all1 MM - Result of mask operation is 0xFFFF
all0 MN - Result of mask operation is 0x0000
aritl A0 - Arithmetic Logic Mode bit 0
arith A1 - Arithmetic Logic Mode bit 1
carry C - Carry
conv CS - Conversion sign
csh SB - Carry on shift operation

15.7 JARR - Jump on arithmetic register relative

If the condition being tested is true, jump to the specified code address. The destination must be within -16
to +15 instructions of the address of the jump instruction.

Syntax

jarr Dest BitSel;

Example

// If register 'r0' contains a '7'
// then goto label 'r0_is_7'
subi r0 7 r1;
jarr r0_is_7 sgn;
// ... (more code here) ...
r0_is_7:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_ARITHMETIC result_is_zero jr1 sgn;

Dest - The jump destination code address.

BitSel - Specifies which bit to test.

opd OD - Multi-cycle instruction (mul/shift,etc) has completed
ovs SO - Overflow with signed operands
uns SU - Underflow with signed operands
ovu UO - Overflow with unsigned operands
unu UU - Underflow with unsigned operands
sgn CS - Sign of result
zero RZ - Result is zero

MC33816 Assembler, page 64 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JARR - Jump on arithmetic register relative

mloss ML - Multiply precision loss
mover MO - Multiply overflow
all1 MM - Result of mask operation is 0xFFFF
all0 MN - Result of mask operation is 0x0000
aritl A0 - Arithmetic Logic Mode bit 0
arith A1 - Arithmetic Logic Mode bit 1
carry C - Carry
conv CS - Conversion sign
csh SB - Carry on shift operation

15.8 Conditionally jump on ALU and related flags (extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_ARITHMETIC Dest JrSel BitSel;

Example

// Test bits 3-7 of register 'r0'.
// If all set, jump to label 'bits_3_to_7_set'
LOAD_IR 0x00F8;
and r0;
JUMP_ARITHMETIC bits_3_to_7_set jr1 all1;
// ... (more code here) ...
bits_3_to_7_set:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

BitSel - The condition being tested.

opd OD - Multi-cycle instruction (mul/shift,etc) has completed
ovs SO - Overflow with signed operands
uns SU - Underflow with signed operands
ovu UO - Overflow with unsigned operands
unu UU - Underflow with unsigned operands
sgn CS - Sign of result
zero RZ - Result is zero
mloss ML - Multiply precision loss
mover MO - Multiply overflow
all1 MM - Result of mask operation is 0xFFFF
all0 MN - Result of mask operation is 0x0000
aritl A0 - Arithmetic Logic Mode bit 0

MC33816 Assembler, page 65 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump on ALU and related flags (extended instruction)

ASH WARE, Inc. 6/8/2024

arith A1 - Arithmetic Logic Mode bit 1
carry C - Carry
conv CS - Conversion sign
csh SB - Carry on shift operation

15.9 JCRF - Jump on control register far

Conditionally jump on a control register bit. The destination code address is specified by one of the jump
registers, 'jr1' or 'jr2' as specified by the 'JrSel' parameter. The code address must have been previously
loaded into either 'jr1' or 'jr2'.

The jump can occur when the control bit is set, or when the control bit is cleared which is specified by the
'Pol' parameter.

Note that each core has its own control register so the control register that is tested is that core's own
control register.

Syntax

jcrf JrSel BitSel Pol;

Example

// Jump to label 'Dest3'
// if Control Register's bit 12 is a '0'
ldjr1 Dest3;
jcrf jr1 b12 high;
// ... (more code here) ...
Dest3:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_CONTROL Dest3 jr1 b12 high;

JrSel - Specifies which jump register contains the jump destination.

jr1 Jump Register 1
jr2 Jump Register 2

BitSel - Specifies which bit to test.

b0 Control register bit 0
b1 Control register bit 1
b2 Control register bit 2
b3 Control register bit 3
b4 Control register bit 4
b5 Control register bit 5
b6 Control register bit 6
b7 Control register bit 7
b8 Control register bit 8
b9 Control register bit 9

MC33816 Assembler, page 66 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JCRF - Jump on control register far

b10 Control register bit 10
b11 Control register bit 11
b12 Control register bit 12
b13 Control register bit 13
b14 Control register bit 14
b15 Control register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on control bit low
high Jump on control bit high

15.10 JCRR - Jump on control register relative

Conditionally jump on a control register bit. The destination must be within -16 to +15 instructions of the
address of the jump instruction.

The jump can occur when the control bit is set, or when the control bit is cleared which is specified by the
'Pol' parameter.

Note that each core has its own control register so the control register that is tested is that core's own
control register.

Syntax

jcrr Dest BitSel Pol;

Example

// Jump to 'Dest2'
// if Control Register's bit 5 is a '1'
jcrr Dest2 b5 high;
// ... (more code here) ...
Dest2:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_CONTROL Dest2 jr1 b5 high;

Dest - The jump destination code address.

BitSel - Specifies which control bit to test.

b0 Control register bit 0
b1 Control register bit 1
b2 Control register bit 2
b3 Control register bit 3
b4 Control register bit 4
b5 Control register bit 5
b6 Control register bit 6

MC33816 Assembler, page 67 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JCRR - Jump on control register relative

ASH WARE, Inc. 6/8/2024

b7 Control register bit 7
b8 Control register bit 8
b9 Control register bit 9
b10 Control register bit 10
b11 Control register bit 11
b12 Control register bit 12
b13 Control register bit 13
b14 Control register bit 14
b15 Control register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on control bit low
high Jump on control bit high

15.11 Conditionally jump on 'Control Register' bit values (hi/lo) (extended
instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_CONTROL Dest JrSel BitSel Pol;

Example

// Jump to 'DEST_LABEL1'
// if control register bit 11 is a '1'
// using jr1 if necessary
JUMP_CONTROL DEST_LABEL1 jr1 b11 high;
// ... (more code here) ...
DEST_LABEL1:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

BitSel - Specifies which bit to test.

b0 Control register bit 0
b1 Control register bit 1
b2 Control register bit 2
b3 Control register bit 3
b4 Control register bit 4

MC33816 Assembler, page 68 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump on 'Control Register' bit values (hi/lo) (extended instruction)

b5 Control register bit 5
b6 Control register bit 6
b7 Control register bit 7
b8 Control register bit 8
b9 Control register bit 9
b10 Control register bit 10
b11 Control register bit 11
b12 Control register bit 12
b13 Control register bit 13
b14 Control register bit 14
b15 Control register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on control bit low
high Jump on control bit high

15.12 JSRF - Jump on status register far

Conditionally jump on a status register bit. The destination code address is specified by one of the jump
registers, 'jr1' or 'jr2' as specified by the 'JrSel' parameter. The code address must have been previously
loaded into either 'jr1' or 'jr2'.

The jump can occur when the status bit is set, or when the status bit is cleared which is specified by the
'Pol' parameter.

Note that each core has its own status register so the status register that is tested is that core's own control
register.

Syntax

jsrf JrSel BitSel Pol;

Example

// Jump to label 'bit_12_is_low'
// if Status Register's bit 12 is a '0'
ldjr1 bit_12_is_low;
jsrf jr1 b12 low;
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_STATUS bit_12_is_low jr1 b12 low;

JrSel - Specifies which jump register contains the jump destination.

jr1 Jump Register 1
jr2 Jump Register 2

BitSel - Specifies which bit to test.

MC33816 Assembler, page 69 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JSRF - Jump on status register far

ASH WARE, Inc. 6/8/2024

b0 Status register bit 0
b1 Status register bit 1
b2 Status register bit 2
b3 Status register bit 3
b4 Status register bit 4
b5 Status register bit 5
b6 Status register bit 6
b7 Status register bit 7
b8 Status register bit 8
b9 Status register bit 9
b10 Status register bit 10
b11 Status register bit 11
b12 Status register bit 12
b13 Status register bit 13
b14 Status register bit 14
b15 Status register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on status bit low
high Jump on status bit high

15.13 JSRR - Jump on status register relative

Conditionally jump on a status register bit. The destination code address must be within -16 to +15
instructions of the address of the jump instruction.

The jump can occur when the status bit is set, or when the status bit is cleared which is specified by the
'Pol' parameter.

Note that each core has its own status register so the status register that is tested is that core's own control
register.

Syntax

jsrr Dest BitSel Pol;

Example

// Jump to label 'bit_12_is_low'
// if Status Registerâ€™s bit 12 is a '0'
jsrr bit_12_is_low b12 low;
// ... (more code here) ...
bit_12_is_low:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_STATUS bit_12_is_low jr1 b12 low;

MC33816 Assembler, page 70 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JSRR - Jump on status register relative

Dest - The jump destination code address.

BitSel - Specifies which bit to test.

b0 Status register bit 0
b1 Status register bit 1
b2 Status register bit 2
b3 Status register bit 3
b4 Status register bit 4
b5 Status register bit 5
b6 Status register bit 6
b7 Status register bit 7
b8 Status register bit 8
b9 Status register bit 9
b10 Status register bit 10
b11 Status register bit 11
b12 Status register bit 12
b13 Status register bit 13
b14 Status register bit 14
b15 Status register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on status bit low
high Jump on status bit high

15.14 Conditionally jump on 'Status Register' bit values (hi/lo) (extended
instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_STATUS Dest JrSel BitSel Pol;

Example

// Jump to 'DEST_LABEL2'
// if bit 7 of the status register is low
// using jr2 if necessary
JUMP_STATUS DEST_LABEL2 jr2 b7 low;
// ... (more code here) ...
DEST_LABEL2:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

MC33816 Assembler, page 71 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump on 'Status Register' bit values (hi/lo) (extended instruction)

ASH WARE, Inc. 6/8/2024

jr1 Jump Register 1
jr2 Jump Register 2

BitSel - Specifies which bit to test.

b0 Status register bit 0
b1 Status register bit 1
b2 Status register bit 2
b3 Status register bit 3
b4 Status register bit 4
b5 Status register bit 5
b6 Status register bit 6
b7 Status register bit 7
b8 Status register bit 8
b9 Status register bit 9
b10 Status register bit 10
b11 Status register bit 11
b12 Status register bit 12
b13 Status register bit 13
b14 Status register bit 14
b15 Status register bit 15

Pol - Specifies jump on bit low or on bit high.

low Jump on status bit low
high Jump on status bit high

15.15 JOSLF - Jump on start-latch far

Conditionally jump on bits in the start-latch register. The destination code address is specified by one of the
jump registers, 'jr1' or 'jr2' as specified by the 'JrSel' parameter. The destination code address must have
been previously loaded into either 'jr1' or 'jr2'.

Syntax

joslf JrSel Cond;

Example

// Test pins '1', '2', and '5'
// to see if they are all '1's
// If so, jump to label 'Pins125AllOne'
ldjr1 Pins125AllOne;
joslf jr1 start125;
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_START Pins125AllOne jr1 start125;

MC33816 Assembler, page 72 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOSLF - Jump on start-latch far

JrSel - Specifies which jump register contains the jump destination.

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The jump condition.

none jump false
start1 jump on start latch bit 1
start2 jump on start latch bits 2
start12 jump on start latch bits 1 and 2
start3 jump on start latch bit 3
start13 jump on start latch bits 1 and 3
start23 jump on start latch bits 2 and 3
start123 jump on start latch bits 1, 2 and 3
start4 jump on start latch bit 4
start14 jump on start latch bits 1 and 4
start24 jump on start latch bits 2 and 4
start124 jump on start latch bits 1, 2 and 4
start34 jump on start latch bits 3 and 4
start134 jump on start latch bits 1, 3 and 4
start234 jump on start latch bits 2, 3 and 4
start1234 jump on start latch bits 1, 2, 3, and 4
start5 jump on start latch bit 5
start15 jump on start latch bits 1 and 5
start25 jump on start latch bits 2 and 5
start125 jump on start latch bits 1, 2 and 5
start35 jump on start latch bits 3 and 5
start135 jump on start latch bits 1, 3 and 5
start235 jump on start latch bits 2, 3 and 5
start1235 jump on start latch bits 1, 2, 3 and 5
start45 jump on start latch bits 4 and 5
start145 jump on start latch bits 1, 4 and 5
start245 jump on start latch bits 2, 4 and 5
start1245 jump on start latch bits 1, 2, 4 and 5
start345 jump on start latch bits 3, 4 and 5
start1345 jump on start latch bits 1, 3, 4 and 5
start2345 jump on start latch bits 2, 3, 4 and 5
start12345 jump on start latch bits 1, 2, 3, 4 and 5
start6 jump on start latch bit 6
start16 jump on start latch bits 1 and 6
start26 jump on start latch bits 2 and 6
start126 jump on start latch bits 1, 2 and 6
start36 jump on start latch bits 3 and 6
start136 jump on start latch bits 1, 3 and 6
start236 jump on start latch bits 2, 3 and 6
start1236 jump on start latch bits 1, 2, 3 and 6
start46 jump on start latch bits 4 and 6
start146 jump on start latch bits 1, 4 and 6

MC33816 Assembler, page 73 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOSLF - Jump on start-latch far

ASH WARE, Inc. 6/8/2024

start246 jump on start latch bits 2, 4 and 6
start1246 jump on start latch bits 1, 2, 4 and 6
start346 jump on start latch bits 3, 4 and 6
start1346 jump on start latch bits 1, 3, 4 and 6
start2346 jump on start latch bits 2, 3, 4 and 6
start12346 jump on start latch bits 1, 2, 3, 4 and 6
start56 jump on start latch bits 5 and 6
start156 jump on start latch bits 1, 5 and 6
start256 jump on start latch bits 2, 5 and 6
start1256 jump on start latch bits 1, 2, 5 and 6
start356 jump on start latch bits 3, 5 and 6
start1356 jump on start latch bits 1, 3, 5 and 6
start2356 jump on start latch bits 2, 3, 5 and 6
start12356 jump on start latch bits 1, 2, 3, 5 and 6
start456 jump on start latch bits 4, 5 and 6
start1456 jump on start latch bits 1, 4, 5 and 6
start2456 jump on start latch bits 2, 4, 5 and 6
start12456 jump on start latch bits 1, 2, 4, 5 and 6
start3456 jump on start latch bits 3, 4, 5 and 6
start13456 jump on start latch bits 1, 3, 4, 5 and 6
start23456 jump on start latch bits 2, 3, 4, 5 and 6
start123456 jump on any start-latch bits

15.16 JOSLR - Jump on start-latch relative

Conditionally jump on bits in the start-latch register. The destination code address must be within -16 to +15
instructions of the address of the jump instruction.

Syntax

joslr Dest Cond;

Example

// Test pins '1', '2', and '5'
// to see if they are all '1's
// If so, jump to label 'Pins125AllOne'
joslr Pins125AllOne start125;
// ... More code here ...
Pins125AllOne:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_START Pins125AllOne jr1 start125;

Dest - The jump destination code address.

Cond - The jump condition.

none jump false

MC33816 Assembler, page 74 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOSLR - Jump on start-latch relative

start1 jump on start latch bit 1
start2 jump on start latch bits 2
start12 jump on start latch bits 1 and 2
start3 jump on start latch bit 3
start13 jump on start latch bits 1 and 3
start23 jump on start latch bits 2 and 3
start123 jump on start latch bits 1, 2 and 3
start4 jump on start latch bit 4
start14 jump on start latch bits 1 and 4
start24 jump on start latch bits 2 and 4
start124 jump on start latch bits 1, 2 and 4
start34 jump on start latch bits 3 and 4
start134 jump on start latch bits 1, 3 and 4
start234 jump on start latch bits 2, 3 and 4
start1234 jump on start latch bits 1, 2, 3, and 4
start5 jump on start latch bit 5
start15 jump on start latch bits 1 and 5
start25 jump on start latch bits 2 and 5
start125 jump on start latch bits 1, 2 and 5
start35 jump on start latch bits 3 and 5
start135 jump on start latch bits 1, 3 and 5
start235 jump on start latch bits 2, 3 and 5
start1235 jump on start latch bits 1, 2, 3 and 5
start45 jump on start latch bits 4 and 5
start145 jump on start latch bits 1, 4 and 5
start245 jump on start latch bits 2, 4 and 5
start1245 jump on start latch bits 1, 2, 4 and 5
start345 jump on start latch bits 3, 4 and 5
start1345 jump on start latch bits 1, 3, 4 and 5
start2345 jump on start latch bits 2, 3, 4 and 5
start12345 jump on start latch bits 1, 2, 3, 4 and 5
start6 jump on start latch bit 6
start16 jump on start latch bits 1 and 6
start26 jump on start latch bits 2 and 6
start126 jump on start latch bits 1, 2 and 6
start36 jump on start latch bits 3 and 6
start136 jump on start latch bits 1, 3 and 6
start236 jump on start latch bits 2, 3 and 6
start1236 jump on start latch bits 1, 2, 3 and 6
start46 jump on start latch bits 4 and 6
start146 jump on start latch bits 1, 4 and 6
start246 jump on start latch bits 2, 4 and 6
start1246 jump on start latch bits 1, 2, 4 and 6
start346 jump on start latch bits 3, 4 and 6
start1346 jump on start latch bits 1, 3, 4 and 6
start2346 jump on start latch bits 2, 3, 4 and 6
start12346 jump on start latch bits 1, 2, 3, 4 and 6
start56 jump on start latch bits 5 and 6
start156 jump on start latch bits 1, 5 and 6
start256 jump on start latch bits 2, 5 and 6

MC33816 Assembler, page 75 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOSLR - Jump on start-latch relative

ASH WARE, Inc. 6/8/2024

start1256 jump on start latch bits 1, 2, 5 and 6
start356 jump on start latch bits 3, 5 and 6
start1356 jump on start latch bits 1, 3, 5 and 6
start2356 jump on start latch bits 2, 3, 5 and 6
start12356 jump on start latch bits 1, 2, 3, 5 and 6
start456 jump on start latch bits 4, 5 and 6
start1456 jump on start latch bits 1, 4, 5 and 6
start2456 jump on start latch bits 2, 4, 5 and 6
start12456 jump on start latch bits 1, 2, 4, 5 and 6
start3456 jump on start latch bits 3, 4, 5 and 6
start13456 jump on start latch bits 1, 3, 4, 5 and 6
start23456 jump on start latch bits 2, 3, 4, 5 and 6
start123456 jump on any start-latch bits

15.17 Conditionally jump based on the state of the start pins latched states
(extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_START Dest JrSel Cond;

Example

// Jump to 'DEST_LABEL3'
// if start bits 1 and 2 are high
// using jr1 if necessary
JUMP_START DEST_LABEL3 jr1 start12;
// ... (more code here) ...
DEST_LABEL3:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The jump condition.

none jump false
start1 jump on start latch bit 1
start2 jump on start latch bits 2
start12 jump on start latch bits 1 and 2
start3 jump on start latch bit 3
start13 jump on start latch bits 1 and 3
start23 jump on start latch bits 2 and 3

MC33816 Assembler, page 76 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump based on the state of the start pins latched states (extended instruction)

start123 jump on start latch bits 1, 2 and 3
start4 jump on start latch bit 4
start14 jump on start latch bits 1 and 4
start24 jump on start latch bits 2 and 4
start124 jump on start latch bits 1, 2 and 4
start34 jump on start latch bits 3 and 4
start134 jump on start latch bits 1, 3 and 4
start234 jump on start latch bits 2, 3 and 4
start1234 jump on start latch bits 1, 2, 3, and 4
start5 jump on start latch bit 5
start15 jump on start latch bits 1 and 5
start25 jump on start latch bits 2 and 5
start125 jump on start latch bits 1, 2 and 5
start35 jump on start latch bits 3 and 5
start135 jump on start latch bits 1, 3 and 5
start235 jump on start latch bits 2, 3 and 5
start1235 jump on start latch bits 1, 2, 3 and 5
start45 jump on start latch bits 4 and 5
start145 jump on start latch bits 1, 4 and 5
start245 jump on start latch bits 2, 4 and 5
start1245 jump on start latch bits 1, 2, 4 and 5
start345 jump on start latch bits 3, 4 and 5
start1345 jump on start latch bits 1, 3, 4 and 5
start2345 jump on start latch bits 2, 3, 4 and 5
start12345 jump on start latch bits 1, 2, 3, 4 and 5
start6 jump on start latch bit 6
start16 jump on start latch bits 1 and 6
start26 jump on start latch bits 2 and 6
start126 jump on start latch bits 1, 2 and 6
start36 jump on start latch bits 3 and 6
start136 jump on start latch bits 1, 3 and 6
start236 jump on start latch bits 2, 3 and 6
start1236 jump on start latch bits 1, 2, 3 and 6
start46 jump on start latch bits 4 and 6
start146 jump on start latch bits 1, 4 and 6
start246 jump on start latch bits 2, 4 and 6
start1246 jump on start latch bits 1, 2, 4 and 6
start346 jump on start latch bits 3, 4 and 6
start1346 jump on start latch bits 1, 3, 4 and 6
start2346 jump on start latch bits 2, 3, 4 and 6
start12346 jump on start latch bits 1, 2, 3, 4 and 6
start56 jump on start latch bits 5 and 6
start156 jump on start latch bits 1, 5 and 6
start256 jump on start latch bits 2, 5 and 6
start1256 jump on start latch bits 1, 2, 5 and 6
start356 jump on start latch bits 3, 5 and 6
start1356 jump on start latch bits 1, 3, 5 and 6
start2356 jump on start latch bits 2, 3, 5 and 6
start12356 jump on start latch bits 1, 2, 3, 5 and 6
start456 jump on start latch bits 4, 5 and 6

MC33816 Assembler, page 77 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump based on the state of the start pins latched states (extended instruction)

ASH WARE, Inc. 6/8/2024

start1456 jump on start latch bits 1, 4, 5 and 6
start2456 jump on start latch bits 2, 4, 5 and 6
start12456 jump on start latch bits 1, 2, 4, 5 and 6
start3456 jump on start latch bits 3, 4, 5 and 6
start13456 jump on start latch bits 1, 3, 4, 5 and 6
start23456 jump on start latch bits 2, 3, 4, 5 and 6
start123456 jump on any start-latch bits

15.18 JOCF - Jump on condition far

Conditionally jump on one of the conditions listed below. The destination code address is specified by one of
the jump registers, 'jr1' or 'jr2' as specified by the 'JrSel' parameter. The destination code address must have
been previously loaded into either 'jr1' or 'jr2'.

Bits in the 'flag_bus' are tested using the _f0, _f1, ..., f0, f1, ... syntax. The 'flag_bus' depending on how it is
configured can be the flag input pins 'FLAG0', 'FLAG1', and 'FLAG2' as well as pins such as the DBG pin
when configured to be a generic input pin rather than it's normal Debug function. Pins that can be
configured as generic input pins also include DBG, OA_2, OA_1, and START1 through START6.

The configured START condition can be tested (_start or start).

The ALU's completion of multi-cycle multiply and shift operations can be tested using the OPD flag (opd).

The boost voltage threshold comparator can be tested (_vb or vb).

The various core-specific current threshold comparators can be tested.

The core's own current threshold comparator can be tested (ocur, _ocur). This helps make code run
independent of the core.

The core's own voltage various voltage threshold comparators can be tested. That is to say, the voltages
associated Shortcuts 1, 2, (high side drivers) and 3 (low side driver.) By using shortcut-relative tests, code
can be made core-independent.

Syntax

jocf JrSel Cond;

Example

// Set the shortcut2 to LS5
// Jump if LS3's
// Vds Threshold comparator is high
dfsct hs1 ls3 hs5;
ldjr1 shortcut2_vds_is_high;
jocf jr1 sc2v;
// ... (more code here) ...
shortcut2_vds_is_high:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_CONDITION shortcut2_vds_is_high jr1 sc2v;

JrSel - Specifies which jump register contains the jump destination.

MC33816 Assembler, page 78 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOCF - Jump on condition far

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The jump condition.

_f0 Flag0 (internal flag and pin) is low
_f1 Flag1 (internal flag and pin) is low
_f2 Flag2 (internal flag and pin) is low
_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flag5 (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flag11 (possibly also the 'OA_2' pin) is low
_f12 Flag12 (possibly also the 'DBG' pin) is low
_f13 Flag13 is low
_f14 Flag14 is low
_f15 Flag15 is low
f0 Flag0 (internal flag and pin) is high
f1 Flag1 (internal flag and pin) is high
f2 Flag2 (internal flag and pin) is high
f3 Flag3 (possibly also the 'Start1' pin) is high
f4 Flag4 (possibly also the 'Start2' pin) is high
f5 Flag5 (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high
f7 Flag7 (possibly also the 'Start5' pin) is high
f8 Flag8 (possibly also the 'Start6' pin) is high
f9 Flag9 (possibly also the 'IRQB' pin) is high
f10 Flag10 (possibly also the 'OA_1' pin) is high
f11 Flag11 (possibly also the 'OA_2' pin) is high
f12 Flag12 (possibly also the 'DBG' pin) is high
f13 Flag13 is high
f14 Flag14 is high
f15 Flag15 is high
tc1 Counter1 has reached it's terminal count
tc2 Counter2 has reached it's terminal count
tc3 Counter3 has reached it's terminal count
tc4 Counter4 has reached it's terminal count
_start Core's own configured start pin combination not met
start Core's own configured start pin combination is met
_sc1v Core's own output driver shortcut 1 below Drain-Source

voltage threshold
_sc2v Core's own output driver shortcut 2 below Drain-Source

voltage threshold
_sc3v Core's own output driver shortcut 3 below Drain-Source

voltage threshold

MC33816 Assembler, page 79 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOCF - Jump on condition far

ASH WARE, Inc. 6/8/2024

_sc1s Core's own output driver shortcut 1 below Source voltage
threshold

_sc2s Core's own output driver shortcut 2 below Source voltage
threshold

_sc3s Core's own output driver shortcut 3 below Source voltage
threshold

sc1v Core's own output driver shortcut 1 above Drain-Source
voltage threshold

sc2v Core's own output driver shortcut 2 above Drain-Source
voltage threshold

sc3v Core's own output driver shortcut 3 above Drain-Source
voltage threshold

opd Multi-cycle instruction (mul/shift,etc) has completed
vb boost voltage is above threshold
_vb boost voltage is below threshold
cur1 Channel 1, core 0 sense resistor current above threshold
cur2 Channel 1, core 1 sense resistor current above threshold
cur3 Channel 2, core 0 sense resistor current above threshold
cur4l Channel 2, core 1 sense resistor current above 'low' threshold
cur4h Channel 2, core 1 sense resistor current above 'high' threshold
cur4n Channel 2, core 1 sense resistor current above 'negative'

threshold
_cur1 Channel 1, core 0 sense resistor current below threshold
_cur2 Channel 1, core 1 sense resistor current below threshold
_cur3 Channel 2, core 0 sense resistor current below threshold
_cur4l Channel 2, core 1 sense resistor current below 'low' threshold
_cur4h Channel 2, core 1 sense resistor current below 'high' threshold
_cur4n Channel 2, core 1 sense resistor current below 'negative'

threshold
ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

15.19 JOCR - Jump on condition relative

Conditionally jump on one of the conditions listed below. The destination must be within -16 to +15
instructions of the address of the jump instruction.

Bits in the 'flag_bus' are tested using the _f0, _f1, ..., f0, f1, ... syntax. The 'flag_bus' depending on how it is
configured can be the flag input pins 'FLAG0', 'FLAG1', and 'FLAG2' as well as pins such as the DBG pin
when configured to be a generic input pin rather than it's normal Debug function. Pins that can be
configured as generic input pins also include DBG, OA_2, OA_1, and START1 through START6.

The configured START condition can be tested.

The ALU's completion of multi-cycle multiply and shift operations can be tested using the OPD flag.

MC33816 Assembler, page 80 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOCR - Jump on condition relative

The boost voltage threshold comparator can be tested (_vb or vb).

The various core-specific current threshold comparators can be tested.

The core's own current threshold comparator can be tested. This helps make code run independent of the
core.

The core's own voltage various voltage threshold comparators can be tested. That is to say, the voltages
associated Shortcuts 1, 2, (high side drivers) and 3 (low side driver.) By using shortcut-relative tests, code
can be made core-independent.

Syntax

jocr Dest Cond;

Example

// Set the shortcut2 to LS5
// Jump if LS3's
// Vds Threshold comparator is high
dfsct hs1 ls3 hs5;
jocr shortcut3_vds_is_high sc3v;
// ... (more code here) ...
shortcut3_vds_is_high:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_CONDITION shortcut3_vds_is_high jr1 sc3v;

Dest - The jump destination code address.

Cond - The jump condition.

_f0 Flag0 (internal flag and pin) is low
_f1 Flag1 (internal flag and pin) is low
_f2 Flag2 (internal flag and pin) is low
_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flag5 (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flag11 (possibly also the 'OA_2' pin) is low
_f12 Flag12 (possibly also the 'DBG' pin) is low
_f13 Flag13 is low
_f14 Flag14 is low
_f15 Flag15 is low
f0 Flag0 (internal flag and pin) is high
f1 Flag1 (internal flag and pin) is high
f2 Flag2 (internal flag and pin) is high
f3 Flag3 (possibly also the 'Start1' pin) is high
f4 Flag4 (possibly also the 'Start2' pin) is high
f5 Flag5 (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high

MC33816 Assembler, page 81 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOCR - Jump on condition relative

ASH WARE, Inc. 6/8/2024

f7 Flag7 (possibly also the 'Start5' pin) is high
f8 Flag8 (possibly also the 'Start6' pin) is high
f9 Flag9 (possibly also the 'IRQB' pin) is high
f10 Flag10 (possibly also the 'OA_1' pin) is high
f11 Flag11 (possibly also the 'OA_2' pin) is high
f12 Flag12 (possibly also the 'DBG' pin) is high
f13 Flag13 is high
f14 Flag14 is high
f15 Flag15 is high
tc1 Counter1 has reached it's terminal count
tc2 Counter2 has reached it's terminal count
tc3 Counter3 has reached it's terminal count
tc4 Counter4 has reached it's terminal count
_start Core's own configured start pin combination not met
start Core's own configured start pin combination is met
_sc1v Core's own output driver shortcut 1 below Drain-Source

voltage threshold
_sc2v Core's own output driver shortcut 2 below Drain-Source

voltage threshold
_sc3v Core's own output driver shortcut 3 below Drain-Source

voltage threshold
_sc1s Core's own output driver shortcut 1 below Source voltage

threshold
_sc2s Core's own output driver shortcut 2 below Source voltage

threshold
_sc3s Core's own output driver shortcut 3 below Source voltage

threshold
sc1v Core's own output driver shortcut 1 above Drain-Source

voltage threshold
sc2v Core's own output driver shortcut 2 above Drain-Source

voltage threshold
sc3v Core's own output driver shortcut 3 above Drain-Source

voltage threshold
opd Multi-cycle instruction (mul/shift,etc) has completed
vb boost voltage is above threshold
_vb boost voltage is below threshold
cur1 Channel 1, core 0 sense resistor current above threshold
cur2 Channel 1, core 1 sense resistor current above threshold
cur3 Channel 2, core 0 sense resistor current above threshold
cur4l Channel 2, core 1 sense resistor current above 'low' threshold
cur4h Channel 2, core 1 sense resistor current above 'high' threshold
cur4n Channel 2, core 1 sense resistor current above 'negative'

threshold
_cur1 Channel 1, core 0 sense resistor current below threshold
_cur2 Channel 1, core 1 sense resistor current below threshold
_cur3 Channel 2, core 0 sense resistor current below threshold
_cur4l Channel 2, core 1 sense resistor current below 'low' threshold
_cur4h Channel 2, core 1 sense resistor current below 'high' threshold
_cur4n Channel 2, core 1 sense resistor current below 'negative'

threshold

MC33816 Assembler, page 82 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOCR - Jump on condition relative

ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

15.20 Conditionally jump based on a variety of conditions such as Flag state,
Start state, above/below a Current Sense Threshold, ... (extended
instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_CONDITION Dest JrSel Cond;

Example

// Jump to 'DEST_LABEL4'
// if the Current Sense Block 3's sense current
// is above the programmed threshold
// using jr2 if necessary
JUMP_CONDITION DEST_LABEL4 jr2 cur3;
// ... (more code here) ...
DEST_LABEL4:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The jump condition.

_f0 Flag0 (internal flag and pin) is low
_f1 Flag1 (internal flag and pin) is low
_f2 Flag2 (internal flag and pin) is low
_f3 Flag3 (possibly also the 'Start1' pin) is low
_f4 Flag4 (possibly also the 'Start2' pin) is low
_f5 Flag5 (possibly also the 'Start3' pin) is low
_f6 Flag6 (possibly also the 'Start4' pin) is low
_f7 Flag7 (possibly also the 'Start5' pin) is low
_f8 Flag8 (possibly also the 'Start6' pin) is low
_f9 Flag9 (possibly also the 'IRQB' pin) is low
_f10 Flag10 (possibly also the 'OA_1' pin) is low
_f11 Flag11 (possibly also the 'OA_2' pin) is low
_f12 Flag12 (possibly also the 'DBG' pin) is low
_f13 Flag13 is low
_f14 Flag14 is low
_f15 Flag15 is low

MC33816 Assembler, page 83 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump based on a variety of conditions such as Flag state, Start state, above/below a Current Sense Threshold, ... (extended instruction)

ASH WARE, Inc. 6/8/2024

f0 Flag0 (internal flag and pin) is high
f1 Flag1 (internal flag and pin) is high
f2 Flag2 (internal flag and pin) is high
f3 Flag3 (possibly also the 'Start1' pin) is high
f4 Flag4 (possibly also the 'Start2' pin) is high
f5 Flag5 (possibly also the 'Start3' pin) is high
f6 Flag6 (possibly also the 'Start4' pin) is high
f7 Flag7 (possibly also the 'Start5' pin) is high
f8 Flag8 (possibly also the 'Start6' pin) is high
f9 Flag9 (possibly also the 'IRQB' pin) is high
f10 Flag10 (possibly also the 'OA_1' pin) is high
f11 Flag11 (possibly also the 'OA_2' pin) is high
f12 Flag12 (possibly also the 'DBG' pin) is high
f13 Flag13 is high
f14 Flag14 is high
f15 Flag15 is high
tc1 Counter1 has reached it's terminal count
tc2 Counter2 has reached it's terminal count
tc3 Counter3 has reached it's terminal count
tc4 Counter4 has reached it's terminal count
_start Core's own configured start pin combination not met
start Core's own configured start pin combination is met
_sc1v Core's own output driver shortcut 1 below Drain-Source

voltage threshold
_sc2v Core's own output driver shortcut 2 below Drain-Source

voltage threshold
_sc3v Core's own output driver shortcut 3 below Drain-Source

voltage threshold
_sc1s Core's own output driver shortcut 1 below Source voltage

threshold
_sc2s Core's own output driver shortcut 2 below Source voltage

threshold
_sc3s Core's own output driver shortcut 3 below Source voltage

threshold
sc1v Core's own output driver shortcut 1 above Drain-Source

voltage threshold
sc2v Core's own output driver shortcut 2 above Drain-Source

voltage threshold
sc3v Core's own output driver shortcut 3 above Drain-Source

voltage threshold
opd Multi-cycle instruction (mul/shift,etc) has completed
vb boost voltage is above threshold
_vb boost voltage is below threshold
cur1 Channel 1, core 0 sense resistor current above threshold
cur2 Channel 1, core 1 sense resistor current above threshold
cur3 Channel 2, core 0 sense resistor current above threshold
cur4l Channel 2, core 1 sense resistor current above 'low' threshold
cur4h Channel 2, core 1 sense resistor current above 'high' threshold
cur4n Channel 2, core 1 sense resistor current above 'negative'

threshold

MC33816 Assembler, page 84 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump based on a variety of conditions such as Flag state, Start state, above/below a Current Sense Threshold, ... (extended instruction)

_cur1 Channel 1, core 0 sense resistor current below threshold
_cur2 Channel 1, core 1 sense resistor current below threshold
_cur3 Channel 2, core 0 sense resistor current below threshold
_cur4l Channel 2, core 1 sense resistor current below 'low' threshold
_cur4h Channel 2, core 1 sense resistor current below 'high' threshold
_cur4n Channel 2, core 1 sense resistor current below 'negative'

threshold
ocur Core's own current sense above threshold
_ocur Core's own current sense below threshold

15.21 JFBKF - Jump on feedback far

Tests diagnostic voltage feedback to see if the selected diagnostic node is above or below a threshold.

The destination code address is specified by one of the jump registers, 'jr1' or 'jr2', as specified by the 'JrSel'
parameter. The destination code address must have been previously loaded into either 'jr1' or 'jr2'.

Parameter 'Pol' determines if the jump is taken when the voltage is below or above the threshold.

Syntax

jfbkf JrSel SelFbk Pol;

Example

// Jump if HS3's
// Vsrc Threshold comparator is low
ldjr1 hs3_vsrc_is_low;
jfbkf jr1 hs3s low;
// ... (more code here) ...
hs3_vsrc_is_low:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_FEEDBACK hs3_vsrc_is_low jr1 hs3s low;

JrSel - Specifies which jump register contains the jump destination.

jr1 Jump Register 1
jr2 Jump Register 2

SelFbk - Feedback threshold.

hs1v High side pre-driver 1 VDS feedback above threshold
hs1s High side pre-driver 1 VSRC feedback above threshold
hs2v High side pre-driver 2 VDS feedback above threshold
hs2s High side pre-driver 2 VSRC feedback above threshold
hs3v High side pre-driver 3 VDS feedback above threshold
hs3s High side pre-driver 3 VSRC feedback above threshold
hs4v High side pre-driver 4 VDS feedback above threshold
hs4s High side pre-driver 4 VSRC feedback above threshold

MC33816 Assembler, page 85 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JFBKF - Jump on feedback far

ASH WARE, Inc. 6/8/2024

hs5v High side pre-driver 5 VDS feedback above threshold
hs5s High side pre-driver 5 VSRC feedback above threshold
ls1v Low side pre-driver 1 VDS feedback above threshold
ls2v Low side pre-driver 2 VDS feedback above threshold
ls3v Low side pre-driver 3 VDS feedback above threshold
ls4v Low side pre-driver 4 VDS feedback above threshold
ls5v Low side pre-driver 5 VDS feedback above threshold
ls6v Low side pre-driver 6 VDS feedback above threshold

Pol - Specifies jump on feedback low or on feedbakc high.

low Jump on feedback low
high Jump on feedback high

15.22 JFBKR - Jump on feedback relative

Tests diagnostic voltage feedback to see if the selected diagnostic node is above or below a threshold.

The destination must be within -16 to +15 instructions of the address of the jump instruction.

Parameter 'Pol' determines if the jump is taken when the voltage is below or above the threshold.

Syntax

jfbkr Dest SelFbk Pol;

Example

// Jump if HS4's
// Vsrc Threshold comparator is low
jfbkr hs4_vsrc_is_low hs4s low;
// ... (more code here) ...
hs4_vsrc_is_low:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_FEEDBACK hs4_vsrc_is_low jr1 hs4s low;

Dest - The jump destination code address.

SelFbk

hs1v High side pre-driver 1 VDS feedback above threshold
hs1s High side pre-driver 1 VSRC feedback above threshold
hs2v High side pre-driver 2 VDS feedback above threshold
hs2s High side pre-driver 2 VSRC feedback above threshold
hs3v High side pre-driver 3 VDS feedback above threshold
hs3s High side pre-driver 3 VSRC feedback above threshold
hs4v High side pre-driver 4 VDS feedback above threshold
hs4s High side pre-driver 4 VSRC feedback above threshold

MC33816 Assembler, page 86 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JFBKR - Jump on feedback relative

hs5v High side pre-driver 5 VDS feedback above threshold
hs5s High side pre-driver 5 VSRC feedback above threshold
ls1v Low side pre-driver 1 VDS feedback above threshold
ls2v Low side pre-driver 2 VDS feedback above threshold
ls3v Low side pre-driver 3 VDS feedback above threshold
ls4v Low side pre-driver 4 VDS feedback above threshold
ls5v Low side pre-driver 5 VDS feedback above threshold
ls6v Low side pre-driver 6 VDS feedback above threshold

Pol - Specifies jump on feedback low or on feedback high.

low Jump on feedback low
high Jump on feedback high

15.23 Conditionally jump based on the state of a 'Diagnostic Feedback
Comparator' output (extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_FEEDBACK Dest JrSel SelFbk Pol;

Example

// Jump to 'DEST_LABEL5'
// if HS2's Vsrc Threshold comparator is low
// using jr1 if necessary
JUMP_FEEDBACK DEST_LABEL5 jr1 hs2v low;
// ... (more code here) ...
DEST_LABEL5:

Dest - The jump destination label.

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

SelFbk - Feedback threshold.

hs1v High side pre-driver 1 VDS feedback above threshold
hs1s High side pre-driver 1 VSRC feedback above threshold
hs2v High side pre-driver 2 VDS feedback above threshold
hs2s High side pre-driver 2 VSRC feedback above threshold
hs3v High side pre-driver 3 VDS feedback above threshold
hs3s High side pre-driver 3 VSRC feedback above threshold

MC33816 Assembler, page 87 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump based on the state of a 'Diagnostic Feedback Comparator' output (extended instruction)

ASH WARE, Inc. 6/8/2024

hs4v High side pre-driver 4 VDS feedback above threshold
hs4s High side pre-driver 4 VSRC feedback above threshold
hs5v High side pre-driver 5 VDS feedback above threshold
hs5s High side pre-driver 5 VSRC feedback above threshold
ls1v Low side pre-driver 1 VDS feedback above threshold
ls2v Low side pre-driver 2 VDS feedback above threshold
ls3v Low side pre-driver 3 VDS feedback above threshold
ls4v Low side pre-driver 4 VDS feedback above threshold
ls5v Low side pre-driver 5 VDS feedback above threshold
ls6v Low side pre-driver 6 VDS feedback above threshold

Pol - Specifies jump on feedback low or on feedbakc high.

low Jump on feedback low
high Jump on feedback high

15.24 JOIDF - Jump on current core far

Determines which of the two cores within a channel are executing. The destination code address is
specified by one of the jump registers, 'jr1' or 'jr2' as specified by the 'JrSel' parameter. The code address
must have been previously loaded into either 'jr1' or 'jr2'.

Syntax

joidf JrSel Cond;

Example

// Jump to label 'is_core_0'
// if the core executing this instruction
// is core0
ldjr1 is_core_0;
joidf jr1 seq0;
// ... (more code here) ...
is_core_0:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_CORE_ID is_core_0 jr1 seq0;

JrSel - Specifies which jump register contains the jump destination.

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The core to test for

seq0 The current core is Core 0
seq1 The current core is Core 1

MC33816 Assembler, page 88 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JOIDF - Jump on current core far

15.25 JOIDR - Jump on current core relative

Determines which of the two cores within a channel are executing. The destination code address must be
within -16 to +15 instructions of the address of the jump instruction.

Syntax

joidr Dest Cond;

Example

// Jump to label 'is_core_1'
// if the core executing this instruction
// is core1
joidr is_core_1 seq1;
// ... (more code here) ...
is_core_1:
//
// SUGGESTION: use this equivalent extended instruction instead:
JUMP_CORE_ID is_core_1 jr1 seq0;

Dest - The jump destination code address.

Cond - The core to test for

seq0 The current core is Core 0
seq1 The current core is Core 1

15.26 Conditionally jump based on the ID of the currently-executing core
(extended instruction)

Jump to the label if tested condition is true, loading/using the specified jump register only if a far jump is
required.

Syntax

JUMP_CORE_ID Dest JrSel Cond;

Example

// Jump to 'DEST_LABEL6',
// if the core executing this instruction is core0
// using jr2 if necessary
JUMP_CORE_ID DEST_LABEL6 jr2 seq0;
// ... (more code here) ...
DEST_LABEL6:

Dest - The jump destination label.

MC33816 Assembler, page 89 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

Conditionally jump based on the ID of the currently-executing core (extended instruction)

ASH WARE, Inc. 6/8/2024

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

Cond - The core to test for

seq0 The current core is Core 0
seq1 The current core is Core 1

15.27 JUMP<_type> - Jump on specified conditions

This extended instruction allows programmers to write jump instructions without having to figure out
whether a far or relative jump is required. There is an extended JUMP instruction for each type of jump
opcode, and take that same parameters except that they also take both a label and jump register parameter,
rather than one or the other. When assembling, the assembler will generate a relative jump instruction if
possible, but if the jump is outside of relative range an opcode to load the specified jump register plus a jump
opcode using that jump register will be generated. This makes it much easier for the developer to focus on
creating functional code, rather than worrying about the no-value-add far vs. relative.

Syntax

JUMP Dest JrSel;
JUMP_ARITHMETIC Dest JrSel BitSel; // see jarf/jarr for parameter
details
JUMP_CONTROL Dest JrSel BitSel Pol; // see jcrf/jcrr for parameter
details
JUMP_STATUS Dest JrSel BitSel Pol; // see jsrf/jsrr for parameter
details
JUMP_START Dest JrSel Cond; // see joslf/joslr for
parameter details
JUMP_CONDITION Dest JrSel Cond; // see jocf/jocr for parameter
details
JUMP_FEEDBACK Dest JrSel SelFbk Pol; // see jfbkf/jfbkr for
parameter details
JUMP_CORE_ID Dest JrSel Cond; // see joidf/joidr for
parameter details

Dest - The jump destination code address label.

JrSel - Specifies which jump register to use if a far jump is required.

jr1 Jump Register 1
jr2 Jump Register 2

The following shows an example of mixed source/assembly code for this instruction extension.

MC33816 Assembler, page 90 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

15. Program Flow

JUMP<_type> - Jump on specified conditions

MC33816 Assembler, page 91 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Interrupts

Part

XVI

MC33816 Assembler, page 92 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

16. Interrupts

16
Interrupts

This section covers interrupts within the MC33816 device.

There are a number of possible interrupt sources including diagnostic interrupts, start interrupts, and
software interrupts. A software interrupt is envoked by the 'reqi' instruction.

Most devices will only return from interrupt when an interrupt return instruction is executed. The MC33816
supports this industry-standard behavior with it's 'iret' behavior. However, the mc33816 also has an
'automatic interrupt return' mode in which a core's interrupt service routine automatically terminates when
the interrupting source goes away. This mode allows a very quick response time to the resolution of
condition that caused the interrupt. Picture being released from jail by a catapult.

When most devices return from an interrupt they go back to the location where the interrupt occurred
thereby allowing the core to pickup doing what it was doing when the original interrupt occurred.
However,, the MC33816 as a special interrupt return mode in which the return from interrupt behavior is to
resume execution at the location pointed to by the reset vector. This allows the interrupt return behavior to
mimic the reset behavior. This is like getting in trouble in fourth grade and going to the principals office and
the principal gives you a big lecture and then, instead of you going back to fourth grade, makes you start
school over and by going back to kindergarten instead.

Interestingly, this curious interrupt return behavior is available both when the interrupt return is caused by
the normal 'iret' instruction, and also when in 'automatic interrupt return' mode and the interrupting source
goes away.

Note that interrupts are one-deep such that an interrupt service routine will not be interrupted by another
interrupt source, even if the other interrupt source is at a higher priority level.

16.1 ICONF - Configure automatic interrupt return

Determines the behavior of the core when the interrupting source goes away.

This setting is 'sticky' such that once configured it retains its setting until changed by a future 'iconf'
instruction.

MC33816 Assembler, page 93 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

16. Interrupts

ICONF - Configure automatic interrupt return

ASH WARE, Inc. 6/8/2024

The default behavior is 'none' which means that 'automatic interrupt return' is disabled. This is similar to the
the behavior for similar controllers in that there is no automatic interrupt return. Instead, the 'interrupt
return' (iret) instruction must be executed in order to return from an interrupt.

However, this instruction can be used to configure the core to immediately return to the point in code that
was interrupted. Alternatively, the core interrupt return behavior can be configured to return through the
reset vector.

Syntax

iconf Conf;

Example

// Handle interrupt recovery
// similarly to coming out of reset
iconf restart;

Conf - Interrupt return behavior

none disable 'Automatic Return From Interrupt' for the core
NA N/A
continue continue code execution at the point where execution was

interrupted
restart determined by the 'Ucx_entry_point' register … the location

where the execution begins coming out of reset

16.2 REQI - Request software interrupt

This instruction requests a software interrupt.

Two deep interrupts are not supported. In other words, an interrupt routine cannot itself be interrupted.
Therefore, this 'reqi' instruction is ignored if it is executed within an interrupt service routine.

The effects of this software interrupt is similar to that of other interrupting source (such as a diagnostic or
start interrupt) in that the return address is loaded with the next address after the 'reqi' instruction.
However, unlike other interrupt sources, there is no way for an 'automatic interrupt return' to occur for
software interrupts so a software interrupt must be terminated by the 'iret' instruction.

This instruction provides an 'id' which can be used within the interrupt service routine. The core can read
it's irq register which contains a field named 'irq_source.' This 'irq_source' field contains the id of the
interrupting source.

Interestingly, all four cores' 'irq' registers can be read by the host MCU across the SPI bus by reading the
four 'irq_status' registers. This provides the host MCU with the ability to determine the software interrupt
sources.

Syntax

reqi Id;

Example

// Force a software interrupt within the core
reqi 2;

MC33816 Assembler, page 94 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

16. Interrupts

REQI - Request software interrupt

Id - The interrupt source ID

16.3 IRET - Return from interrupt

Ends the the interrupt service routine (isr) and clears the sequencer interrupt status register.

Execution normally continues at the address in the irq register's 'iret_address' field. This behavior is
specified by selecting 'continue' in the 'Type' parameter as show below. The 'iret_address' field gets written
when the interrupt occurred and contains the appropriate return address. For instance, if an interrupt
occurred while waiting at a 'wait' instruction, execution continues at the 'wait' instruction. However, if the
interrupting source was a software interrupt ('iret' instruction) then execution resumes at the instruction
following the 'iret' instruction.

Alternatively, instruction execution will resume at the address specified by the reset vector by selecting
'restart' in the 'Type' parameter as shown below. This allows interrupt return behavior to be identical to the
reset behavior.

The 'Rst' parameter allows any pending interrupt sources to be cleared from the interrupt queue following
execution of this interrupt instruction.

Syntax

iret Type Rst;

Example

// Standard interrupt termination
// using the 'iret' instruction.
// retain pending interrupts.
iret continue _rst;

Type

continue Resume program execution at the address specifed in the irq
register's 'iret_address' field which contains the address that
was active when the originating interrupt occured

restart Resume program execution a address specified by the core's
reset vector thereby mimicing the core's reset behavior

Rst

_rst The pending interrupt queue is not cleared
rst Clear the pending interrupt queue

MC33816 Assembler, page 95 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

16. Interrupts

STIRQ - Write IRQB output pin

ASH WARE, Inc. 6/8/2024

16.4 STIRQ - Write IRQB output pin

Write the IRQB output pin. This pin is normally connected to the host MCU's interrupt input pin thereby
allowing the MC33816 to interrupt the MCU.

The pin's logic level is determined by the 'Value' parameter.

Syntax

stirq Value;

Example

// Interrupt the MCU
// by putting the IRQB pin low
stirq low;

Value - The IRQB output pin's logic level

low Write the IRQB ouput pin to a low logic level
high Write the IRQB ouput pin to a high logic level

MC33816 Assembler, page 96 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Data RAM Accesses

Part

XVII

MC33816 Assembler, page 97 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

ASH WARE, Inc. 6/8/2024

17
Data RAM Accesses

The Data RAM access instructions are used to load and store data memory. These instructions also set
the access mode which can be set to either 'Immediate' mode or 'Indexed' mode. 'Indexed' mode is when
an offset from the Base Address register is applied to the access's address.

17.1 SLAB - Selects the register to be used in Indexed addressing mode

Selects which register ('base_add' or 'ir') is to be used when accessing data RAM in 'Indexed' addressing
mode (XM).

This setting is 'sticky' in that once programmed it remains until changed by a future 'slab' instruction.

The reset value of SelBase is reg.

Note that when using databanks, register 'base_add' must be the active index register when any databank
member variables are accessed.

Syntax

slab Sel;

Example

// Use indexed addressing
// and the 'ir' register
// to store 0xCC to address 0x20
slab ir;
ldirl CCh rst;
cp ir r0;
ldirl 20h rst;
store r0 My_Count _ofs;

Sel - Specifies which register is to be used for future 'Indexed' data memory accesses.

reg Use the 'base_add' register for 'Indexed' data memory
accesses

ir Use the 'ir' register for 'Indexed' data memory accesses

MC33816 Assembler, page 98 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

SLAB - Selects the register to be used in Indexed addressing mode

17.2 STAB - Write the 'base_add' register

This instruction writes the address in the 6-bit 'base_add' register.

The 'base_add' register is used in 'Indexed' addressing mode, but only if it is configured to be the Base
Address register by a previously-executed 'slab' instruction.

Note that the 'ir' register can (alternatively) be used as the Base Address for indexed addresses.

See the 'slab' instruction which configures either the 'base_add' register or the 'ir' register to be used for
indexed addresses.

Note that the 'base_add' register can be written but not read.

This instruction is also used to set the active databank and in fact must be used prior to accessing any
databank member variables. See the example below.

Syntax

stab AddrBase;

Example

// Declare a databank
databank Injector {
uint16 I_peak;
uint16 I_hold;
};
// ...
// Allocate two databanks of type 'Injector'
databank Injector _injector1;
databank Injector _injector2;
// ...
// set the index base address to the _injector1 databank address
stab _injector1;
// ...
// From the active databank (currently '_injector1')
// load variable 'I_peak' into register 'r0'
load I_peak r0 ofs;

AddrBase - Sets the data RAM address

17.3 LOAD - Load a register with a 16-bit value from the Data RAM

Load an ALU register with a 16-bit value from the Data RAM.

The DRAM address from which the register is loaded is defined by 'AddSrc' which is a 6-bit Data RAM
address. Optionally, a base address can be applied to form a fully qualified address.

Note that the read value can be affected by the 'Set Data RAM Read Mode ' instruction (stdrm) which
supports swapping the bytes, reading just the upper byte, and reading just the lower byte.

MC33816 Assembler, page 99 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

LOAD - Load a register with a 16-bit value from the Data RAM

ASH WARE, Inc. 6/8/2024

'Ofs' determines whether the 'Base Address' register is applied.

Syntax

load AddrSrc RegDest Offset;

Example

// Declare a 16-bit variable named 'engine_speed3'
sint16 engine_speed3;
// ...
// Load global variable 'engine_speed3' into register 'r0'
load engine_speed3 r0 _ofs;
// ...
// Load a value from hard-coded address 55 (yuck)
// into register 'r1'
load 55 r1 _ofs;

AddrSrc - Sets the data RAM address

RegDest - The destination register

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register
ar The 'arith_reg' (ar) is read-only. ALU condition register (Z,

C, N, V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar' register is often refered to as the 'arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jr1 Register 'Jump Destination 1'
jr2 Register 'Jump Destination 2'
cnt1 Counter 1's 'count' register
cnt2 Counter 2's 'count' register
cnt3 Counter 3's 'count' register
cnt4 Counter 4's 'count' register
eoc1 Counter 1's 'Terminal Count' register
eoc2 Counter 2's 'Terminal Count' register
eoc3 Counter 3's 'Terminal Count' register
eoc4 Counter 4's 'Terminal Count' register
flag Flag output from the microcore
cr Control inputs from the controlling MCU
sr Status register for the controlling MCU
spi_data The SPI Bus's DATA Register
dac_sssc 'Same Core Same Channel' current sense threshold DAC

Register
dac_ossc 'Other Core, Same Channel' current sense threshold DAC

Register

MC33816 Assembler, page 100 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

LOAD - Load a register with a 16-bit value from the Data RAM

dac_ssoc 'Same Core Other Channel' current sense threshold DAC
Register

dac_osoc 'Other Core, Other Channel' current sense threshold DAC
Register

dac4h4n Accesses either core 4's second current sense threshold
DAC register (used for DC/DC Control,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DAC access mode. See instruction
'stdm' for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Register
irq Interrupt status register
rxtx Inter core communication register

Offset - Sets the addressing mode.

_ofs Immediate addressing, address = AddSrc
ofs Indexed addressing, address = AddSrc + Base Address

register

17.4 STORE - Store a value from an ALU register into the Data RAM

Store a 16-bit value from an ALU register into the Data RAM.

The DRAM address where the value stored is defined by 'AddSrc' which is a 6-bit Data RAM address.
Optionally, a base address can be applied to form a fully qualified address.

'Ofs' determines whether the 'Base Address' register is applied.

Syntax

store RegSrc AddrDest Offset;

Example

// Declare a 16-bit variable named 'engine_speed4'
sint16 engine_speed4;
// ...
// Load the 'ir' register with 0x1234
// and store into variable 'engine_speed4;
LOAD_IR 0x1234;
store ir engine_speed4 _ofs;
// ...
// Store a value from register 'r2'
// Into the hard-coded data ram address 23 (yuck)
store r2 23 _ofs;

RegSrc - The source register

MC33816 Assembler, page 101 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

STORE - Store a value from an ALU register into the Data RAM

ASH WARE, Inc. 6/8/2024

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register
ar The 'arith_reg' (ar) is read-only. ALU condition register (Z,

C, N, V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar' register is often refered to as the 'arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jr1 Register 'Jump Destination 1'
jr2 Register 'Jump Destination 2'
cnt1 Counter 1's 'count' register
cnt2 Counter 2's 'count' register
cnt3 Counter 3's 'count' register
cnt4 Counter 4's 'count' register
eoc1 Counter 1's 'Terminal Count' register
eoc2 Counter 2's 'Terminal Count' register
eoc3 Counter 3's 'Terminal Count' register
eoc4 Counter 4's 'Terminal Count' register
flag Flag output from the microcore
cr Control inputs from the controlling MCU
sr Status register for the controlling MCU
spi_data The SPI Bus's DATA Register
dac_sssc 'Same Core Same Channel' current sense threshold DAC

Register
dac_ossc 'Other Core, Same Channel' current sense threshold DAC

Register
dac_ssoc 'Same Core Other Channel' current sense threshold DAC

Register
dac_osoc 'Other Core, Other Channel' current sense threshold DAC

Register
dac4h4n Accesses either core 4's second current sense threshold

DAC register (used for DC/DC Control,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DAC access mode. See instruction
'stdm' for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Register
irq Interrupt status register
rxtx Inter core communication register

AddrDest - Sets the data RAM address

Offset - Sets the addressing mode.

MC33816 Assembler, page 102 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

17. Data RAM Accesses

STORE - Store a value from an ALU register into the Data RAM

_ofs Immediate addressing, address = AddSrc
ofs Indexed addressing, address = AddSrc + Base Address

register

17.5 STDRM - Set data RAM read mode

This instruction sets the data RAM read mode.

The default is to read all 16 bytes.

In 'low' mode the lower byte is read and the upper byte is zero.

In 'high' mode the upper byte is read into the lower byte. The upper byte is zero.

In 'swap' mode the upper and lower bytes are swapped.

This setting is sticky, such that once set it does not change until a future 'stdrm' instruction.

Syntax

stdrm Mode;

Example

// Set the data RAM read mode
// to read JUST the high bytes
// but into the low byte
// of the destination registers.
stdrm high;

Mode - Specifies the mode.

word Read the full word normally (default)
low Read just the low byte, upper byte is zero
high Read just the uppper byte, but shift into lower byte
swap Swap the upper and lower bytes in read

MC33816 Assembler, page 103 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Math

Part

XVIII

MC33816 Assembler, page 104 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

18
Math

The following section covers the math operations including flag configuration, adds, subtracts, and multiplies,
etc.

18.1 STAL - set arithmetic logic

This instruction configures the behavior of addition and subtraction instructions only. All other instructions
(multiply, shift, bitwise, etc) are not affected by this instruction.

The addition and subtract results are affected only if one the 'saturation' modes is selected. If 'saturation' is
not selected then the results are not affected.

With 'saturation' enabled the result is bounded by the natural limits of the 16 bit register. The maximum
signed integer is 0x7FFF. When in signed saturation mode (al2) and two positive numbers are added that
would exceed 0x7FFF, then the operation is said to 'saturate' in that the result is 0x7FFF.

The 'A1' and 'A0' bits of the ALU Condition Register 'arith_reg' are written with this instruction.

This instruction is 'sticky' in that once written, the setting does not change until written again with a future
'stal' instruction.

Syntax

stal Mode;

Example

// Set mode to 'signed saturation' (al2)
// This causes add/sub results that would
// otherwise overflow
// to limit to the max/min values instead
// In this example the register will get a 0x7FFF,
// (the maximum signed value).
stal al2;
LOAD_IR 0x7FFD;
addi ir 15 r0;

MC33816 Assembler, page 105 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

STAL - set arithmetic logic

ASH WARE, Inc. 6/8/2024

Mode

al1 Signed number without overflow saturation
al2 Signed number with overflow saturation
al3 Unsigned number without overflow saturation
al4 Unsigned number with overflow saturation

18.2 CP - Copy one register to another

Copy the value from one register to another.

Syntax

cp RegSrc RegDest;

Example

// Copy the contents
// of register 'r3'
// into the core's DAC
cp r3 dac_sssc;

RegSrc - The source register.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register
ar The 'arith_reg' (ar) is read-only. ALU condition register (Z,

C, N, V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar' register is often refered to as the 'arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jr1 Register 'Jump Destination 1'
jr2 Register 'Jump Destination 2'
cnt1 Counter 1's 'count' register
cnt2 Counter 2's 'count' register
cnt3 Counter 3's 'count' register
cnt4 Counter 4's 'count' register
eoc1 Counter 1's 'Terminal Count' register
eoc2 Counter 2's 'Terminal Count' register
eoc3 Counter 3's 'Terminal Count' register
eoc4 Counter 4's 'Terminal Count' register
flag Flag output from the microcore
cr Control inputs from the controlling MCU
sr Status register for the controlling MCU
spi_data The SPI Bus's DATA Register

MC33816 Assembler, page 106 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

CP - Copy one register to another

dac_sssc 'Same Core Same Channel' current sense threshold DAC
Register

dac_ossc 'Other Core, Same Channel' current sense threshold DAC
Register

dac_ssoc 'Same Core Other Channel' current sense threshold DAC
Register

dac_osoc 'Other Core, Other Channel' current sense threshold DAC
Register

dac4h4n Accesses either core 4's second current sense threshold
DAC register (used for DC/DC Control,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DAC access mode. See instruction
'stdm' for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Register
irq Interrupt status register
rxtx Inter core communication register

RegDest - The destination register.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register
ar The 'arith_reg' (ar) is read-only. ALU condition register (Z,

C, N, V, etc.) WARNING: the arith_reg is read-only. NOTE:
The 'ar' register is often refered to as the 'arith_reg

aux Auxiliary Register - Following a 'call', contains the return
address

jr1 Register 'Jump Destination 1'
jr2 Register 'Jump Destination 2'
cnt1 Counter 1's 'count' register
cnt2 Counter 2's 'count' register
cnt3 Counter 3's 'count' register
cnt4 Counter 4's 'count' register
eoc1 Counter 1's 'Terminal Count' register
eoc2 Counter 2's 'Terminal Count' register
eoc3 Counter 3's 'Terminal Count' register
eoc4 Counter 4's 'Terminal Count' register
flag Flag output from the microcore
cr Control inputs from the controlling MCU
sr Status register for the controlling MCU
spi_data The SPI Bus's DATA Register
dac_sssc 'Same Core Same Channel' current sense threshold DAC

Register

MC33816 Assembler, page 107 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

CP - Copy one register to another

ASH WARE, Inc. 6/8/2024

dac_ossc 'Other Core, Same Channel' current sense threshold DAC
Register

dac_ssoc 'Same Core Other Channel' current sense threshold DAC
Register

dac_osoc 'Other Core, Other Channel' current sense threshold DAC
Register

dac4h4n Accesses either core 4's second current sense threshold
DAC register (used for DC/DC Control,) or the core 4's
negative current sense DAC register, or the VBoost DAC
register depending on the DAC access mode. See instruction
'stdm' for setting the DAC access mode.

spi_add The SPI bus's ADDRESS Register
irq Interrupt status register
rxtx Inter core communication register

18.3 LDIRH - Load immediate register's MSB

Load an immediate value into the most significant byte (MSB) of the 'ir' register.

The least significant byte (LSB) can be either reset to zero or left unchanged.

NOTE: If the intent is to update the entire 'ir' register, it is recommended the extended

instruction 'LOAD_IR' be used instead.

Syntax

ldirh Value rstL;

Example

// Setup the counter to detect a timeout error at 200 counts
LOAD_IR 200;
ldca rst keep keep ir c1;
//
// Load '0x7C' into the upper byte of the IR register
// leaving the lower byte unchanged.
ldirh 0xAB _rst;

Value - 8-bit immediate value

rstL - Reset the LSB to zero?

_rst Do not change the 'ir' register's LSB
rst Reset 'ir' register's LSB to zero

MC33816 Assembler, page 108 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

LDIRL - Load immediate register's LSB

18.4 LDIRL - Load immediate register's LSB

Load an immediate value into the least significant byte (LSB) of the 'ir' register.

The most significant byte (MSB) can be either reset to zero or left unchanged.

NOTE: If the intent is to update the entire 'ir' register, it is recommended the extended

instruction 'LOAD_IR' be used instead.

Syntax

ldirl Value rstH;

Example

// Setup the counter to detect a timeout error at 200 counts
LOAD_IR 200;
ldca rst keep keep ir c1;
//
// Load '0xAB' into the lower byte of the IR register
// leaving the upper byte unchanged.
ldirl 0xAB _rst;

Value - 8-bit immediate value

rstH - Reset the MSB to zero?

_rst Do not change the 'ir' register's MSB
rst Reset 'ir' register's MSB to zero

18.5 Load the full 16-bit IR register (extended instruction)

Load an immediate value into the 'ir' register. The assembler optimally does the load based upon the
immediate value.

Syntax

LOAD_IR Value;

Example

// Declare a 16-bit variable named 'engine_speed1'
sint16 engine_speed1;
// ...
// Load the 'ir' register with 0x1234
// and store into variable 'engine_speed1;
LOAD_IR 0x1234;
store ir engine_speed1 _ofs;

Value - 16-bit immediate value

MC33816 Assembler, page 109 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

ADD - Addition of two registers

ASH WARE, Inc. 6/8/2024

18.6 ADD - Addition of two registers

Add the value in one register with the value in a second register and place the result in a third register.

This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.

Syntax

add Add1 Add2 Res;

Example

// Add ir and r1,
// place results in r2
add ir r1 r2;

Add1 - The first register to be added

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Add2 - The second register to be added

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Res - The register where the result goes

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

MC33816 Assembler, page 110 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

ADDI - Addition of a register with a 4-bit unsigned immediate

18.7 ADDI - Addition of a register with a 4-bit unsigned immediate

Adds a register to a 4-bit unsigned immediate and places the result in a register.

This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.

Syntax

addi Add Imm Res;

Example

// Add five to the value in the 'r0' register
// and place the result in the 'r1' register
addi r0 5 r1;

Add - The ALU register with the value to be added.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The 4-bit unsigned immediate value that gets added.

Res - The ALU register that will cantain the result of the addition.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

18.8 SUB - Substraction of two registers

Subtracts a register from a register and places the results in a third register.

This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.

Res = Sub1 - Sub2

Syntax

sub Sub1 Sub2 Res;

MC33816 Assembler, page 111 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

SUB - Substraction of two registers

ASH WARE, Inc. 6/8/2024

Example

// Subtract the value in the 'ir' register
// from the value in the 'r1' register
// and place results in 'r2' register
add r1 ir r2;

Sub1 - The minuend

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Sub2 - The subtrahend

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Res - The result

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

18.9 SUBI - Subtraction by a 4-bit unsigned immediate

Subtracts an unsigned 4-bit immediate from a register and places the results in second register.

This instruction is affected by the Arithmetic Logic Mode which is set by the 'stal' instruction.

MC33816 Assembler, page 112 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

SUBI - Subtraction by a 4-bit unsigned immediate

Res = Sub - Imm

Syntax

subi Sub Imm Res;

Example

// Subtract 0xE from register 'r2'
// and put the result into register 'r3'
subi r2 0xE r3;

Sub - The minuend

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The 4-bit immediate subtrahend

Res - The result

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

18.10 MUL - Multiplication of two registers, result goes in 'mh' and 'ml'

Multiply register Fact1 with register Fact2 and put the resulting 32-bit number's MSB in the 'mh' register
and LSB in the 'ml' register.

The multiply takes 17 clock cycles.

A series of shift's and add's of the 'mh' and 'ml' register is used such that the 'mh' and 'ml' register should
be neither read nor written while the multiply is underway. However, registers 'r0' through 'r4' and 'ir' are
available for parallel execution.

To determine when the multiply is complete, the arith_reg's OD bit, which goes from zero to one, can be
tested as shown in the example below.

Syntax

MC33816 Assembler, page 113 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

MUL - Multiplication of two registers, result goes in 'mh' and 'ml'

ASH WARE, Inc. 6/8/2024

mul Fact1 Fact2;

Example

mul r0 r1;
wait_loop6:
jarr done6 opd;
jmpr wait_loop6;
done6:
store mh MyMsbVar _ofs;
store ml MyLsbVar _ofs;

Fact1 - The first register to be multiplied

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register

Fact2 - The second register to be multiplied

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register

18.11 MULI - Multiplication with 4-bit immediate, result goes in 'mh' and 'ml'

Multiply register Fact with the 4-bit immediate and put the resulting 32-bit number's MSB in the 'mh'
register and LSB in the 'ml' register.

The multiply takes 17 clock cycles.

A series of shift's and add's of the 'mh' and 'ml' register is used such that the 'mh' and 'ml' register should
be neither read nor written while the multiply is underway. However, registers 'r0' through 'r4' and 'ir' are
available for parallel execution.

To determine when the multiply is complete, the arith_reg's OD bit, which goes from zero to one, can be
tested as shown in the example below.

Syntax

muli Fact Imm;

Example

muli r0 9;
wait_loop1:
jarr done1 opd;

MC33816 Assembler, page 114 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

MULI - Multiplication with 4-bit immediate, result goes in 'mh' and 'ml'

jmpr wait_loop1;
done1:
store mh MyMsbVar _ofs;
store ml MyLsbVar _ofs;

Fact - The register to be multiplied

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register

Imm - The four-bit immediate to be multiplied

18.12 SWAP - Swap a register's high and low bytes

The high byte becomes the low byte and the low byte becomes the high byte.

Syntax

swap Reg;

Example

// Swap the upper and lower bytes
// within register 'r1'
swap r1;

Reg

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

18.13 TOC2 - Conditional conversion to 2's complement format with sign
enforcement

Conditionally converts a number to 2's complement format.

If the conversion bit 'CS' of the ALU Condition Register 'arith_reg' is zero then only the most significant bit
is to zero and no other bits are changed.

MC33816 Assembler, page 115 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

TOC2 - Conditional conversion to 2's complement format with sign enforcement

ASH WARE, Inc. 6/8/2024

However, if 'CS' is one, then a two's complement is taken (bitwise inversion, then add one) and the most
significant bit is set to one.

Syntax

toc2 Reg;

Example

// Conditionally convert a number
// to 2's complement format.
// If the conversion bit 'CS'
// of the ALU Condition Register 'arith_reg' is zero
// then only the most significant bit is to zero and
// no other bits are changed.
// However, if 'CS' is one,
// then a two's complement is taken
// (bitwise inversion, then add one)
// and the most significant bit is set to one
toc2 ir;

Reg -

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

18.14 TOINT - Convert from 2's complement

Convert the 2-complement value to integer format.

If the operand's most significant bit is zero then the original value is retained.

If the operand's most significant bit is a one then a two's complement is performed (invert all bits and add
one) and the most significant bit is cleared.

The resulting value of the conversion bit 'CS' of the ALU Condition Register 'arith_reg' is affected by the
Rst parameter.

If the Rst parameter is a zero then the CS bit gets 'OR'd with the operands most significant bit.

If the Rst parameter is a one then the CS bit is set to the operand's most significant bit.

Syntax

toint Reg Rst;

Example

// Convert from 2's complement.

MC33816 Assembler, page 116 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

18. Math

TOINT - Convert from 2's complement

// The Rst parameter is a one
// so set the CS bit
// to the operand's most significant bit
toint ir rst;

Reg

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Rst - CS bit behavior

_rst The existing conversion bit CS is XORed with the operand's
most significant bit

rst The existing conversion bit CS is set according to the
operand's most significant bit

MC33816 Assembler, page 117 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Bitwise

Part

XIX

MC33816 Assembler, page 118 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

19. Bitwise

19
Bitwise

This section covers the 'bitwise' operations, 'and', 'or', 'xor', and 'not'.

19.1 AND - Bitwise AND with 'ir' register

Performs a bitwise 'AND' of the selected register with the 'ir' register and places the results back into the
(same) selected register.

The ALU Condition Register 'arith_reg' 'MN' and 'MZ' bits get written.

Note that the 'MN' flag indicating all one's gets tested by the 'jarr' and 'jarf' instructions using the 'all1'
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0' flag.

Syntax

and Reg;

Example

// AND the 'ir' register with the 'r0' register.
// Result goes in the 'r0' register.
// If the result is '0' then jump to the 'handle_all_zeroes_' code
label.
and r0;
jarr handle_all_zeroes_ all0;
// ... (more code here) ...
handle_all_zeroes_:

Reg - The register for both the operation's operand and result.

MC33816 Assembler, page 119 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

19. Bitwise

AND - Bitwise AND with 'ir' register

ASH WARE, Inc. 6/8/2024

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

19.2 OR - Bitwise OR with the 'ir' register

Performs a bitwise 'OR' of the selected register with the 'ir' register and places the results back into the
(same) selected register.

The ALU Condition Register 'arith_reg' 'MN' and 'MZ' bits get written.

Note that the 'MN' flag indicating all one's gets tested by the 'jarr' and 'jarf' instructions using the 'all1'
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0' flag.

Syntax

or Reg;

Example

// Bitwise OR the 'ir' register with the 'r0' register.
// Result goes in the 'r0' register.
// If the result is '0xFFFF' then jump to the 'handle_all_ones_' code
label.
or r0;
jarr handle_all_ones_ all1;
// ... (more code here) ...
handle_all_ones_:

Reg - The register for both the operation's operand and result.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

MC33816 Assembler, page 120 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

19. Bitwise

XOR - Bitwise XOR with the 'ir' register

19.3 XOR - Bitwise XOR with the 'ir' register

Performs a bitwise 'XOR' of the selected register with the 'ir' register and places the results back into the
(same) selected register.

The ALU Condition Register 'arith_reg' 'MN' and 'MZ' bits get written.

Note that the 'MN' flag indicating all one's gets tested by the 'jarr' and 'jarf' instructions using the 'all1'
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0' flag.

Syntax

xor Reg;

Example

// Bitwise XOR the 'ir' register with the 'r0' register.
// Result goes in the 'r0' register.
// If the result is '0xFFFF' then jump to the 'handle_all_ones' code
label.
xor r0;
jarr handle_all_ones all1;
// ... (more code here) ...
handle_all_ones:

Reg - The register for both the operation's operand and result.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

19.4 NOT - Bitwise NOT

Inverts the bits of the selected register and puts the result into the same register.

The ALU Condition Register 'arith_reg' 'MN' and 'MZ' bits get written.

Note that the 'MN' flag indicating all one's gets tested by the 'jarr' and 'jarf' instructions using the 'all1'
syntax. Similarly, the 'MZ' flag indicating all zeroes gets tested by the 'all0' flag.

Syntax

not Reg;

Example

// Bitwise invert the 'r0' register.
// Result goes in the 'r0' register.
// If the result is '0' then jump to the 'handle_all_zeroes' code
label.

MC33816 Assembler, page 121 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

19. Bitwise

NOT - Bitwise NOT

ASH WARE, Inc. 6/8/2024

not r0;
jarr handle_all_zeroes all0;
// ... (more code here) ...
handle_all_zeroes:

Reg - The register for both the operation's operand and result.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

MC33816 Assembler, page 122 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Shifts

Part

XX

MC33816 Assembler, page 123 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

ASH WARE, Inc. 6/8/2024

20
Shifts

This section covers the shift instructions. Shifts include 'shift left' and 'shift right', 'shift by register' and
'shift immediate', 'normal shift' and 'signed shift' in which the most significant bit does not change, and 32-bit
shifts in which the 'mh' and 'ml' registers are treated as a single 32-bit register in which the 'mh' register's
lsb connects with the 'ml's registers msb.

Shifts normally take one instruction cycle per shifted bit and the 'arith_reg' register's 'OD' bit can be tested
to determine when the shift is completed. So an 11-bit shift would normally take 11 clock cycles to
execute. However, there is a special 8-bit shift which takes just a single clock cycle so shifts by constants
greater than 8 bit positions can be sped up by combining the 8-bit shift with the immediate shift.

20.1 SHR - Shift right by register

Shift right register 'RegData' the number of bits set by the value in register 'RegPos'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

shr RegData RegPos;

Example

shr r3 r2;
wait_loop9:
jarr done9 opd;
jmpr wait_loop9;
done9:

RegData - The register that gets shifted

MC33816 Assembler, page 124 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHR - Shift right by register

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.2 SHRS - Shift right by register, signed

Shift right register 'RegData' the number of bits set by the value in register 'RegPos'.

The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

shrs RegData RegPos;

Example

shrs r3 r2;
wait_loop10:
jarr done10 opd;
jmpr wait_loop10;
done10:

RegData - The register that gets shifted

MC33816 Assembler, page 125 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHRS - Shift right by register, signed

ASH WARE, Inc. 6/8/2024

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.3 SHRI - Shift right by immediate

Shift right register 'Reg' the number of bits set by an immediate value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the shift is complete, the arith_reg's OD bit, which goes from zero to one upon
completion, can be tested as shown in the example below.

Syntax

shri Reg Imm;

Example

shri r3 7;
wait_loop4:
jarr done4 opd;
jmpr wait_loop4;
done4:

Reg - The register that gets shifted

MC33816 Assembler, page 126 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHRI - Shift right by immediate

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

20.4 SHRSI - Shift right by immediate, signed

Shift right register 'Reg' the number of bits set by the immediate value.

The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

shrsi Reg Imm;

Example

shrsi r3 7;
wait_loop5:
jarr done5 opd;
jmpr wait_loop5;
done5:

Reg - The register that gets shifted

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

MC33816 Assembler, page 127 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHR8 - Shift right by 8

ASH WARE, Inc. 6/8/2024

20.5 SHR8 - Shift right by 8

Shift right register 'Reg' eight bits.

This operation one clock.

Syntax

shr8 Reg;

Example

// Shift the r3 register right by 11 bits
// in two steps that take 4 clocks
shr8 r3;
shri r3 3;
cp ir ir; // NOP
cp ir ir; // NOP

Reg - The register that gets shifted

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.6 SH32R - Shift right 'mh' and 'ml' by register

Shift right registers 'mh' and 'ml' the number of bits set by the value in register 'RegPos'. Note that the 'mh'
and 'ml' registers are considered to be a single 32-bit register where the lsb from 'mh' shifts into the msb of
'ml'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

sh32r RegPos;

Example

sh32r r2;
wait_loop14:
jarr done14 opd;
jmpr wait_loop14;
done14:

RegPos - This register sets the number of bits to shift

MC33816 Assembler, page 128 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SH32R - Shift right 'mh' and 'ml' by register

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.7 SH32RI - Shift right 'mh' and 'ml' by 4-bit immediate

Shift right registers 'mh' and 'ml' the number of bits set by the immediate value. Note that the 'mh' and 'ml'
registers are considered to be a single 32-bit register where the lsb from 'mh' shifts into the msb of 'ml'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, can be tested as shown in the example below.

Syntax

sh32ri Imm;

Example

sh32ri 7;
wait_loop12:
jarr done12 opd;
jmpr wait_loop12;
done12:

Imm - The number of bits to shift

20.8 SHL - Shift left by register

Shift left register 'RegData' the number of bits set by the value in register 'RegPos'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

shl RegData RegPos;

MC33816 Assembler, page 129 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHL - Shift left by register

ASH WARE, Inc. 6/8/2024

Example

shl r3 r2;
wait_loop7:
jarr done7 opd;
jmpr wait_loop7;
done7:

RegData - The register that gets shifted

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.9 SHLS - Shift left by register, signed

Shift left register 'RegData' the number of bits set by the value in register 'RegPos'.

The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

shls RegData RegPos;

Example

shls r3 r2;
wait_loop8:
jarr done8 opd;

MC33816 Assembler, page 130 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHLS - Shift left by register, signed

jmpr wait_loop8;
done8:

RegData - The register that gets shifted

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

RegPos - This register sets the number of bits to shift

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.10 SHLI - Shift left by immediate

Shift left register 'Reg' the number of bits set by an immediate value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the shift is complete, the arith_reg's OD bit, which goes from zero to one upon
completion, can be tested as shown in the example below.

Syntax

shli Reg Imm;

Example

shli r3 7;
wait_loop2:
jarr done2 opd;
jmpr wait_loop2;
done2:

Reg - The register that gets shifted

MC33816 Assembler, page 131 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHLI - Shift left by immediate

ASH WARE, Inc. 6/8/2024

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

20.11 SHLSI - Shift left by immediate, signed

Shift left register 'Reg' the number of bits set by the immediate value.

The sign of the resulting number does not change in that the sign bit (msb) retains its original value.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

shlsi Reg Imm;

Example

shlsi r3 7;
wait_loop3:
jarr done3 opd;
jmpr wait_loop3;
done3:

Reg - The register that gets shifted

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Imm - The number of bits to shift

MC33816 Assembler, page 132 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SHL8 - Shift left by 8

20.12 SHL8 - Shift left by 8

Shift left register 'Reg' eight bits.

This operation one clock.

Syntax

shl8 Reg;

Example

// Shift the r3 register left by 11 bits
// in two steps that take 4 clocks
shl8 r3;
shli r3 3;
cp ir ir; // NOP
cp ir ir; // NOP

Reg - The register that gets shifted

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.13 SH32L - Shift left 'mh' and 'ml' by register

Shift left registers 'mh' and 'ml' the number of bits set by the value in register 'RegPos'. Note that the 'mh'
and 'ml' registers are considered to be a single 32-bit register where the msb from 'ml' shifts into the lsb of
'mh'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

sh32l RegPos;

Example

sh32l r2;
wait_loop13:
jarr done13 opd;
jmpr wait_loop13;
done13:

RegPos - This register sets the number of bits to shift

MC33816 Assembler, page 133 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

20. Shifts

SH32L - Shift left 'mh' and 'ml' by register

ASH WARE, Inc. 6/8/2024

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

20.14 SH32LI - Shift left 'mh' and 'ml' by 4-bit immediate

Shift left registers 'mh' and 'ml' the number of bits set by an immediate value. Note that the 'mh' and 'ml'
registers are considered to be a single 32-bit register where the msb from 'ml' shifts into the lsb of 'mh'.

This operation takes a variable number of clocks to execute. Specifically, it takes one clock per bit position
shifted.

To determine when the operation is complete, the arith_reg's 'Operation Done' bit (opd), which goes from
zero to one upon completion, should be tested as shown in the example below.

Syntax

sh32li Imm;

Example

sh32li 7;
wait_loop11:
jarr done11 opd;
jmpr wait_loop11;
done11:

Imm - The number of bits to shift

MC33816 Assembler, page 134 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Control, Status, Flags, and the Inter Core
Communications 'rxtx' register

Part

XXI

MC33816 Assembler, page 135 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register

ASH WARE, Inc. 6/8/2024

21
Control, Status, Flags, and the Inter

Core Communications 'rxtx' register

This section covers the instructions that handle the control register, the status register and the flags register.
Note that each of the four cores has it's own control and status register but the four course share the flag
register.

The flags register has many purposes. The devices's input pins can be read through the (single) flags
register (if configured appropriately.) Output pins (if configured appropriately) can be controlled through the
flags register. The flags register can also by the 'wait' instruction such that a state value can cause a
section of code to execute.

The inter-core communication register 'rxtx' provides a mechanism to share data between cores. Each
core writes its own 'rxtx' register. However, any core can read any other core's 'rxtx' register by
configuring appropriately using the 'stcrt' instruction.

21.1 STCRB - Write control register bit

Writes individual bits in the control register ('cr') to either '1' or '0'.

Note that only the upper byte (bits 8 through 15) can be written as the lower bits are read-only.

Note also that the entire upper byte can be written at once using the copy ('cp') instruction.

Syntax

stcrb Value BitSel;

Example

// Set bit 8 of the core's control register,
stcrb high b8;

Value - Value ('1' or '0') of the write.

low Write the bit to '0'
high Write the bit to '1'

MC33816 Assembler, page 136 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register

STCRB - Write control register bit

BitSel - Specifies which control bit to set.

b8 Write bit 8
b9 Write bit 9
b10 Write bit 10
b11 Write bit 11
b12 Write bit 12
b13 Write bit 13
b14 Write bit 14
b15 Write bit 15

21.2 STSRB - Write status register bit

Writes individual bits in the status register ('sr') to either '1' or '0'.

Note that the entire register can be written at once using the copy ('cp') instruction.

Syntax

stsrb Value BitSel;

Example

// Write a '1' to bit 10 in the 'Flag' register.
stsrb high b10;

Value

low Write the bit to '0'
high Write the bit to '1'

BitSel - Specifies which bit to test.

b0 Status register bit 0
b1 Status register bit 1
b2 Status register bit 2
b3 Status register bit 3
b4 Status register bit 4
b5 Status register bit 5
b6 Status register bit 6
b7 Status register bit 7
b8 Status register bit 8
b9 Status register bit 9
b10 Status register bit 10
b11 Status register bit 11
b12 Status register bit 12
b13 Status register bit 13
b14 Status register bit 14

MC33816 Assembler, page 137 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register

STSRB - Write status register bit

ASH WARE, Inc. 6/8/2024

b15 Status register bit 15

21.3 STF - Write flag register bit

This 'std' instruction writes a bit in the channel's flag register. Since the two cores share a channel flag
register if both cores write to the same channel bit, the bit goes to the last-written value.

The chip has a chip-wide channel register that is derived from the two channel flag registers. Each bit in the
chip-wide register is the ANDed value of the two respective bits from the two channel flag registers.

But wait there is more. Each bit in the chip-wide flag register can ALSO come from the chips I/O pins
when these pins are configured to be generic input pins. This the flags_source register and the
flags_direction register determine (on a bit by bit basis) whether these chip-wide flags register comes from
the pins or the ANDing of the two channel_flag registers.

The chip-wide flags register can be used to set the output pin values. Pins configured as generic outputs get
the values set in chip-wide flag register. Curiously (since both '1' and '0' values can be driven on all flag
bits) the output pins can be inverted relative to the flag pins by writing the respective bits in the
'flags_polarity' register.

The DBG, OA_1 - OA_2, IRQB, Start1 – Start6, and Flag0-Flag2 pins can be individually configured as
generic input pins and be read by reading the chip-wide flags register. When configured suchly (by writing
the flags_source and the flags_direction registers appropriately) the values written by this 'stf' instruction
are ignored and instead the input pin value becomes the flag value.

These flag values can be tested using the 'jump on condition' instructions, 'jocf' and 'jocr'.

These flag values can also be conditions that cause threads to execute in the 'wait' instruction.

Syntax

stf Value BitSel;

Example

// Set 'flag6' high.
stf high b6;

Value - Specifies which flag register bit to set.

low Write the bit to '0'
high Write the bit to '1'

BitSel - Specifies which bit to set

b0 Flag bit 0 (and the 'Flag0' generic output pin if configured
suchly)

b1 Flag bit 1 (and the 'Flag1' generic output pin if configured
suchly)

b2 Flag bit 2 (and the 'Flag2' generic output pin if configured
suchly)

MC33816 Assembler, page 138 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register

STF - Write flag register bit

b3 Flag bit 3 (and the 'Start1' generic output pin if configured
suchly)

b4 Flag bit 4 (and the 'Start2' generic output pin if configured
suchly)

b5 Flag bit 5 (and the 'Start3' generic output pin if configured
suchly)

b6 Flag bit 6 (and the 'Start4' generic output pin if configured
suchly)

b7 Flag bit 7 (and the 'Start5' generic output pin if configured
suchly)

b8 Flag bit 8 (and the 'Start6' generic output pin if configured
suchly)

b9 Flag bit 9 (and the 'IRQB' generic output pin if configured
suchly)

b10 Flag bit 10 (and the 'OA_1' generic output pin if configured
suchly)

b11 Flag bit 11 (and the 'OA_2' generic output pin if configured
suchly)

b12 Flag bit 12 (and the 'DBG' generic output pin if configured
suchly)

b13 Flag bit 13
b14 Flag bit 14
b15 Flag bit 15

21.4 STCRT - Configure which cores' 'rxtx' register gets read

The 'rxtx' register is used for iner-core communications. Each core has its own 'rxtx' register that only it
can write. However a core can read any of the four cores' 'rxtx' register. This instruction sets which cores'
'rxtx' register gets read when a core reads an 'rxtx' registers.

Note that this setting is 'sticky' such that, once set, it will not change until changed by a future execution of
this 'stcrt' instruction.

Syntax

stcrt SeqId;

Example

// Sets 'rxtx' register that gets read
// to be from the other core in the other channel.
stcrt osoc;

SeqId - Specifies the core.

sssc Same Core Same Channel
ossc Other Core Same Channel
ssoc Same Core other Channel
osoc Other Core other Channel

MC33816 Assembler, page 139 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

21. Control, Status, Flags, and the Inter Core Communications 'rxtx' register

RSTREG - Reset registers

ASH WARE, Inc. 6/8/2024

21.5 RSTREG - Reset registers

Resets one or more of the following the core's status register, the core's control register, the core's
automatic diagnostics register. Also can re-enable the diagnostics interrupt.

Syntax

rstreg TargetReg;

Example

// Reset both the Status and Control Registers
rstreg sr_cr;

TargetReg - Specifies the registers and to reset and whether to re-enable diagnostics interrupt.

sr The core's status register
cr The core's control register
sr_diag_halt The core's status register, automatic diagnostics register, and

re-enables diagnostics interrupts
all The core's status and control registers, automatic diagnostics

register, and re-enables diagnostics interrupts
diag_halt The automatic diagnostics register, and re-enables diagnostics

interrupts
sr_cr The core's status and control registers
sr_halt The core's status register and re-enables diagnostics

interrupts
halt Re-enables diagnostics interrrupts

21.6 RSTSL - Reset the start-latch register

Reset the Start_latch_ucx register.

This instruction is active only if the Smart Latch Mode is enabled. The smart mode register can be
activated by setting the bits smart_start_uc0 and smart_start_uc1 of the Start_config_reg registers (0x104,
0x124).

Syntax

rstsl;

Example

// Reset the latched start bits
rstsl;

MC33816 Assembler, page 140 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Shortcuts

Part

XXII

MC33816 Assembler, page 141 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

22. Shortcuts

ASH WARE, Inc. 6/8/2024

22
Shortcuts

Shortcuts are used to connect a core to the hardware. There are two types of shortcuts; 'output driver'
shortcuts and 'current sense block' shortcuts.

Output driver shortcuts allow a core to modify the states of up to three outputs at once. By modifying all
three output in a single instruction, fully synchronized driver changes can occur in a single instruction. This
prevents (say) an interrupt from causing a delay between output driver changes.

Each core has one current sense block shortcut. The current sense block shortcut connects the core to one
of the four current senses blocks. This shortcut is used primarily for testing the 'own current' current
threshold (see the 'ocur' field value of the 'jocf' and 'jocr' instructions) or waiting for the 'own current'
threshold to be reached (see the 'wait' instruction's 'ocur' field value.)

Another benefit of shortcuts is the ability to write core-independent code. This allows (say) the exact same
code to operate on different sets of output drivers and current sense blocks without having to make driver-
specific conditional jumps.

22.1 DFCSCT - Define the core's current sense block shortcut

Each core connects to one Current Sense Block through a shortcut connection.

The shortcut is used only to read the Current Sense Block's current-threshold comparator.

This comparator indicates if current flowing through the sense resistor is above or below the threshold
programmed into the Current Sense Block's DAC.

Using the shortcut, the comparator's output is determined using the 'wait' instruction's 'Own Current' (ocur,
_ocur) parameters

The Jump On Condition (jocr/jocf) instructions can also us the 'ocur' and '_ocur' parameters to determine
the comparator's output state.

Syntax

dfcsct ShrtCur;

MC33816 Assembler, page 142 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

22. Shortcuts

DFCSCT - Define the core's current sense block shortcut

Example

// Configure core's own
// current threshold shortcut for Ch2.Uc0
// Test the 'own current' (occur) threshold
// and jump to label 'current_above_threshold'
// if the current is above the threshold
dfcsct dac3;
jocr current_above_threshold ocur;
// ... (more code here) ...
current_above_threshold:

ShrtCur

dac1 The Current Sense Block normally belonging to Channel 1,
Core 0

dac2 The Current Sense Block normally belonging to Channel 1,
Core 1

dac3 The Current Sense Block normally belonging to Channel 2,
Core 0

dac4l The Current Sense Block normally belonging to Channel 2,
Core 1

22.2 DFSCT - Define the core's three output driver shortcuts

Each core controls three output drivers using 'shortcuts'.

This instruction determines which of the high side drivers and low side drivers each of the three shortcuts
controls.

This setting is 'sticky' in that once programmed, the shortcuts stay the same until changed by a future 'dfsct'
instruction.

Each shortcut can connect to any of the high side or low side drivers.

Syntax

dfsct Shrt1 Shrt2 Shrt3;

Example

// Set the currently-executing core's shortcuts
// to control output drivers
// High Side Driver #3 with shortcut #1
// High Side Driver #4 with shortcut #2
// Low Side Driver #6 with shortcut #3
dfsct hs3 hs4 ls6;
// Synchronously turn off HS3,
// turn on HS4,
// and turn on LS6
stos off on on;

Shrt1 - Shortcut #1

MC33816 Assembler, page 143 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

22. Shortcuts

DFSCT - Define the core's three output driver shortcuts

ASH WARE, Inc. 6/8/2024

hs1 High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
ls1 Low Side Driver 1
ls2 Low Side Driver 2
ls3 Low Side Driver 3
ls4 Low Side Driver 4
ls5 Low Side Driver 5
ls6 Low Side Driver 6
ls7 Low Side Driver 7
undef Undefined

Shrt2 - Shortcut #2

hs1 High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
ls1 Low Side Driver 1
ls2 Low Side Driver 2
ls3 Low Side Driver 3
ls4 Low Side Driver 4
ls5 Low Side Driver 5
ls6 Low Side Driver 6
ls7 Low Side Driver 7
undef Undefined

Shrt3 - Shortcut #3

hs1 High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
ls1 Low Side Driver 1
ls2 Low Side Driver 2
ls3 Low Side Driver 3
ls4 Low Side Driver 4
ls5 Low Side Driver 5
ls6 Low Side Driver 6
ls7 Low Side Driver 7
undef Undefined

MC33816 Assembler, page 144 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

22. Shortcuts

DFSCT - Define the core's three output driver shortcuts

22.3 STOS - Synchrounously control three output drivers using shortcuts

Each core controls three output drivers using 'shortcuts'.

This instruction provides an atomic method for synchronously changing all three output drivers. If the output
drivers were to be changed sequentially using (say) the 'sto' instruction then an intervening interrupt could
possibly cause a large delay between when the multiple output drivers get modified.

The three shortcuts can be any of the high side or low side drivers and these are configured with the 'dfsct'
instruction.

Each output driver can be independently set high, set low, toggled, or kept the same.

Syntax

stos Out1 Out2 Out3;

Example

// Configure cores' three
// output driver shortcuts
// to control HS3, HS4, and LS2
dfsct hs3 hs4 ls2;
//
// Synchronously
// - Turn ON HS3
// - Leave HS4 unchanged
// - Toggle LS2
// (if ON turn OFF, if OFF turn ON)
stos on keep toggle;

Out1 - Forces the state of the output driver controlled by the core's first output driver shortcut

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

Out2 - Forces the state of the output driver controlled by the core's second output driver shortcut

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

Out3 - Forces the state of the output driver controlled by the core's third output driver shortcut

MC33816 Assembler, page 145 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

22. Shortcuts

STOS - Synchrounously control three output drivers using shortcuts

ASH WARE, Inc. 6/8/2024

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

MC33816 Assembler, page 146 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Current Sense Blocks

Part

XXIII

MC33816 Assembler, page 147 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks

ASH WARE, Inc. 6/8/2024

23
Current Sense Blocks

The instructions described in this section are used to configure the current sense blocks. However, there is
one related instruction that is missing form this section. Instructions 'dfsct,' which connects the core to a
current sense block using a shortcut, is described in the 'Shortcuts' section.

23.1 STADC - Select 'Analog to Digital' or 'Digital to Analog' mode

Selects the Current Sense Block to operate either in 'Analog to Digital' mode or 'Digital to Analog' mode.

In the normal 'Digital to Analog' mode the DAC is used to generate a threshold voltage. This voltage
threshold is compared against the an amplification of the voltage across the current sense resistor. The
output of the Current Sense comparator indicates if the current through the sense resistor is above or below
this programmed threshold.

In the 'Analog to Digital' mode the DAC will contain the output of the A to D conversion 11 clock cycles
after the conversion is initiated. Note that sharing of the OAx multiplexer prevents concurrent conversions
on Current Sense Blocks 1 and 3. For the same reason, concurrent conversions on Current Sense Blocks 2
and 4 is also not possible.

The instruction is successful only if the core has the right to access the effected Current Sense Block. See
registers Cur_block_access_1 and Cur_block_access_2 Register (0x188 and 0x189.)

Syntax

stadc adcMode Target;

Example

// Set the core's D/A Converter
// to work in D/A mode instead.
stadc on sssc;

adcMode - Selects 'Analog to Digital' or 'Digital to Analog' mode

MC33816 Assembler, page 148 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks

STADC - Select 'Analog to Digital' or 'Digital to Analog' mode

off The Current Sense Block compares the current flowing
through the sense resistor to the threshold programmed in the
DAC (default)

on The Current Sense Block performs and Analog to Digital
conversion (ADC) of the voltage across the current sense
resistor and places the results in the DAC

Target - Specifies the core.

sssc Same Core Same Channel
ossc Other Core Same Channel
ssoc Same Core other Channel
osoc Other Core other Channel

23.2 STDCCTL - Set the DC to DC Converter's Control mode

This instruction enables or disable a special mode intended for DC to DC conversion using Current Sense
Block 4 and the Low Side Output Driver 7 (LS7.)

When enabled by executing this 'stdcctl' instruction with the Mode parameter set to 'async' dedicated
hardware switches, the 'ls7' output driver is automatically switched on when the current drops below the
minimum threshold programmed by the DAC4L and is automatically switched off when the current rises
above the upper threshold programmed into the DAC 4H. This is fully automatic with no additional
software control required.

When disabled by executing this 'stdcctl' instruction with the Mode parameter set to 'sync' the Ls7 output
driver is controlled by the cores.

Syntax

stdcctl Mode;

Example

// Begin hardware control of LS7
// based on Current Sense Block 4's
// lower and upper (4L and 4H) current sense thresholds
stdcctl async;

Mode - Ls7 controlled by hardware or by the core

sync The Ls7 output driver is controlled by the core
async The Ls7 output driver is controlled by hardware using the

current maximum and minimum thresholds programmed in
DAC4H and DAC4L of Current Sense Block 4

MC33816 Assembler, page 149 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks

STDM - Set DAC register access mode

ASH WARE, Inc. 6/8/2024

23.3 STDM - Set DAC register access mode

The DAC registers are bit sliced in that the actual register that is accessed depends on the access mode
which is configured with this instruction.

The four primary DAC registers (dac_sssc, dac_ossc, dac_ssoc, dac_osoc) and the dac4h4n register are
multi-purpose registers. Depending on how they are configured with this 'stdm' instruction, they can be used
to access the four Current Sense Blocks' actual DAC values, the four current sense blocks
COMPENSATION values, the fourth Current Sense Block's 4H DAC value, the fourth Current Sense
Block's 4neg DAC value, or the LS7's VBoost DAC value.

These registers can be read and written using the copy ('cp'), the load ('load') and the store ('store')
instructions.

To access a Current Sense Block's primary DAC register, use the 'stdm dac' mode. The 8-bit DAC value
is accessed in bits 0 to 7 of the respective dac_sssc, dac_ossc, dac_ssoc, or dac_osoc registers.

To access a Current Sense Block's 'DAC Compensation' register use the 'stdm offset' mode. The 6-bit
DAC-Compensation value is accessed in bits 8-13 of the respective dac_sssc, dac_ossc, dac_ssoc, or
dac_osoc registers.

The 'stdm full' mode is used to access a Current Sense Block's the DAC value and DAC compensation in a
single instruction. The 8-bit DAC value is accessed in bits 0 to 7 and The 6-bit DAC-Compensation value is
accessed in bits 8-13 of the respective dac_sssc, dac_ossc, dac_ssoc, or dac_osoc registers.

To access the fourth Current Sense Block's 4H DAC's value use the 'stdm dac' mode. The 8-bit 4H DAC
value is accessed in bits 0 to 7 of the 'DAC4H4N' register.

To access the fourth Current Sense Block's 4Neg DAC's value use the 'stdm offset' mode. The 4-bit 4Neg
DAC value is accessed in bits 8 to 11 of the 'DAC4H4N' register.

To access the fourth Current Sense Block's 4H and 4Neg DAC values together, use the 'stdm full' mode.
The 8-bit 4Neg DAC value is accessed in bits 0 to 7 and the 4-bit 4Neg DAC value is accessed in bits 8 to
11 of the 'DAC4H4N' register.

To access the VBoost DAC value use the 'stdm null' mode. The 8-bit VBoost DAC value is accessed in
bits 0-7 of the 'DAC4H4N' register.

This mode is 'sticky' such that once configured it retains its setting until changed by a future 'stdm'
instruction.

The default mode is 'DAC' such that the Current Sense Blocks' DAC values are accessed in their
respective dac_sssc, dac_ossc, dac_ssoc, or dac_osoc registers and the 8-bit 4H DAC value is accessed in
the DAC4h4n register.

Syntax

stdm Mode;

Example

// Read the 'VBoost DAC' into register 'r4'
stdm null;
cp dac4h4n r4;
//
// Write a '0xC' into the fourth Current Sense Block's 4-bit DAC4Neg.

MC33816 Assembler, page 150 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks

STDM - Set DAC register access mode

// Note that the DAC4Neg is accessed in the upper byte ... bits 8-11.'
stdm offset;
ldirh 0xC rst;
cp ir dac4h4n;
//
// Write the third Current Sense Block's DAC Value and DAC
compensation.
// The DAC value is written with '0x98' and the DAC compensation is
written with '0x13'
// Note1: It is assumed that this is executing in Channel 1 Core 0
// such that 'OSSC' accesses DAC4.
// Note2: the 8-bit DAC Value is accessed in the lower byte ... bits 0-
7.
// Note3: The 6-bit DAC Compensation is accessed in the upper byte ...
bits 8-13.
ldirl 0x98 _rst;
ldirh 0x13 _rst;
stdm full;
cp ir dac_ossc;

Mode - The DAC Access mode

null Writes to the four DAC_xSxC registers have no affect and
reads return zero. Reads and writes to the DAC4H4N
register access the VBoost DAC.

dac Reads and writes to the four DAC_xSxC registers access the
four Current Sense Blocks' DAC registers. Reads and writes
to the DAC4H4N register access the fourth Current Sense
Block's 4H Dac.

offset Reads and writes to the four DAC_xSxC registers access the
four Current Sense Blocks' DAC-Compensation registers in
bits 8-13. Reads and writes to the DAC4H4N register access
the fourth Current Sense Block's 4N DAC at bits 8-11.

full Reads and writes to the four DAC_xSxC registers access the
four Current Sense Blocks' DAC values at bits 0-7 and the
DAC-Compensation values in bits 8-13. Reads and writes to
the DAC4H4N register access the fourth Current Sense
Block's 4H DAC at bits 0-7 and the 4N DAC at bits 8-11.

23.4 STGN - Set amplifier gain of a Current Sense Block

Set the gain of the Current Sense Block's Amplifier. This amplifies the voltage across the current sense
resistor by the gain specified by this instruction

The instruction is successful only if the core has the right to access the effected Current Sense Block. See
registers Cur_block_access_1 and Cur_block_access_2 Register (0x188 and 0x189.)

Syntax

stgn Value OaTarget;

MC33816 Assembler, page 151 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks

STGN - Set amplifier gain of a Current Sense Block

ASH WARE, Inc. 6/8/2024

Example

// Set the gain
// of the executing core's
// current sense amplifier
// to 12.6 Volts/volt
stgn gain12.6 sssc;

Value - The amplifier's gain

gain5.8 Set gain to 5.8
gain12.6 Set gain to 12.3
gain19.3 Set gain to 19.3
gain8.7 Set gain to 8.7

OaTarget - Specifies the core.

sssc Same Core Same Channel
ossc Other Core Same Channel
ssoc Same Core other Channel
osoc Other Core other Channel

23.5 STOC - Set offset compensation of a Current Sense Block

Enables or disables offset compensation on the specified current measurement block.

'Zero Compensation' is a small offset added to the input of the Current Sense Block's amplifier that reduces
the amplifier's zero current offset error.

When enabling, a 62-microsecond auto-calibration cycle is initiated in which the compensation value is
calculated by the hardware.

The instruction is successful only if the core has the right to access the effected Current Sense Block. See
registers Cur_block_access_1 and Cur_block_access_2 Register (0x188 and 0x189.)

Note that '0x1A' should be written to the Current Sense Block's DAC prior to initiating the auto-calibration
cycle.

Note also that the auto-calibration cycle should only be initiated when no current is flowing through the
Current Sense Block's sense resistor.

Syntax

stoc Ctrl DacTarget;

Example

// Start an auto-compensation cycle
// on the core's own DAC
stoc on sssc;

Ctrl - Enable or Disable zero calibration

MC33816 Assembler, page 152 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

23. Current Sense Blocks

STOC - Set offset compensation of a Current Sense Block

off Disable zero compensation
on Enable zero compensation and begin an auto-calibration cycle

DacTarget - Specifies the core.

sssc Same Core Same Channel
ossc Other Core Same Channel
ssoc Same Core other Channel
osoc Other Core other Channel

MC33816 Assembler, page 153 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Output Drivers

Part

XXIV

MC33816 Assembler, page 154 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

24. Output Drivers

24
Output Drivers

The instructions described in this section are used to control the Output Drivers.

24.1 BIAS - Set load current bias

Enable or disable load's current bias at the load for the specified diver.

The instruction is successful only if the core had the right to modify the specified output driver. See the four
output access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax

bias BiasTarget Ctrl;

Example

// Turn on bias's for all high and low side drivers.
bias all on;
// Turn off HS2's 'strong' and 'normal' bias's
bias hs2s off;
bias hs2 off;

BiasTarget - Output driver(s) selection

hs1 High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
ls1 Low Side Driver 1
ls2 Low Side Driver 2
ls3 Low Side Driver 3
ls4 Low Side Driver 4
ls5 Low Side Driver 5
ls6 Low Side Driver 6

MC33816 Assembler, page 155 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

24. Output Drivers

BIAS - Set load current bias

ASH WARE, Inc. 6/8/2024

hs2s Low Side Driver 2, strong
hs4s Low Side Driver 4, strong
all Select all high side and low side pre-driver bias structures

including strong bias structures
hs Select all high side pre-driver bias structures including strong

bias structures
ls Select all low side pre-driver bias structures

Ctrl - Enable or disable

off Turn the selected bias structure(s) off
on Turn the selected bias structure(s) on

24.2 STEOA - Set end of actuation mode

Enable or disable the end of actuation mode for all the high side output driver(s) that the core right to
modify.

The Vsrc threshold monitoring of the affected output driver(s) is disabled by setting the 'mask' parameter.

The default 'mask' value is 'nomask'.

The default 'Switch' value is 'bsoff'.

This instruction affects only the output drivers which the core has the right to modify. See the four output
access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax

steoa mask switch;

Example

// Set the end of actuation mode
steoa mask bsoff;

mask - Mask Vsrc threshold monitoring

nomask Vsrc threshold monitoring of the selected HS is unchanged
mask Vsrc threshold monitoring of the selected HS is masked to

zero

switch - Select end of actuation mode

MC33816 Assembler, page 156 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

24. Output Drivers

STEOA - Set end of actuation mode

keep No change, keep the previous setting
bson Bootstrap switch can be enabled even if no low side pre-

driver is switched on
bsneutral Bootstrap control is not affected
bsoff Bootstrap switch is forced off

24.3 STFW - Set freewheeling mode between a pair of output drivers

This instruction enables or disables freewheeling mode between a pair of output drivers. In 'freewheeling'
mode the output driver pair has a 'master/slave' relationship in which, when the master is turned 'on', the
slave is automatically turned 'off', and when the master is turned 'off' the slave is automatically turned 'on'.

Because at any given time one driver is always 'off' when the other is 'on' this is typically used to switch a
load between power and ground. Using this freewheeling mode, two sets of output drivers (four output
drivers total) can be used in an h-bridge configuration.

The selection of the master driver for the freewheeling mode is set by the core's output driver shortcut 1.
See the 'dfsct' instruction. Only specific pairs are allowed, see below.

If shortcut1 is hs1, then ls5 is affected

If shortcut1 is hs2, then ls6 is affected

If shortcut1 is hs3, then ls7 is affected

If shortcut1 is hs4, then hs5 is affected

If shortcut1 is hs5, then ls4 is affected

The instruction is successful only if the core has the right to modify the output driver selected by shortcut 1.
See the four output access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

The freewheeling state can be seen in register Fw_ext_req (0x16A.)

A programmable 'dead time' prevents both drivers from being on at the same time. See the
Hsx_output_config Registers (0x155, 0x158, 0x15B, 0x15E, 0x161.)

Syntax

stfw FwMod;

Example

// Configure Shortcut #1 to be HS1
dfsct hs1 hs4 ls6;
//
// Enable freewheeling mode
// between HS1 and LS5
stfw auto;

FwMod - Specify the freewheeling mode

MC33816 Assembler, page 157 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

24. Output Drivers

STFW - Set freewheeling mode between a pair of output drivers

ASH WARE, Inc. 6/8/2024

manual Disable
auto Enable

24.4 STO - Set one output driver

Turns an ouput driver on, off, or toggle. When 'toogle' is specified and the output driver is 'on', it turns 'off'
and if it is 'off' it turns 'on'.

The instruction is successful only if the core had the right to modify the specified output driver. See the four
output access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax

sto OutSel Out;

Example

// Turn HS3 on, LS6 off, and toggle LS1.
sto hs3 on;
sto ls6 off;
sto ls1 toggle;

OutSel - Select output driver

hs1 High Side Driver 1
hs2 High Side Driver 2
hs3 High Side Driver 3
hs4 High Side Driver 4
hs5 High Side Driver 5
ls1 Low Side Driver 1
ls2 Low Side Driver 2
ls3 Low Side Driver 3
ls4 Low Side Driver 4
ls5 Low Side Driver 5
ls6 Low Side Driver 6
ls7 Low Side Driver 7
undef Undefined

Out - Specify output driver state

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

MC33816 Assembler, page 158 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

24. Output Drivers

STSLEW - Set output drivers' slew rates

24.5 STSLEW - Set output drivers' slew rates

This instruction sets the output drivers' slew rates.

The slew rates can be set to the fastest possible by setting parameter 'Mode' to 'fast.'

The slew rates can returned back to their normal by setting paramter 'Mode' to 'fast.'. Each output driver
has its own 'normal' slew rate which is specified in registers hs_slewrate and ls_slewrate registers (0x18E,
0x18F.)

The instruction affects only those output drivers which the core has the right to modify. See the four output
access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax

stslew Mode;

Example

// Sets the slewrates of all the output drivers
// that the core has access to to the 'fast' slewrate.
stslew fast;

Mode - Slew rate selection

normal Normal slew rate as specified for each driver in registers
Hs_slewrate and Ls_slewrate (0x18E, 0x18F)

fast Fast slew rate

MC33816 Assembler, page 159 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Diagnostics

Part

XXV

MC33816 Assembler, page 160 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

25. Diagnostics

25
Diagnostics

The automatic diagnostic capabilities described in this section provide a method for detecting if a variety of
error conditions including open load, load shorted to ground, load shorted to the battery, shorted driver, etc.

Diagnostic faults result in execution of an ISR. However, fault isolation generally requires additional
computation.

25.1 CHTH - Change diagnostic comparator's threshold

Change the thresholds for the selected VDS and VSRC diagnostic feedback comparator.

These are the same values as in registers Vds_threshold_hs (0x18A), Vsrc_threshold_hs (0x18B),
Vds_threshold_ls_1 (0x18C), and Vds_threshold_ls_2 (0x18D).

The instruction is successful only if the core had the right to modify the specified output driver. See the four
output access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

The configuration of the high side pre-driver Vsrc thresholds is also impacted by the bootstrap initialization
mode.

changes the thresholds for the selected feedback comparator.

For Vds on HS2 and HS4 the choice of the power source to be used as the 'drain' comparator comparator
can be switched between VBoost and VBat using the 'slfbk' instruction.

Syntax

chth SelFbk ThLevel;

Example

// Turn on driver HS2 and change the Vds threshold 'level 8' (VBoost-
3.5V.)
sto hs2 on;
chth hs2v lv8;

SelFbk - The diagnostic comparator's threshold to modify

MC33816 Assembler, page 161 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

25. Diagnostics

CHTH - Change diagnostic comparator's threshold

ASH WARE, Inc. 6/8/2024

hs1v High side pre-driver 1 VDS feedback above threshold
hs2v High side pre-driver 2 VDS feedback above threshold
hs3v High side pre-driver 3 VDS feedback above threshold
hs4v High side pre-driver 4 VDS feedback above threshold
hs5v High side pre-driver 5 VDS feedback above threshold
hs1s High side pre-driver 1 VSRC feedback above threshold
hs2s High side pre-driver 2 VSRC feedback above threshold
hs3s High side pre-driver 3 VSRC feedback above threshold
hs4s High side pre-driver 4 VSRC feedback above threshold
hs5s High side pre-driver 5 VSRC feedback above threshold
ls1v Low side pre-driver 1 VDS feedback above threshold
ls2v Low side pre-driver 2 VDS feedback above threshold
ls3v Low side pre-driver 3 VDS feedback above threshold
ls4v Low side pre-driver 4 VDS feedback above threshold
ls5v Low side pre-driver 5 VDS feedback above threshold
ls6v Low side pre-driver 6 VDS feedback above threshold

ThLevel - The voltage threshold

lv1 0.0 Volts
lv2 0.5 Volts
lv3 1.0 Volts
lv4 1.5 Volts
lv5 2.0 Volts
lv6 2.5 Volts (Note: the HS Vds is 2.45 Volts)
lv7 3.0 Volts (Note: the HS Vds is 2.95 Volts)
lv8 3.5 Volts (Note: the HS Vds is 3.45 Volts)

25.2 ENDIAG - Enable or disable output driver diagnostics, ONE

Enables or disables the automatic diagnostics for one output driver.

Note that the automatic diagnostics can result in an error-handling interrupt.

The instruction is successful only if the core had the right to modify the specified output driver. See the four
output access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax

endiag Sel Diag;

Example

// Enable High Side Driver #4's
// Vds Diagnostic Interrupt
endiag hs5v diagon;

Sel - Feedback threshold.

MC33816 Assembler, page 162 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

25. Diagnostics

ENDIAG - Enable or disable output driver diagnostics, ONE

hs1v High side pre-driver 1 VDS feedback diagnostics
hs1s High side pre-driver 1 VSRC feedback diagnostics
hs2v High side pre-driver 2 VDS feedback diagnostics
hs2s High side pre-driver 2 VSRC feedback diagnostics
hs3v High side pre-driver 3 VDS feedback diagnostics
hs3s High side pre-driver 3 VSRC feedback diagnostics
hs4v High side pre-driver 4 VDS feedback diagnostics
hs4s High side pre-driver 4 VSRC feedback diagnostics
hs5v High side pre-driver 5 VDS feedback diagnostics
hs5s High side pre-driver 5 VSRC feedback diagnostics
ls1v Low side pre-driver 1 VDS feedback diagnostics
ls2v Low side pre-driver 2 VDS feedback diagnostics
ls3v Low side pre-driver 3 VDS feedback diagnostics
ls4v Low side pre-driver 4 VDS feedback diagnostics
ls5v Low side pre-driver 5 VDS feedback diagnostics
ls6v Low side pre-driver 6 VDS feedback diagnostics

Diag - Enable or disable diagnostics

diagoff Disable automatic diagnostics
diagon Enable automatic diagnostics

25.3 ENDIAGA - Enable or disable output driver diagnostics, ALL

Enables or disables the automatic diagnostics for all output drivers all at once.

The operation is only for those output drivers which the the core has the right to modify. So by configuring
the Output Access registers appropriately, this instruction can be an effective way to enable just those
output drivers appropriate for to the core.

However, using the 'endiags' instruction is another approach to accomplishing a similar effect.

Note that the automatic diagnostics can result in an error-handling interrupt.

See the four output access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax

endiaga Diag;

Example

// Turn ON all diagnostic interrupts
// that the core executing this instruction
// has a right to control
// per the core's output access enable
// register (see 0x185-0x189)
endiaga diagon;

MC33816 Assembler, page 163 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

25. Diagnostics

ENDIAGA - Enable or disable output driver diagnostics, ALL

ASH WARE, Inc. 6/8/2024

Diag - Enable or disable diagnostics

diagoff Disable automatic diagnostics
diagon Enable automatic diagnostics

25.4 ENDIAGS - Enable or disable output driver diagnostics, SHORTCUTS

Enables or disables the automatic diagnostics for the three output drivers which the core is connected to via
its output driver shortcuts.

Note that the core's output driver shortcuts can be changed with the 'dfsct' instruction.

Note also that the automatic diagnostics can result in an error-handling interrupt.

The instruction is successful only on the output drivers which the core has the right to modify. See the four
output access registers, 'Out_acc_uc0_ch1', 'Out_acc_uc1_ch1', 'Out_acc_uc0_ch2', and
'Out_acc_uc1_ch2' (0x184, 0x185, 0x186, and 0x187.)

Syntax

endiags Diag_sh1_vds Diag_sh1_src Diag_sh2_vds Diag_sh3_vds;

Example

// CONFIGURE
// HS4 on shortcut #1
// HS2 on shortcut #2
// LS3 on shortcut #3
// THEN
// Disable HS4's Vds interrupt
// Enable HS4's Vsrc interrupt
// Keep unchanged HS2's Vds interrupt
// Enable LS3's Vds interrupt
dfsct hs4 hs2 ls3;
endiags off on keep on;

Diag_sh1_vds - Select core's output driver shortcut #1's Vds setting

keep No change, keep the previous setting
NA Not allowed
off Disable automatic diagnostics
on Enable automatic diagnostics

Diag_sh1_src - Select core's output driver shortcut #1's Vsrc setting

keep No change, keep the previous setting
NA Not allowed
off Disable automatic diagnostics
on Enable automatic diagnostics

MC33816 Assembler, page 164 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

25. Diagnostics

ENDIAGS - Enable or disable output driver diagnostics, SHORTCUTS

Diag_sh2_vds - Select core's output driver shortcut #2's Vds setting

keep No change, keep the previous setting
NA Not allowed
off Disable automatic diagnostics
on Enable automatic diagnostics

Diag_sh3_vds - Select core's output driver shortcut #3's Vds setting

keep No change, keep the previous setting
NA Not allowed
off Disable automatic diagnostics
on Enable automatic diagnostics

25.5 SLFBK - Select the power source to monitor for Vds Diagnostics

Selects the power source to monitor for Vds Diagnostics. The drain voltage reference for the diagnostics
threshold comparator can either by the VBoost or the Battery pins.

This instruction can also enable, disable or not change automatic diagnosics for hs2 and hs4.

Note that this instruction applies only to High Side Driver 2 and High Side Driver 4 (hs2 and hs4.)

Syntax

slfbk Sel Diag;

Example

// Set HS2's and HS4's VDS Comparator
// to the VBoost supply
// and enable diagnostics
slfbk boost on;

Sel - Power source

boost The Vds diagnostic feedback comparator uses the VBoost
(VBOOST pin)

bat The Vds diagnostic feedback comparator uses the Battery
(VBATT pin)

Diag - Enable, Disable, or keep the same

keep No change, keep the previous setting
NA This field is invalid. Not Applicable
off Automatic diagnosis disabled
on Automatic diagnosis enabled

MC33816 Assembler, page 165 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

Timers

Part

XXVI

MC33816 Assembler, page 166 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

26. Timers

26
Timers

These instructions write the counter's terminal count.

26.1 LDCA - Load a counter's 'Terminal Count' from a register and write two
output drivers

Loads one of the four counter's 'Terminal Count' registers with a value stored in an ALU register and and
writes two of the output drivers from output driver shortcuts one and two. Note that the output driver
associated with the core's third output driver shortcut is left unchanged.

The counter can either be left unchanged or reset to zero. In either case it continues to increment until it
reached it's 'Terminal Count.'

Syntax

ldca Rst Sh1 Sh2 RegSrc Counter;

Example

// Load counter's terminal count with 100 microsecods (6mhz core)
// Reset and run the core
// and also turns on shortcut 1's and 2's output driver
LOAD_IR 6 * 100;
ldca rst on on ir c1;

Rst - select if the counter gets reset.

_rst The counter value is not changed (only its 'Terminal Count'
gets written)

rst The counter is reset to zero and immediately resumes
counting

Sh1 - Sets the shortcut 1 (high side) output driver.

MC33816 Assembler, page 167 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

26. Timers

LDCA - Load a counter's 'Terminal Count' from a register and write two output drivers

ASH WARE, Inc. 6/8/2024

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

Sh2 - Sets the shortcut 2 (high side) output driver.

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

RegSrc - The register from which the counter's 'Terminal Count' gets loaded.

r0 ALU General Purpose Register 0
r1 ALU General Purpose Register 1
r2 ALU General Purpose Register 2
r3 ALU General Purpose Register 3
r4 ALU General Purpose Register 4
ir ALU Immediate Register
mh ALU MSB Multiplication Result Register
ml ALU LSB Multiplication Result Register

Counter - Sets which counter's Terminal Count (eoc) gets written.

c1 Counter 1
c2 Counter 2
c3 Counter 3
c4 Counter 4

26.2 LDCD - Load a counter's 'Terminal Count' from data RAM and write two
output Drivers

Loads one of the four counter's 'Terminal Count' registers with a value stored in DRAM and and writes
two of the output drivers from output driver shortcuts one and two. Note that the output driver associated
with the core's third output driver shortcut is left unchanged.

The counter can either be left unchanged or reset to zero. In either case it continues to increment until it
reached it's 'Terminal Count.'

MC33816 Assembler, page 168 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

26. Timers

LDCD - Load a counter's 'Terminal Count' from data RAM and write two output Drivers

The DRAM address from which the counter's 'Terminal Count' is loaded is defined by 'AddSrc' which is a
6-bit Data RAM address. Optionally, a base address can be applied to form a fully qualified address.

'Ofs' determines whether the 'Base Address' register is applied.

If 'Base Address' is used it can be either the 'ip' register or the 'add_base' register which is configured by
the 'slab' instruction.

Note that the read value can be affected by the 'Set Data RAM Read Mode ' instruction (stdrm) which
supports swapping the bytes, reading just the upper byte, and reading just the lower byte.

Instead of using a hardcoded address, a variable can be used instead - the address mode of the variable
must match the address mode specified by the Offset field.

Syntax

ldcd Rst Offset Sh1 Sh2 AddrSrc Counter;

Example

// Declare a 16-bit variable named 'engine_speed2'
sint16 engine_speed2;
// ...
// Reset Timer 1's counter
// and load it's Terminal Count from variable 'engine_speed2'
// turn on the output driver pointed to by 'shortcut 1'
// turn off the output driver pointed to by 'shortcut 2'
ldcd rst _ofs on off engine_speed2 c1;

Rst - select if the counter gets reset.

_rst The counter value is not changed (only its 'Terminal Count'
gets written)

rst The counter is reset to zero and immediately resumes
counting

Offset - Sets the addressing mode.

_ofs Immediate addressing, address = AddSrc
ofs Indexed addressing, address = AddSrc + Base Address

register

Sh1 - Sets the shortcut 1 (high side) output driver.

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

Sh2 - Sets the shortcut 2 (high side) output driver.

MC33816 Assembler, page 169 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

26. Timers

LDCD - Load a counter's 'Terminal Count' from data RAM and write two output Drivers

ASH WARE, Inc. 6/8/2024

keep No change, keep the previous setting
off Turn the output driver off
on Turn the output driver on
toggle Toggle the output driver; if it was on turn it off, if it was off

turn it on.

AddrSrc - Sets the data RAM address.

Counter - Sets which counter's Terminal Count (eoc) gets written.

c1 Counter 1
c2 Counter 2
c3 Counter 3
c4 Counter 4

MC33816 Assembler, page 170 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

SPI Backdoor

Part

XXVII

MC33816 Assembler, page 171 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

27. SPI Backdoor

ASH WARE, Inc. 6/8/2024

27
SPI Backdoor

The SPI Backdoor allows reads and writes across the SPI bus similar to those available to the host MCU.
So whereas the 'load' and 'store' instructions, which provide read and write access to just the Data RAM.
the SPI backdoor instructions allow full access to the entire MC33816 memory map including the
Configuration, Diagnostics, I/O and Main regions of the MCU's memory space. SPI Backdoor also
provides a mechanism for each channel to access the other channels Data RAM.

However, there are some restrictions. Not all registers can be accessed using SPI Backdoor. Also, there
are security capabilities that can (optionally) block SPI Backdoor access to certain regions of the MC33816
memory map.

27.1 SLSA - SPI backdoor set address register

This instruction determines which register is used for SPI backdoor reads and writes.

This instruction is 'sticky' in that, once written, it does not change until a future 'slsa' instruction changes the
previous value.

The default is to use the dedicated 'spi_add' (address) register.

Syntax

slsa Sel;

Example

// Use the 'ir' register to hold the address
// for SPI-backdoor accesses
slsa ir;

Sel - The register used for SPI backdoor reads and writes

reg Use the dedicated 'spi_add' register for SPI backdoor reads
and writes

ir Use the 'ir' register for SPI backdoor reads and writes

MC33816 Assembler, page 172 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

27. SPI Backdoor

RDSPI - SPI backdoor read

27.2 RDSPI - SPI backdoor read

Performs a SPI backdoor read. The read address must have already been loaded into the address register.

Note that address can be specified by either the 'ir' register or the dedicated 'spi_add' register. This is
determined by the most-recently executed 'slsa' instruction

The value that is read goes into the 'spi_data' register two instruction cycles later. Therefore, the instruction
that is executed immediately following the SPI backdoor read cannot access the 'spi_data' register as the
operation would not have completed yet and the value in the 'spi_data' register would not yet be
guaranteed.

Syntax

rdspi;

Example

// Read the 'Start_config_reg' register
//
// Configure SPI accesses to use 'ir' for addresses
// Sticky - possibly only do once after reset
slsa ir;
//
// Load the read-address into 'ir'
ldirh 01h _rst;
ldirl 04h _rst;
//
// Do the SPI Backdoor read
// and wait an instruction cycle
// for the two-instruction cycle read to complete
rdspi;
cp ir ir; // NOP
//
// Put the newly-read Start_config_reg value
// into the r0 register
cp spi_data r0;

27.3 WRSPI - SPI Backdoor write

Performs a SPI backdoor write operation. The value in the 'spi_data' (data) register gets written to the
address in the address register.

Note that address can be specified by either the 'ir' register or the dedicated 'spi_add' register. This is
determined by the most-recently executed 'slsa' instruction

Each core has it's own 'spi_data' and 'spi_addr' registers which must both have been written prior to
execution of this instruction, typically with a 'cp' instruction.

This instruction takes two clock cycles to complete. Additionally, both the data and the address must not be
changed in the instruction following the 'wrspi' instruction or the result is undefined.

Syntax

wrspi;

MC33816 Assembler, page 173 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

27. SPI Backdoor

WRSPI - SPI Backdoor write

ASH WARE, Inc. 6/8/2024

Example

// Write the 'Start_config_reg' register
//
// Configure SPI accesses to use 'ir' for addresses
// Sticky - possibly only do once after reset
slsa ir;
//
// Load the read-address into 'ir'
ldirh 01h _rst;
ldirl 04h _rst;
//
// Load the value to be written into 'spi_data'
ldirh 01h _rst;
ldirl 01h _rst;
cp ir spi_data;
//
// Do the SPI Backdoor write
wrspi;

MC33816 Assembler, page 174 (C) 2012-2024 ASH WARE, Inc. ASH WARE, Inc.

	1 Introduction
	1.1 Installation
	1.2 System Requirements
	1.3 High-Level Programming Features
	1.3.1 Variables

	2 Command Line Options
	2.1 File Naming Conventions
	2.2 The Build Process

	3 Pragmas
	3.1 Disabling the 'Unused Label' Warning
	3.2 Disabling the 'Unused Variable' Warning

	4 Notation and Syntax
	5 Auto-Header File
	6 Code RAM Files
	7 Data RAM Files
	8 Listing Files
	9 Label Tags
	10 Variables
	10.1 Immediate/Global Variables
	10.2 Enabling Initialized Data in the Simulator
	10.3 Data Banks Variables

	11 Extended Instructions
	12 Instruction Set
	13 Wait
	13.1 CWEF - create wait table entry far
	13.2 CWER - create wait table entry relative
	13.3 Fill a 'Wait Table' row with an event and an event-handling thread's code-address (extended instruction)
	13.4 WAIT - wait until a condition is verified

	14 Call/Return
	14.1 JTSF - Jump far to subroutine
	14.2 JTSR - Jump relative to subroutine
	14.3 Call a subroutine (extended instruction)
	14.4 RFS - Return from subroutine

	15 Program Flow
	15.1 LDJR1 - Load jump register 1
	15.2 LDJR2 - Load jump register 2
	15.3 JMPF - Unconditional jump far
	15.4 JMPR - Unconditional jump relative
	15.5 Unconditionally jump (extended instruction)
	15.6 JARF - Jump on arithmetic register far
	15.7 JARR - Jump on arithmetic register relative
	15.8 Conditionally jump on ALU and related flags (extended instruction)
	15.9 JCRF - Jump on control register far
	15.10 JCRR - Jump on control register relative
	15.11 Conditionally jump on 'Control Register' bit values (hi/lo) (extended instruction)
	15.12 JSRF - Jump on status register far
	15.13 JSRR - Jump on status register relative
	15.14 Conditionally jump on 'Status Register' bit values (hi/lo) (extended instruction)
	15.15 JOSLF - Jump on start-latch far
	15.16 JOSLR - Jump on start-latch relative
	15.17 Conditionally jump based on the state of the start pins latched states (extended instruction)
	15.18 JOCF - Jump on condition far
	15.19 JOCR - Jump on condition relative
	15.20 Conditionally jump based on a variety of conditions such as Flag state, Start state, above/below a Current Sense Threshold, ... (extended instruction)
	15.21 JFBKF - Jump on feedback far
	15.22 JFBKR - Jump on feedback relative
	15.23 Conditionally jump based on the state of a 'Diagnostic Feedback Comparator' output (extended instruction)
	15.24 JOIDF - Jump on current core far
	15.25 JOIDR - Jump on current core relative
	15.26 Conditionally jump based on the ID of the currently-executing core (extended instruction)
	15.27 JUMP<_type> - Jump on specified conditions

	16 Interrupts
	16.1 ICONF - Configure automatic interrupt return
	16.2 REQI - Request software interrupt
	16.3 IRET - Return from interrupt
	16.4 STIRQ - Write IRQB output pin

	17 Data RAM Accesses
	17.1 SLAB - Selects the register to be used in Indexed addressing mode
	17.2 STAB - Write the 'base_add' register
	17.3 LOAD - Load a register with a 16-bit value from the Data RAM
	17.4 STORE - Store a value from an ALU register into the Data RAM
	17.5 STDRM - Set data RAM read mode

	18 Math
	18.1 STAL - set arithmetic logic
	18.2 CP - Copy one register to another
	18.3 LDIRH - Load immediate register's MSB
	18.4 LDIRL - Load immediate register's LSB
	18.5 Load the full 16-bit IR register (extended instruction)
	18.6 ADD - Addition of two registers
	18.7 ADDI - Addition of a register with a 4-bit unsigned immediate
	18.8 SUB - Substraction of two registers
	18.9 SUBI - Subtraction by a 4-bit unsigned immediate
	18.10 MUL - Multiplication of two registers, result goes in 'mh' and 'ml'
	18.11 MULI - Multiplication with 4-bit immediate, result goes in 'mh' and 'ml'
	18.12 SWAP - Swap a register's high and low bytes
	18.13 TOC2 - Conditional conversion to 2's complement format with sign enforcement
	18.14 TOINT - Convert from 2's complement

	19 Bitwise
	19.1 AND - Bitwise AND with 'ir' register
	19.2 OR - Bitwise OR with the 'ir' register
	19.3 XOR - Bitwise XOR with the 'ir' register
	19.4 NOT - Bitwise NOT

	20 Shifts
	20.1 SHR - Shift right by register
	20.2 SHRS - Shift right by register, signed
	20.3 SHRI - Shift right by immediate
	20.4 SHRSI - Shift right by immediate, signed
	20.5 SHR8 - Shift right by 8
	20.6 SH32R - Shift right 'mh' and 'ml' by register
	20.7 SH32RI - Shift right 'mh' and 'ml' by 4-bit immediate
	20.8 SHL - Shift left by register
	20.9 SHLS - Shift left by register, signed
	20.10 SHLI - Shift left by immediate
	20.11 SHLSI - Shift left by immediate, signed
	20.12 SHL8 - Shift left by 8
	20.13 SH32L - Shift left 'mh' and 'ml' by register
	20.14 SH32LI - Shift left 'mh' and 'ml' by 4-bit immediate

	21 Control, Status, Flags, and the Inter Core Communications 'rxtx' register
	21.1 STCRB - Write control register bit
	21.2 STSRB - Write status register bit
	21.3 STF - Write flag register bit
	21.4 STCRT - Configure which cores' 'rxtx' register gets read
	21.5 RSTREG - Reset registers
	21.6 RSTSL - Reset the start-latch register

	22 Shortcuts
	22.1 DFCSCT - Define the core's current sense block shortcut
	22.2 DFSCT - Define the core's three output driver shortcuts
	22.3 STOS - Synchrounously control three output drivers using shortcuts

	23 Current Sense Blocks
	23.1 STADC - Select 'Analog to Digital' or 'Digital to Analog' mode
	23.2 STDCCTL - Set the DC to DC Converter's Control mode
	23.3 STDM - Set DAC register access mode
	23.4 STGN - Set amplifier gain of a Current Sense Block
	23.5 STOC - Set offset compensation of a Current Sense Block

	24 Output Drivers
	24.1 BIAS - Set load current bias
	24.2 STEOA - Set end of actuation mode
	24.3 STFW - Set freewheeling mode between a pair of output drivers
	24.4 STO - Set one output driver
	24.5 STSLEW - Set output drivers' slew rates

	25 Diagnostics
	25.1 CHTH - Change diagnostic comparator's threshold
	25.2 ENDIAG - Enable or disable output driver diagnostics, ONE
	25.3 ENDIAGA - Enable or disable output driver diagnostics, ALL
	25.4 ENDIAGS - Enable or disable output driver diagnostics, SHORTCUTS
	25.5 SLFBK - Select the power source to monitor for Vds Diagnostics

	26 Timers
	26.1 LDCA - Load a counter's 'Terminal Count' from a register and write two output drivers
	26.2 LDCD - Load a counter's 'Terminal Count' from data RAM and write two output Drivers

	27 SPI Backdoor
	27.1 SLSA - SPI backdoor set address register
	27.2 RDSPI - SPI backdoor read
	27.3 WRSPI - SPI Backdoor write

