
ASH WARE, Inc.

by

Version 3.01

6/8/2024

(C) 2008-2024 ASH WARE, Inc.

Assembler Reference Manual

John Diener and Andy Klumpp

NXP Syntax

page 2, Assembler Reference Manual

Assembler Reference Manual, page 3

Assembler Reference Manual

Table of Contents

Foreword 9

Part 1 Introduction 11

Part 2 Command Line Options 13

.. 182.1 File Naming Conventions

.. 192.2 The Build Process

Part 3 Preprocessing and Directives 21

.. 213.1 Text Replacement using #define

.. 213.2 File Inclusion

.. 223.3 Automatically-Generated Directives

.. 223.4 Comments

.. 223.5 Verify Version

.. 233.6 Disabling Optimization in Chunks of Code

.. 243.7 Disabling Optimizations by Type

.. 243.8 Atomicity Control

.. 243.9 Optimization Boundary

.. 253.10 Thread Length Verification (WCTL)

.. 263.11 Forcing the WCTL

.. 273.12 Excluding a thread from WCTL

.. 273.13 Loop Iteration Count

.. 273.14 Memory Size (Usage) Verification

.. 283.15 Same Channel Frame Base Address

.. 293.16 Coherency

... 29Coherency Notes

.. 293.17 Format Specification

.. 303.18 Verifying Opcode Generation

.. 303.19 Forcing a Specific opcode

Assembler Reference Manual

page 4, Assembler Reference Manual

.. 303.20 Called Functions

.. 313.21 Return Address Save/Restore

.. 323.22 Dispatch List

Part 4 Notation and Syntax 35

Part 5 Data Memory Packing 37

Part 6 The Register Set 39

.. 396.1 The “Big 4” Registers

.. 396.2 The P Register

.. 406.3 The Scratchpad Registers

.. 406.4 Global Timebase Registers

.. 416.5 The ‘Chan’ (channel) Register

.. 416.6 Channel Base Address Register

.. 416.7 Engine Base Address Register

.. 426.8 Event Registers

.. 426.9 Channel to Channel Linking Register

.. 426.10 Multiply-Accumulate (MAC) Registers

.. 436.11 Angle Mode Registers

.. 436.12 Program Flow Registers

Part 7 Opcode and Sub-Instruction
Structure 45

.. 457.1 Sub Instruction Types

.. 457.2 Sub-Instruction groups

.. 467.3 Opcode Termination

.. 467.4 The ‘No-Operation’ (NOP)

Part 8 Parameter RAM Accesses 47

.. 478.1 Accessing Data at a Specific Address

.. 488.2 Accessing a Channel's Data

Assembler Reference Manual, page 5

Assembler Reference Manual

.. 488.3 Accessing an Engine’s Data

.. 498.4 Address Nomenclature

.. 498.5 diob Register Relative Accesses

.. 498.6 Clearing Parameter RAM and Registers

.. 508.7 diob Pre-Decrement and Post-Increment

.. 508.8 Operation Size

.. 518.9 Semaphore Locking and Freeing

.. 518.10 Taking a Variable’s Address

Part 9 Arithmetic Logic Unit (alu) 53

.. 539.1 Irreversible Bus Sources

.. 539.2 Case Insensitivity

.. 549.3 Special Constants

... 54Loading a 24-bit Constant

... 54The "One" Constant

... 54The ‘max’ Constant

.. 559.4 Addition And Subtraction

... 55Two-Register Addition

... 55Subtraction of One Register by another Register

... 55Addition by a Constant

.. 569.5 Addition and Subtraction with the Carry Flag

.. 569.6 Single-Bit Shift and Rotate

... 56Two-Register Addition w ith Shift or Rotate

... 56Two-Register Subtraction w ith Shift or Rotate

... 57Addition to a Constant w ith Shift or Rotate

.. 579.7 Multiple-Bit Shift and Rotate

... 57Multiple-Bit Shift and Rotate by a Register

... 58Multiple-Bit Shift and Rotate by a Constant

.. 589.8 Bitwise operations; 'OR', 'AND', and 'XOR'

... 58Register-Register ‘Or’, ‘And’ and ‘Exclusive Or'

... 58Bitw ise Or, And, and Exclusive Or Using a Constant

.. 599.9 Bit Set and Bit Clear

... 59Single-Bit Set and Bit Clear, by Register

.. 609.10 Single-Bit Exchange with the Carry Flag

... 60Exchange the “c” Flag w ith a Bit, Register Specified

... 60Exchange the C Flag w ith a Bit, Constant Specified

.. 619.11 Absolute Value

Assembler Reference Manual

page 6, Assembler Reference Manual

.. 619.12 B-Bus Inversion and Carry-In

.. 619.13 Saving the Flags

... 62Overriding the Default Flag Size

.. 629.14 Shifting the sr register

.. 629.15 Overriding the Default A-Bus Source

.. 629.16 A-Bus Source Sign Extension

.. 639.17 Conditional ALU/MDU Operations

Part 10 The Multiply Divide Unit 65

.. 6510.1 MDU Multiply

... 65Multiply by a Constant

... 66MDU Register By Register Multiply

.. 6610.2 MDU Multiply and Accumulate

.. 6710.3 Fractional Multiply

.. 6710.4 Additional MDU B-Bus Options

... 67MDU Unsigned B-Bus operations

... 68MDU Signed B-Bus operations

.. 6810.5 MDU Divide

... 68MDU Divide by a Constant

... 68MDU Register by Register Divide

.. 6910.6 Mac Busy Wait Loop

Part 11 Channel Hardware
Sub-Instructions 71

.. 7211.1 Channel Flags

.. 7211.2 Time Base and Comparator

.. 7311.3 Output Buffer

.. 7311.4 Immediate Output Pin State Control

.. 7311.5 Input Pin Transition Detection

.. 7411.6 Output pin Action

.. 7511.7 Writing the Match Registers

.. 7511.8 Reading the Match Registers

.. 7611.9 Reading the Capture Registers

.. 7611.10 Clearing the Match Recognition Latches

Assembler Reference Manual, page 7

Assembler Reference Manual

.. 7611.11 Clearing the Transition Detection Latches.

.. 7711.12 Clearing Link Service Requests

.. 7711.13 Disabling Matches

... 77Individual Match Disable on eTPU2

... 78Individual Match Disable Limitation

.. 7811.14 Enabling Matches

.. 7811.15 Disabling Match and Transition Service Requests

.. 7911.16 Setting the Channel Modes

... 80eTPU2’s User-Defined Channel Mode

.. 8011.17 Interrupts

... 81eTPU2’s Current Channel Interrupt

... 81eTPU2’s Set Both Interrupts

Part 12 Sequencer Sub Instructions 83

.. 8312.1 Code Labels

.. 8312.2 Conditional Branch

.. 8412.3 Conditional Call

.. 8412.4 Conditionals

... 86eTPU2’s Branch on ‘Event’ input pin

... 86eTPU2’s Branch on Channel Flag

.. 8612.5 Unconditional Goto and Call

.. 8612.6 Return from subroutine

.. 8712.7 Flush Pipeline

.. 8812.8 Dispatch Jump and Dispatch Call

.. 8912.9 Ending the Current Thread - END

Part 13 Linking to other channels 91

Part 14 Structured Programming 93

.. 9314.1 Data Types

.. 9314.2 Data Scopes

... 94Global Variables

... 94Channel Variables

... 94Engine Variables

.. 9514.3 Referencing an Address

Assembler Reference Manual

page 8, Assembler Reference Manual

... 95Referencing Code Address Note

.. 9614.4 Class Member Functions

.. 9714.5 Jump Table

... 98Jump Table Auto-Defines

.. 9914.6 Constant Lookup Table

... 99The Constant Lookup Table Definition

... 100The Constant Lookup Table Declaration

... 100The Constant Lookup Table Call

... 100Conditional Execution

... 101No-Flush

... 101Constant Table Initialization

... 101Include File Initialization

... 101Run-Time Initialization (Calibration)

... 103Considerations and Restrictions

Part 15 Entry Table 105

.. 10515.1 Event Types

.. 10615.2 Conditionals

.. 10615.3 Mapping Threads to Event/Conditional Combinations

.. 10715.4 The Alternate Entry Table

.. 10815.5 The standard entry table

.. 10915.6 Entry Error Handler

Part 16 Writing Optimize-Able Assembly 111

.. 11116.1 Functions and Function Calls

.. 11116.2 Writing the Return Address Register

.. 11216.3 The Dispatch Operation

.. 11216.4 MAC operations

.. 11216.5 Variable Names

Assembler Reference Manual, page 9

Assembler Reference Manual

page 10, Assembler Reference Manual

1. Introduction

Assembler Reference Manual, page 11NXP Syntax (C) 2008-2024 ASH WARE, Inc.

1
Introduction

The story of this ETEC Assembler is long and convoluted. The original TPU developed by
Motorola back in the late 1980’s employed an unusual syntax that was difficult to write and
difficult to understand.

The ‘legacy’ eTPU syntax was developed along with the eTPU itself in the early 2000’s
and is based on that original TPU syntax.

ASH WARE developed a ‘Verbose’ syntax in which the primary motivation was
readability. The thinking was that eTPU coders would develop their code in ‘C’ and would
neither use nor learn NXP’s rather obtuse 'Legacy' assembly language syntax. The
‘verbose’ syntax was developed primarily to be readable so that the ‘C’ coder could view
and understand the syntax from within the Simulator’s source code window (in mixed
‘C’/Assembly mode).

Quite a bit of eTPU assembly has been written using the ‘Legacy’ syntax. A small
number of these applications have been written entirely in assembly and the rest employ a
mix of regular ‘C’ with some inline assembly.

In developing it’s ETEC compiler ASH WARE needed to support this existing code base,
and therefore decided to support the ‘Legacy’ assembly syntax instead of it’s own
‘Verbose’ syntax.

A significant barrier to support of the existing ‘Legacy’ syntax is its lack of documentation
and inconstancy over time. The task of supporting the existing syntax is extremely difficult
and (to say the least) far from satisfying.

1. Introduction

page 12, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Having said that, ASH WARE’s strong bias towards supporting a strict syntax has been
tempered by our requirement to support the existing code base. We have therefore chosen
the following approach. We have chosen to support and document a single consistent
syntax both in this manual and in the assembler itself. This syntax has been chosen such
that it is supported both by our own assembler and (as far as we can determine) by more
recent versions of the 'Legacy' syntax.

In the one or two cases where the existing syntax is flat-out wrong, it is simply not
supported. Instead, a new and correct syntax has been developed, and use of the wrong
syntax results in an error message in which the new and correct syntax is shown.

But in some cases ASH WARE supports additional syntax varieties where the syntax
variation has broad use. We generally discourage use of these syntax variations and
wherever possible generate warnings when this non-standard syntax is encountered. It is
strongly recommended that users migrate their assembly to the syntax documented within
this manual.

2. Command Line Options

Assembler Reference Manual, page 13NXP Syntax (C) 2008-2024 ASH WARE, Inc.

2
Command Line Options

Type the executable name with the -h command line parameter to generate a list of the
available options.

ETEC_asm.exe –h

The assembler is called ETEC_asm.exe, and it has the following format:

ETEC_asm.exe <options> <AssemblyFile>

The following table is a complete listing of all supported command line options.

Setting Option Default Example

Display Help

This option overrides
all others and when it
exists no assembly is
actually done.

-h Off -h

Open Manual

Opens the electronic
version of this
Assembler Reference
Manual.

-man Off -man

2. Command Line Options

page 14, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Setting Option Default Example

Open a Specific Manual

Opens an electronic
version of the specified
manual.

-man=<MANUAL>

where MANUAL is
one of the following:

TOOLKIT: Toolkit
User Manual.

COMP: Compiler
Reference Manual

LINK: Linker
Reference Manual.

ASMFS: eTPU
Assembler
Reference Manual -
NXP Syntax.

ASMAW: eTPU
Assembler
Reference Manual -
ASH WARE
Syntax.

ETPUSIM: Stand-
Alone eTpu
Simulator Reference
Manual.

MTDT: Common
reference manual
covering all
simulator/debugger
products EXCEPT
the eTPU Stand-
Alone simulator.

LICENSE: License
reference manual

Off -man=ETPUCIM

Display Version -version Off -version

2. Command Line Options

Assembler Reference Manual, page 15NXP Syntax (C) 2008-2024 ASH WARE, Inc.

Setting Option Default Example

Displays the tool name
and version number
and exits with a non-
zero exit code without
assembling.

Display Licensing Info

Outputs the licensing
information for this
tool.

-license Off -license

Console Message
Verbosity

Control the verbosity
of the message output.

-verb=<N>

where N can be in the
range of 0 (no console
output) to 9 (verbose
message output).

5 -verb=9

Console Message
Suppression

Suppress console
messages by their
type/class. Multiple
types can be specified
with multiple –
verbSuppress options.

-
verbSuppress=<TYPE>

where TYPE can be:

BANNER : the
ETEC version &
copyright banner.

SUMMARY : the
success/failure
warning/error count
summary line

WARNING : all
warning messages

ERROR : all error
messages (does not
affect the tool exit
code)

Off -verbSuppress=
SUMMARY

2. Command Line Options

page 16, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Setting Option Default Example

INFO : all
informational
messages

Console Message Style

Controls the style of
the error/warning
output messages,
primarily for integration
with IDEs

msgStyle=<STYLE>

where STYLE can be:

- ETEC : default
ETEC message style.

- GNU : output
messages in GNU-
style. This allows the
default error parsers
of tools such as
Eclipse to parse
ETEC output and
allow users to click
on an error message
and go to the
offending source line.

- MSDV : output in
Microsoft Developer
Studio format so that
when using the
DevStudio IDE
errors/warnings can
be clicked on to bring
focus to the problem
source code line.

ETEC -msgStyle=MSDV

Source File Search Paths

Specifies any
directories, after the
current one, to be
searched for included
files. Multiple paths

-I=<PATH>

where PATH is a text
string representing
either a relative or
absolute directory path.

None -I=..\Include

2. Command Line Options

Assembler Reference Manual, page 17NXP Syntax (C) 2008-2024 ASH WARE, Inc.

Setting Option Default Example

can be specified and
they are searched in
the order of their
appearance in the
command line.

 The entire option must
be in quotes if the path
contains spaces.

Macro Definition

Supplies a macro
definition to the pre-
processing stage of
compilation.

-d=<MACRO>

where if MACRO is an
identifier than it is pre-
defined to a value of 1,
otherwise it can be of
the form
macro=definition,
where macro gets the
value specified in
‘definition’.

None -d=DBG_BUILD

Warning Disable

Disable a specific
assembly warning via
its numerical identifier.
 Applies to
informational messages
as well.

-warnDis=<WARNID> Off (all
warnings
enabled)

-warnDis=33243

Error on Warning

Turn any warning into
an assembly error.

-strict

Note that this
changed from -
warnError which is
being deprecated

Off -strict

<AsmFile> Name of the assembly
file to assemble

None -

2. Command Line Options

page 18, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Setting Option Default Example

Output File To Produce

Object file name

-out=<BaseFileName> <AsmFile>.e
ao

-out=MyOutputFile

Assembly Syntax -syntax=<eSyn>

where eSyn is the
assembly syntax which
can be either AW
(ASH WARE) or FS
(Legacy.)

FS -out=AW

Target Selection

Select the destination
processor for the
compilation.

-target=<TARGET>

where TARGET can
be:

ETPU1 : compile for
the baseline eTPU
processor.

ETPU2 : compile for
the eTPU2
processor version.

ETPU1 -target=ETPU2

2.1 File Naming Conventions

.STA Structured eTPU assembly file suffix

.EAO eTPU Annotate Object file suffix

.ELF Elf/Dwarf file suffix

.h "C" language style header file suffix

2. Command Line Options

Assembler Reference Manual, page 19NXP Syntax (C) 2008-2024 ASH WARE, Inc.

2.2 The Build Process

An assembly file is assembled to create an eTPU Annotated Object file.

ETEC_asm.exe MyAsmFile.sta

If the assembly fails then no object file is created, and any pre-existing object file with that
name is deleted.

On or more object files are linked to generate a generic executable image file. The
following shows linking two object files together, one of which was generated by the
assembler and one of which was generated by the compiler.

ETEC_link.exe MyAsmFile.eao MyAsmC.eao

If the linking fails then no executable file is created and any pre-existing executable file is
deleted.

See the ETEC reference manual for a complete listing of all the Compiler, Assembler, and
Linker command line options.

page 20, Assembler Reference Manual

3. Preprocessing and Directives

Assembler Reference Manual, page 21NXP Syntax (C) 2008-2024 ASH WARE, Inc.

3
Preprocessing and Directives

This section covers preprocessing and directives.

3.1 Text Replacement using #define

Simple text replacement is supported via a C-style #define as follows.

#define SOME_ADDRESS sprm0x41
ram diob <- SOME_ADDRESS.
// This is the same as the following
ram diob <- sprm0x41.

The text replacement can span multiple lines using the continuation character, '\', as
follows.

#define A_ValuE 10 \
 + 2 \
 - 3;

3.2 File Inclusion

One file can include another file using the C-style #include directive as follows.

#include "MyHeaderFile.h"

3. Preprocessing and Directives

page 22, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

3.3 Automatically-Generated Directives

One of the following target define directives is automatically-generated. Note that the
target is set by the command line options.

#define __TARGET_ETPU1__ 1
#define __TARGET_ETPU2__ 1

These are handy when generating code conditionally, such as the following.

#ifdef __TARGET_ETPU2__

// Test FLAG 1 (eTPU2 and later only) ...
seq if flag1 == 0 then goto

_Error_handler_Flag1NotSet, flush.
alu p7_0 = p7_0 low| 0x40.

_Error_handler_Flag1NotSet:

#endif // __TARGET_ETPU2__

3.4 Comments

Both C and C++ style comments are supported, as follows.

// This is a C++ style comment

/*
This is a C comment
*/

3.5 Verify Version

A #pragma to verify that the proper version of the ETEC Assembler is being used to
generate a particular piece of source code is available.

#pragma verify_version <comparator>, "<version string>",
"<error message>"

When such a #pragma is processed by the compiler, a comparison is performed using the
specified <comparator> operation, of the ETEC Assembler’s version and the specified
"<version string>". The supported comparators are:

GE – greater-than-equal
GT – greater-than

3. Preprocessing and Directives

Assembler Reference Manual, page 23NXP Syntax (C) 2008-2024 ASH WARE, Inc.

EQ – equal
LE – less-than-equal
LT – less-than

The specified version string must have the format of "<major version number>.<minor
version number (2 digits)><build letter (letter A-Z)>". The last token of the #pragma
verify_version is a user-supplied error message that will be output should the comparison
fail.

For example, if the compiler were to encounter the following in the source code

#pragma verify_version GE, "1.20C", "this build requires
ETEC version 1.20C or newer"

The ETEC Assembler will perform the test <ETEC Assembler version> >= "1.20C", and if
the result is false an error occurs and the supplied message is output as part of the error.
With this particular example, below are some failing & passing cases that explain how the
comparison is done

// (equal to specified "1.20C")
ETEC Assembler version = 1.20C => true

// (major version is less than that specified)
ETEC Assembler version = 0.50.G => false

// (minor version 21 greater than that specified)
ETEC Assembler version = 1.21A => true

// (build letter greater than that specified)
ETEC Assembler version = 1.20E => true

3.6 Disabling Optimization in Chunks of Code

If it is desired to disable optimization on a section of code, the pragmas

#pragma optimization_disable_start

and

#pragma optimization_disable_end

can be used to do so. All optimizations are disabled within the specified region, so this
feature should be used with care.

3. Preprocessing and Directives

page 24, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

3.7 Disabling Optimizations by Type

The ETEC optimizer operates by applying a series of optimizations to the code, thereby
reducing code size, improving worst case thread length, reducing the number of RAM
accesses, etc. Although these optimizations are generally disabled en-masse from the
command line using -opt-, it is also possible (but hopefully never) required to individually
disable specific optimizations within a source code file using the following option.

#pragma disable_optimization <Num>

This disables optimization number, <num>, in entire translation unit(s) in which the source
code or header file is found.

The optimization numbers are not documented and must be obtained directly from ASH
WARE. Note that the purpose of disabling specific optimizations is to work-around
optimizer bugs in conjunction with ASH WARE support personnel.

3.8 Atomicity Control

In many cases multiple sub-instructions can be fit into a single opcode. One of the most
powerful optimizations is to gather multiple such sub instructions into a single opcode, but
occasionally (actually infrequently) there are dependencies between the sub-instructions
such that in order to function properly, the multiple sub-instructions must be fit into a single
opcode. The classic example of this is the clearing and enabling of the Match Enable
Register (MRL.) The following atomic directive instructs the optimizer (if enabled) to
retain these two sub-instructions in the same opcode.

// Keep these two sub-instructions
// in the same opcode
#pragma atomic
chan clr_mrla, write_erta.

3.9 Optimization Boundary

In some cases there may be an ordering dependency that must be enforced. Say a buffer
gets updated, followed by the setting of a flag that indicates to the host that the buffer has
been updated. It is important that the buffer update completes prior to flag getting set,
otherwise the host might read the buffer prior the eTPU completing the updated. This
ordering dependency is enforced as follows.

// The first RAM operation
// MUST occur prior to the second

3. Preprocessing and Directives

Assembler Reference Manual, page 25NXP Syntax (C) 2008-2024 ASH WARE, Inc.

ram p -> by diob++.
alu p = 1.
#pragma optimization_boundary_all
ram p -> prm0x2D.

3.10 Thread Length Verification (WCTL)

The verify_wctl pragma are used for the following:

· No thread referenced from a Class or eTPU Function (including both member
threads and global threads) exceed a specified number of steps or RAM accesses.

· A specific thread does not exceed a specified number of steps or ram accesses.

· For classes with multiple entry tables, the worst-case thread of any entry table can
be specified (currently only available in ETEC mode.)

· A global ‘C’ function or member ‘C’ function does not exceed a specified number
of steps or ram accesses.

The syntax is as follows:

#pragma verify_wctl <eTPUFunction> <MaxSteps>
steps <MaxRams> rams
#pragma verify_wctl <eTPUFunction>::<Thread> <MaxSteps>
steps <MaxRams> rams

#pragma verify_wctl <Class> <MaxSteps> steps
<MaxRams> rams
#pragma verify_wctl <Class>::<Thread> <MaxSteps> steps
<MaxRams> rams
#pragma verify_wctl <Class>::<Table> <MaxSteps> steps
<MaxRams> rams
#pragma verify_wctl <Class>::<CFunc> <MaxSteps> steps
<MaxRams> rams

#pragma verify_wctl <GlobalCFunc> <MaxSteps> steps
<MaxRams> rams

Note that global threads must be scoped with a class that references it. In other words,
say there is a common global thread referenced from several different classes entry tables.
 The following syntax would be required where the class name is the name of one class
that references the global thread.

3. Preprocessing and Directives

page 26, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

#pragma verify_wctl <Class>::<GlobalThread> <MaxSteps>
steps <MaxRams> rams

Some called functions (‘C’ functions or member functions) may have routes that return to
the caller but also may end the thread. In such causes the verify_wctl acts on the longer
of these two.

The WCTL analyses assumes that called functions are well-behaved in terms of call-stack
hierarchy. For instance, if Func() calls FuncB() and FuncB() calls FuncC(), a return in
FuncA() will go to the location in FuncB() where the call occurred. Additionally, a return
within FuncB() will then return to Func() where that call occurred. In order for this to
occur, the rar register must be handled correctly, which is guaranteed in ETEC compiled
code, as long as inline assembly does not modify the RAR register. It is also guaranteed in
assembly as long as RAR save-restore operations are employed in a function’s prologue
and epilogue.

The WCTL calculations remain valid even when a thread ends in a called function.

The following are examples uses of verify_wctl:

// Verify WCTL of a global function
#pragma verify_wctl mc_sqrt 82 steps 0 rams

// Verify WCTL of a specific thread within a class
#pragma verify_wctl UART::SendOneBit 25 steps 7 rams

// Verify WCTL of the longest thread within an entire class
#pragma verify_wctl UART 30 steps 9 rams

3.11 Forcing the WCTL

In some cases a thread, eTPU function, or an eTPU class may not be able to be analyzed.
 This can occur when multiple loop are encountered or when the program flow is too
convuluted for a static analyses. In these cases, the maximum WCTL can be forced using
the following #pragma.

#pragma force_wctl <Name> <max_steps> steps <max_rams> rams

An example of this is the square root function in the standard library used in NXP set 4.
This has two loops where the maximum number of times through each of the loops is inter-
dependent, and this complicated loop limit relationship is well, not supported ETEC's worst
case thread length analyses. The following #pragma is used to establish this limit

#pragma force_wctl mc_sqrt 82 steps 0 rams

3. Preprocessing and Directives

Assembler Reference Manual, page 27NXP Syntax (C) 2008-2024 ASH WARE, Inc.

3.12 Excluding a thread from WCTL

A thread can be excluded from the WCTL calculation of a function. This is normally used
for initialization or error handling threads that in normal operation would not contribute to
the Worst Case Latency (WCL) calculation. The format is as follows:

#pragma exclude_wctl <eTPU Function>::<ExcludedInitThread>

For example the following excludes a UART's initialization thread from the worst case.

#pragma exclude_wctl UART::init

3.13 Loop Iteration Count

Loops in eTPU code are generally not a good programming practice because the eTPU is
an event/response machine in which long threads (such as those caused by loops) can
prevent the quick response time to meet many applications’ timing requirements.

However, loops are occasionally required, and are therefore supported by the optimizer.

But there is no way to analyze the worst case thread length for threads that contain loops,
and therefore loops prevent analyses unless loop bounding iteration tags are added.

#pragma wctl_loop_iterations <max_loop_count>
<Some Loop>

It is critical that this pragma be placed right before the loop construct, so that the
connection is properly found - here is a simple example:

#pragma wctl_loop_iterations 10
while (delayCount < threshold) { delayCount++; }

3.14 Memory Size (Usage) Verification

The memory usage verification pragma, verify_memory_size, allows the user to verify at
build time that their memory usage meets size requirements. Memory usage is verified on
a memory section basis. The pre-defined (default) memory sections are named &
described below:

GLOBAL_VAR - user-declared global variables

GLOBAL_SCRATCHPAD - local variables allocated
 out of global memory (scratchpad)

GLOBAL_ALL - all global memory usage

3. Preprocessing and Directives

page 28, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

ENGINE_VAR - user-declared variables
 in engine-relative memory space
 (eTPU2 only)

ENGINE_SCRATCHPAD - local variables allocated
 out of engine-relative memory
 (engine scratchpad, eTPU2 only)

ENGINE_ALL - all engine-relative memory usage
 (eTPU2 only)

STACK - maximum stack size

User-defined memory sections can also be verified. Currently only channel frames are
supported – these are verified by specifying the appropriate eTPU class or function name.

 The pragma has the following syntax options

#pragma verify_memory_size <memory section> <MaxSize> bytes

#pragma verify_memory_size <memory section> <MaxSize> words

#pragma verify_memory_size <eTPU class/function> <MaxSize> bytes

#pragma verify_memory_size <eTPU class/function> <MaxSize> words

The maximum allowable size for a given memory section (or channel frame) can be
specified in bytes or words (4 bytes/word). If the actual size of the memory section
exceeds MaxSize, the linker issues an error.

This pragma is available in both the Assembler and Compiler.

3.15 Same Channel Frame Base Address

When multiple channels use the same channel frame base address, there is no need to re-
load channel variables when the channel is changed. In certain cases this can result in
improvements in code speed and size. The following tells the compiler that the CPBA
register value will be the same for all channel changes of within the specified function.

#pragma same_channel_frame_base <etpu_function>

The etpu_function argument is the name of an eTPU function, C function, or eTPU class.

3. Preprocessing and Directives

Assembler Reference Manual, page 29NXP Syntax (C) 2008-2024 ASH WARE, Inc.

An example where this is useful is in the NXP set 1 SPI function, which controls multiple
channels that all share the same channel frame base address. The SPI function can
compile tighter when the ETEC tools know about this, which can be done by adding:

#pragma same_channel_frame_base SPI

3.16 Coherency

The eTPU contains a Coherent Dual Parameter Controller (CDC) that allows coherent
transfers to and from the DATA RAM of parameter pairs. The problem is that the
optimizer may eliminate, re-order or otherwise change these accesses in such a way that
they are no longer coherent. The following syntax is used to ensure that the optimizer
retains coherency.

#pragma coherent_begin
ram p <- ChanVar1.
ram diob <- ChanVar5.
#pragma coherent_end

This results in the following action by the optimizer.

* The accesses will not be eliminated
* The accesses will remain on opcodes that are always executed sequentially
* There will always be a non-RAM on the preceding opcode. (If required, the optimizer will

NOP to make this so.)

3.16.1 Coherency Notes

For the purposes of coherency, the optimizer is a separate and distinct portion of the linker.
 The actions taken by the optimizer to ensure coherency are therefore only taken if the
optimizer is enabled.

In other words, if optimizations are disabled, the optimizer cannot make non-coherent
accesses coherent, and you are therefore required to ensure that the un-optimized
assembly is intrinsically coherent.

3.17 Format Specification

A specific format can be forced using the #pragma format directive. Assembly will fail if
the opcode cannot be fit into the specified format.

#pragma format "FormatB2"

3. Preprocessing and Directives

page 30, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

The following is an example:

#pragma format "FormatB2"
ram p <- prm0xD.

3.18 Verifying Opcode Generation

Generation of a specific opcode can be guaranteed using the #pragma verify_opcode
directive as follows.

ram diob <- sprm0x7D.
#pragma verify_opcode 0x9FEFFF1F 0xFFFFFFFF

Note that the #pragma verify comes after the opcode. The second number is a mask
applied to both the opcode that is verified and to the bit-pattern that is being verified.
Clearing bits in the mask essentially disables those particular bits from being verified. An
example of when the mask is handy is a function call where the destination address is
indeterminate during assembly.

3.19 Forcing a Specific opcode

A particular opcode bit-pattern can be forced using the following pattern.

%hex 0xBFEFFB7F.
// Above is the same as below, just hard-coded
ram p <- #0.
#pragma verify_opcode 0xBFEFFB7F 0xffffffff

3.20 Called Functions

The user is tasked with correctly bounding code that forms a called function, as follows.

#pragma mimic_c_func_start
MySimpleFunc:

// Do something (function body)
alu diob = diob + 1.
seq return, flush.

#pragma mimic_c_func_end

3. Preprocessing and Directives

Assembler Reference Manual, page 31NXP Syntax (C) 2008-2024 ASH WARE, Inc.

3.21 Return Address Save/Restore

When one called function calls a second called function a two-deep function call is
generated in which the return address register from the calling function must be saved prior
to the call and restored following the call.

Saving and restoring of the Return Address Register (RAR) can cause un-resolvable
program-flow issues with the analyzer/optimizer. In order for optimization and analyses to
be allowed, the save/restore operations (which are supported by the analyzer/optimizer)
must be tagged using the #pragma start/end save/restore <regionName> tags. This is done
as shown in the following example.

//-----------------------------------
#pragma mimic_c_func_start
OneDeepFunc:

//-----------------------------------
// Save the return address
#pragma start save rar_chunk "OneDeepFunc_epop"
// Save the ReturnAddr register
alu diob = rar.
#pragma end save rar_chunk "OneDeepFunc_epop"
//-----------------------------------

seq call TwoDeepFunc, flush.

//-----------------------------------
// Restore the ReturnAddr register
#pragma start restore rar_chunk "OneDeepFunc_epop"
alu rar = diob.
#pragma end restore rar_chunk "OneDeepFunc_epop"
//-----------------------------------

seq return, flush.
#pragma mimic_c_func_end
//-----------------------------------

//-----------------------------------
#pragma mimic_c_func_start
TwoDeepFunc:

alu p = p + 1.
seq return, flush.

#pragma mimic_c_func_end

3. Preprocessing and Directives

page 32, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

//-----------------------------------

3.22 Dispatch List

The ‘dispatch’ instruction, while very powerful, makes code nearly impossible to analyze or
optimize because the ultimate destination is not known at link time (note that ‘dispatch’ is
an indexed ‘goto’ or ‘call’ in which the next PC address is the current PC address plus an
offset specified by the p31_24 register.)

For this reason, use of a dispatch prevents both optimization and analyses unless tags are
inserted into the code that ‘tells’ the optimizer all possible dispatch destinations. Failure to
properly identify all possible dispatch destinations with these tags can result in improper
optimization.

The following example illustrates use of the dispatch_list_start and dispatch_list_end tags.
A #pragma dispatch_list_start tag immediately precedes the dispatch opcode and is
followed by a comma-separated list of labels (dispatch destinations.) Following the final
dispatch label, there must be a #pragma dispatch_list_end. All listed labels must be
between the start/end tags. Note that since the dispatch only generated positives offsets,
all the labels must follow the start tag. There may be multiple opcodes between the labels.

// Load the current state
// into the p31_24 register
ram p31_24 <- CurrentState.

#pragma dispatch_list_start Dst1, Dst2, Dst3, Dst4
seq dispatch_goto, flush.

Dst1:
// p_31_24 == 0
seq goto State0, flush.

Dst2:
// p_31_24 == 1
seq goto State1, flush.

Dst3:
// p_31_24 == 2
seq goto State2, flush.

Dst4:
// p_31_24 == 3

3. Preprocessing and Directives

Assembler Reference Manual, page 33NXP Syntax (C) 2008-2024 ASH WARE, Inc.

seq goto State3,flush.

#pragma dispatch_list_end

page 34, Assembler Reference Manual

4. Notation and Syntax

Assembler Reference Manual, page 35NXP Syntax (C) 2008-2024 ASH WARE, Inc.

4
Notation and Syntax

Decimal, hexadecimal, and binary notations are supported, as follows. All of the numbers
shown below yield the same weighting of 85 decimal in their load of the ‘p’ register.

alu p = 0x55. // Hexadecimal Notation
alu p = 0b01010101. // Binary Notation
alu p = 85. // Decimal notation

page 36, Assembler Reference Manual

5. Data Memory Packing

Assembler Reference Manual, page 37NXP Syntax (C) 2008-2024 ASH WARE, Inc.

5
Data Memory Packing

Data packing is not guaranteed and may change as new assembler and linker versions are
released. All packing information should be determined using the auto-define capability
which places data address information into header files for inclusion into both host side “C”
code as well as eTPU Command Script files. If you are using a host-side language besides
“C” please contact ASH WARE so that we can provide the required interface information
for you language.

page 38, Assembler Reference Manual

6. The Register Set

Assembler Reference Manual, page 39NXP Syntax (C) 2008-2024 ASH WARE, Inc.

6
The Register Set

The eTPU contains a large number of registers many of which have specific purposes.
The registers are listed by function in this section.

6.1 The “Big 4” Registers

The following registers constitute the best and most commonly accessed registers.

alu p = p. // ‘p’ register on A-Bus-Source
alu p = diob. // ‘diob’ register on A-Bus-Source
alu p = sr. // ‘sr’ register on A-Bus-Source
alu p = a. // ‘a’ register on A-Bus-Source

6.2 The P Register

The P register is one of the “big 4” as mentioned previously. It supports access of its 32,
24, 16, and 8 bit components, as follows.

// 24-Bit access (native)
alu p = p.
alu p = p23_0. // Same as above, just more explicit.

// 8-bit access of any of the 4 byte
alu p = p7_0.

6. The Register Set

page 40, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

alu p = p15_8.
alu p = p31_24.
alu p = p23_16.

// 32-bit access (Load/store with DATA RAM only)
ram p31_0 <- MyInt32.

// 16-bit access (Least common)
alu p = p15_0.
alu p = p31_16.

6.3 The Scratchpad Registers

The following registers are considered “scratchpad” because they are less well supported
by the instruction set. For instance, these are not available on the execution unit’s “B-
Bus.”

// ‘b’ register on A-Bus-Source
alu p = b.

// ‘cReg’ register on A-Bus-Source
// !!! CASE SENSITIVE !!!
alu p = c.

// ‘d’ register on A-Bus-Source
alu p = d.

Due to a strange web of lies and half-truths, the ‘c’ register is case sensitive. This allows
the ‘c’ register (lowercase) to be differentiated from the ‘C’ flag (uppercase.)

6.4 Global Timebase Registers

Although these registers are can be both read and written by the execution unit, they serve
as the global timebases. The TCR1 counter generally is clocked from the system clock
such that it increments and a specific rate. The TCR2 counter is often used in conjunction
with the special angle mode hardware to increment and an engine angle proportional rate.

// ‘tcr1’ register on A-Bus-Source
alu p = tcr1.

// ‘tcr2’ register on A-Bus-Source
alu p = tcr2.

6. The Register Set

Assembler Reference Manual, page 41NXP Syntax (C) 2008-2024 ASH WARE, Inc.

6.5 The ‘Chan’ (channel) Register

The channel register is written by the scheduler prior to the beginning of each thread, with
the channel number that is being serviced. It can be read during the thread to determine
which channel number is being serviced. It can be written during the thread to either
update the event registers with (potentially) new capture values or to change the channel
upon which most of the channel commands operate. The ChanBase register contains the
address of the channel frame for the active channel. This register can be read, but not
written. It is handy for accessing the channel variables of a different channel without
having to actually change the channel number.

// ‘chan’ register on A-Bus-Source
alu p = Chan.

Ref: CPBA

6.6 Channel Base Address Register

The ChanBase register contains the address of the channel frame for the active channel.
This register can be read, but not written. It is handy for accessing the channel variables
of a different channel without having to actually change the channel number.

// ‘chan_base’ register on A-Bus-Source
alu p = chan_base.

Ref: CPBA

6.7 Engine Base Address Register

This register is only in eTPU2.

The engine base register is a read-only for the eTPU. It contains the value written in the
Engine Control Register’s Engine Relative Base Address Field (ECR.ERBA.) Note that
ECR.ERBA is written by the host CPU. The value read by the eTPU is the base address
(in bytes) of the engine relative data.

// ‘engine_base’ register on A-Bus-Source
alu p = engine_base.

Ref: ECR.ERBA

6. The Register Set

page 42, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

6.8 Event Registers

There are two event registers, one for each action unit. At the beginning each thread, the
event register is loaded with the capture value from the channel being serviced. During the
thread, match values can be loaded into this register and transferred to a channel’s match
registers. If the channel register is written, then new capture values are re-loaded into the
event registers

alu p = erta. // ‘erta’ register on A-Bus-Source
alu p = ertb. // ‘ertb’ register on A-Bus-Source

6.9 Channel to Channel Linking Register

The link register allows one channel to cause a thread to occur on another channel. This is
accomplished by writing the link register with the channel number of the channel where the
link event will occur. Note that this channel is write only such that it cannot be written.

// cause a ‘link’ thread on channel 5
#define LINK_CHAN 5
alu link = LINK_CHAN.

One consequence of this is that the channel from which a link occurred cannot be
determined directly through the instruction set.

6.10 Multiply-Accumulate (MAC) Registers

The following registers are used for multiply-accumulate.

// ‘macl’ register on A-Bus-Source
alu p = macl.
// ‘mach’ register on A-Bus-Source
alu p = mach.
// ‘mac’ register as MDU destination
mdu diob multu sr.

Some MAC operations access both the high and low MAC registers, the mac keyword is
used to indicate this in the verbose syntax.

6. The Register Set

Assembler Reference Manual, page 43NXP Syntax (C) 2008-2024 ASH WARE, Inc.

6.11 Angle Mode Registers

These registers are used as part of angle mode which is when the tcr2 counter is clocked
at an angle-proportional rate. The tick rate register (TRR) establishes the number of tcr1
ticks must occur for each tcr2 to occur. In other words, it is the divide down from tcr1 to
tcr2. The tooth program register (TPR) contains a several bit-packed fields that used to
configure angle mode.

// Tooth Program register on A-Bus-Source
alu p = tpr.
// Tick Rate register on A-Bus-Source
alu p = trr.

6.12 Program Flow Registers

The return address register (RAR) contains the return address following a call. It can be
read and written, thereby supporting a call stack. The program counter cannot be directly
read or written, but is used as part of the dispatch call syntax which is why it is listed here.

// Program counter used in dispatch
seq dispatch_call,flush.

// ‘ReturnAddr’ register on A-Bus-Source
alu p = rar.

page 44, Assembler Reference Manual

7. Opcode and Sub-Instruction Structure

Assembler Reference Manual, page 45NXP Syntax (C) 2008-2024 ASH WARE, Inc.

7
Opcode and Sub-Instruction

Structure

This section covers the assembler's opcode and sub-instruction structure.

7.1 Sub Instruction Types

Each ETPU opcode is split into one of the following four sub-instruction types.

ram
seq
alu
chan

7.2 Sub-Instruction groups

Multiple sub-instructions of the same type may be grouped together by separating the sub-
instructions with commas. Sub-instruction groups that contain one or more sub-instructions
are terminated by a semicolon, as follows.

chan clr_mrla, clr_mrlb.

7. Opcode and Sub-Instruction Structure

page 46, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

7.3 Opcode Termination

Opcodes are terminated by a period. Each opcode may contain multiple sub-instruction
groups. All groups except the last are terminated by a semicolon

chan clr_mrla, clr_mrlb.
seq if z == 1 then goto startTest, flush.

7.4 The ‘No-Operation’ (NOP)

A nop is used to generate an opcode that performs no operation.

nop.

8. Parameter RAM Accesses

Assembler Reference Manual, page 47NXP Syntax (C) 2008-2024 ASH WARE, Inc.

8
Parameter RAM Accesses

This section describes the various capabilities available via the PRAM sub-instruction
fields. Note that most, but not all, of these capabilities involve reading and writing PRAM.
 Non-- PRAM capabilities include clearing to zero the P and diob registers, auto-increment
and auto-decrement of the diob register, and semaphore locking and freeing.

Sub instructions: RW, PD, RSIZ, ZRO , STC, AID[7:0], AID[6:0], and AID[2:0],

8.1 Accessing Data at a Specific Address

Data can be read and written at a specific address using global addressing, as follows.

// Read the 32-bit value
// at address 40h into register P
ram p31_0 <- sprm0x40.

Global PRAM can be written using the following format.

// Write the 24-bit value from the diob register
// to address 41h
ram diob -> sprm0x41.

Field: AID[7:0]

8. Parameter RAM Accesses

page 48, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

8.2 Accessing a Channel's Data

Each channel has its own base address. A channel's data is accessed relative to this base
address using channel relative accesses as follows.

// Read a channel's relative 32-bit word
// into the P_31_0 register
ram p31_0 <- prm0x2C.
// Write channel data from the diob register
ram diob -> prm0x2D.

Field: AID[6:0] and AID[2:0]

8.3 Accessing an Engine’s Data

Each engine has its own block of ‘engine’ data. This engine data is accessed relative to
the engine-relative-base address field in the Engine Configuration Register (ECR.ERBA.)
Engine data is accessed as follows

// Read engine relative 32-bit word
// into the P_31_0 register
ram p31_0 <- eng0x2C.

// Write channel data from the diob register
ram diob -> eng0x2D.

Note that when accessing engine data, the actual (byte) address is as follows

ByteAddress = (ECR.ERBA << 9) + ([AID_6_0] << 2);

This forms an address from the ECR.ERBA and AID_6_0 as follows.

Value 0 0 0 ECR.ERBA AID_6_0 X X

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field: AID[6:0] (engine)

8. Parameter RAM Accesses

Assembler Reference Manual, page 49NXP Syntax (C) 2008-2024 ASH WARE, Inc.

8.4 Address Nomenclature

All addresses are specified using the nearly universal byte mode. For instance, consider
the following memory dump.

The following read puts 0x6C7D4C85 into the P register.

ram p31_0 <- sprm0x0.

The following read puts 0x3CB12500 into the P register.

ram p31_0 <- sprm0x4.

8.5 diob Register Relative Accesses

The diob register can be used as a pointer for - PRAM accesses, as follows.

// Read the value from PRAM
// pointed to by the diob register
// into the P register
ram p <- by diob.
ram p -> by diob++. // Post Increment
ram p -> by --diob. // Pre-decrement

Field: STC

8.6 Clearing Parameter RAM and Registers

Data RAM and the P or diob registers can be cleared (set to zero), as follows. Note that
when data RAM is being cleared, the size information is required as part of the opcode.

// Clear the diob register
ram diob <- #0.

// Clear some Channel RAM
ram #0 -> prm0x20, p_access_8.
ram #0 -> prm0x21, p_access_24.
ram #0 -> prm0x20, p_access_32.

8. Parameter RAM Accesses

page 50, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

// Clear some Engine RAM
ram #0 -> eng0x20, p_access_8.
ram #0 -> eng0x21, p_access_24.
ram #0 -> eng0x20, p_access_32.

8.7 diob Pre-Decrement and Post-Increment

The diob register can be pre-decremented, as follows. Note that the address used is the
decremented value of the diob register.

// Write the value from the P register
// into the PRAM address specified
// by the diob register minus 4.
// The diob register retains the decremented value
ram p <- by --diob.

The diob can be post-incremented, as follows. Note that the address used is the diob
register prior to being incremented

// Read the value from PRAM
// pointed to by the diob register
// into the P register
// The diob register is then incremented.
ram p <- by diob++.

The decrement and increment are also available with the zero construct, as follows.

// Clear the P register,
// increment the diob register by 4.
ram p <- #0, by diob++.
// Clear a pram word using diob as a pointer,
// pre-decrement the diob register by 4.
ram #0 -> by diob++, p_access_24.

Field: STC

8.8 Operation Size

The operation size is specified similarly to a C cast, as follows.

// Write an 8-bit value
ram p31_24 -> by --diob.
// Write a 24-bit value
ram p23_0 -> by --diob.
// Write a 32-bit value

8. Parameter RAM Accesses

Assembler Reference Manual, page 51NXP Syntax (C) 2008-2024 ASH WARE, Inc.

ram p31_0 -> by --diob.

Note that despite the nomenclature, all pre-decrement and post-increment operations
add/subtract the diob register by 4. Note also that an 8-bit access affects only the upper 8
bits (nibble) of the 32-bit location. A 24-bit access affects the lower 24-bits of the 32-bit
location.

Field: RSIZ.

8.9 Semaphore Locking and Freeing

Four semaphores are provided. These semaphores are locked and freed as follows. Note
that whereas each semaphore is locked individually, a single sub-instruction frees any
locked semaphore.

ram lock_g2.
ram free_g.

Wherever possible semaphores should be avoided as they provide a mechanism for non-
deterministic execution speed. Simple deterministic algorithms can generally be employed
in lieu of semaphores. But hey, if you do decide to use semaphores (drink, use drugs,
smoke, etc.) remember to unlock them as soon as possible! And please, don't drink and
drive.

8.10 Taking a Variable’s Address

A variables address can be loaded into a register. For instance, if in the following example,
GlobalVar24 is at address 0x11, then the diob register is loaded with a 0x11.

int24 GlobalVar24;
// < ... >
alu diob = GlobalVar24.

The address of a channel variable can also be taken. For instance, in the following
example, if ChanVar24 is at an address offset of 0x39 from the channel parameter base
address, then a 0x39 is loaded into the ‘B’ register.

int24 ChanVar24;
// < ... >
alu b = ChanVar24.

page 52, Assembler Reference Manual

9. Arithmetic Logic Unit (alu)

Assembler Reference Manual, page 53NXP Syntax (C) 2008-2024 ASH WARE, Inc.

9
Arithmetic Logic Unit (alu)

The ETPU has a Harvard architecture style Arithmetic Logic Unit (alu.) All alu
commands begin with an A-bus source.

9.1 Irreversible Bus Sources

The A-bus and B-bus sources are non-reversible. The A-bus must precede B-bus. For
instance, the following is allowed:

alu diob = erta + sr. // Ok.

But the following is NOT allowed because the erta can be in the A-bus but not the B-bus,
even though the above and below examples are logically equivalent.

alu diob = sr + erta. // This won't assemble!

9.2 Case Insensitivity

The ASH WARE ETPU Assembler is case sensitive in ASH WARE’s ‘verbose’ mode
but generally case-insensitive in ‘NXP’ mode. Due to the preponderance of inline
assembly in which case sensitive ‘C’ code is mixed with assembly, it is generally best to
write assembly code using the case described in this manual

9. Arithmetic Logic Unit (alu)

page 54, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

9.3 Special Constants

The ETEC assembler supports the special constants described in this section.

9.3.1 Loading a 24-bit Constant

A 24-bit number can be loaded only into the diob, P, sr or A registers, as follows.

alu diob = 0x123456.

In this situation no additional sub-instructions are supported, except the return. Note that a
constant and a return are used together with the dispatch jump to generate a special high-
level construct, as described in section 15.6,Constant .

Field: T2D

9.3.2 The "One" Constant

A constant of one can be added to a register in formats that support the CIN field, as
follows.

alu sr = diob + sr + 1.

A constant of one also can be used in a subtraction operation, as follows. When used as a
subtraction then both the CIN and the BINV fields are asserted.

alu sr = diob - sr – 1.

Because subtraction and carry have their own fields, these operations are available with
most of the operations specified by the SHF and ALUOP fields, as follows.

// Subtract, carry, and shift right
alu diob =>> a - sr – 1.

Field: CIN

9.3.3 The ‘max’ Constant

A ‘max’ constant is important in the ETPU as it represents the maximum time in the future
that the 24-bit ETPU can handle. Max is equal to 0x800000, and short hand ‘max’
construct and is identical and interchangeable with a value of 0x800000, as follows.

alu sr = diob + max.
alu sr = diob + 0x800000.

9. Arithmetic Logic Unit (alu)

Assembler Reference Manual, page 55NXP Syntax (C) 2008-2024 ASH WARE, Inc.

Larger constants are supported, but these represent past events. Generation of this special
constant requires the CIN, BINV, and T4BBS fields. As such it is supported only when
added and only as the B-bus source.

Field: CIN, BINV, T4BBS

9.4 Addition And Subtraction

The ETEC assembler supports the addition and subtraction operations described in this
section.

9.4.1 Two-Register Addition

Two registers can be added together as follows. An increment is supported using the CIN
field.

alu a = diob + sr.
alu a = diob + sr + 1.

Field: SHF, ALUO P, CIN

9.4.2 Subtraction of One Register by another Register

One register can be subtracted from another, as follows. Note that subtraction requires the
BINV and the CIN fields, so only formats that support those fields support subtraction.

alu a = diob - sr.
alu a = diob – sr - 1.

Field: BINV, CIN

9.4.3 Addition by a Constant

A register can be added to a constant, as follows.

alu sr = diob + 0x1235.

Excluding some special constants defined elsewhere these constants are only supported by
the ‘format A’ opcodes.

Field: IMM

9. Arithmetic Logic Unit (alu)

page 56, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

9.5 Addition and Subtraction with the Carry Flag

Two registers can be added together or subtracted from one another along with the carry
flag, as follows.

alu a = diob + sr + C.
alu a = diob - sr - C.

Note 1: The CIN is ignored (except when generating the special ‘max’ constant) and the
BINV field generates the subtraction.

Note 2: When the ‘max’ is being generated from the BINV and CIN fields both being
asserted, then the behavior is that of a subtraction, as follows:

alu a = diob - max + C.

Field: ALUO P, value 0b11000

9.6 Single-Bit Shift and Rotate

The ETEC assembler supports the single-bit shift and rotate operations described in this
section.

9.6.1 Two-Register Addition with Shift or Rotate

One register can be added to another register with a post-shift left, shift right, or rotate
right. The shift or rotate is always by a single-bit position, as follows

alu a =<< diob + sr. // Shift left
alu a =>> diob + sr. // Shift right
alu a =R> diob + sr. // Rotate right

Field: SHF and ALUO P, values 0b10101, 0b10110, and 0b10111

9.6.2 Two-Register Subtraction with Shift or Rotate

Subtraction with shift or rotate by a single-bit position is also supported, similar to above.

alu a =<< diob - sr. // Shift left
alu a =>> diob - sr. // Shift right
alu a =R> diob - sr. // Rotate right

Field: SHF and ALUO P, values 0b10101, 0b10110, and 0b10111

9. Arithmetic Logic Unit (alu)

Assembler Reference Manual, page 57NXP Syntax (C) 2008-2024 ASH WARE, Inc.

9.6.3 Addition to a Constant with Shift or Rotate

Addition with an eight-bit constant, followed by a shift left, shift right, or rotate right are
supported, as follows. Note that only a shift and rotate of one are supported.

alu a =>> diob + 0x55. // Shift right
alu a =<< diob + 0x55. // Shift left
alu a =R> diob + 0x55. // Rotate right

Field: SHF and ALUO PI, values 0b10101, 0b10110, and 0b10111

9.7 Multiple-Bit Shift and Rotate

The ETEC assembler supports the multiple-bit shift and rotate operations described in this
section.

9.7.1 Multiple-Bit Shift and Rotate by a Register

A register can be used to specify the number of bit positions to shift left, shift right, and
rotate right a second register. Curiously, the amount of bit-positions is NOT equal to the
value of the first register. Rather the number shifted is per the somewhat bizarre
relationship as follows. Note that only shifts of 2, 4, 8, or 16 are supported.

B-bus Shift A-bus by this many bits

0 2

1 4

2 8

3 16

The following shows the syntax for the shift left, shift right, and rotate right.

alu a = diob << (2^^(sr+1)). // Shift left
alu a = diob >> (2^^(sr+1)). // Shift right
alu a = diob >>R (2^^(sr+1)). // Rotate right

The B-Bus can be inverted prior to the using the tilde character, ~, as follows.

9. Arithmetic Logic Unit (alu)

page 58, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

alu a = diob << (2^^(~sr+1)).

Note: The CIN field is ignored in these operations.

9.7.2 Multiple-Bit Shift and Rotate by a Constant

A register can be shifted left, shifted right, or rotated right as follows.

alu a =<<2 diob.
alu a =<<4 diob.
alu a =R>2 diob.

Note that the number of bit positions shifted or rotated is 2, 4, 8, and 16.

9.8 Bitwise operations; 'OR', 'AND', and 'XOR'

The ETEC assembler supports the bitwise 'OR', 'AND', and 'XOR' operations described in
this section.

9.8.1 Register-Register ‘Or’, ‘And’ and ‘Exclusive Or'

Bitwise OR, AND, and XOR operations of two registers are supported as follows.

alu a = diob | sr. // OR
alu a = diob & sr. // AND
alu a = diob ^ sr. // XOR

The B-Bus can be inverted prior to the using the tilde character, ~, as follows.

alu a = diob | ~sr.

Note: The CIN field is ignored in these operations except when generating the special
‘max’ constant.

Field: ALUO P, bit values 0b1000, 0b10001, and 0b10010

9.8.2 Bitwise Or, And, and Exclusive Or Using a Constant

Bitwise ‘OR’, ‘XOR’ and ‘AND’ operation using a constant are supported as follows.

alu a = diob low| 0x55, ccs. // a = diob | 0x000055
alu a = diob low& 0x55, ccs. // a = diob & 0xFFFF55
alu a = diob low&0 0x55, ccs. // a = diob & 0x000055

9. Arithmetic Logic Unit (alu)

Assembler Reference Manual, page 59NXP Syntax (C) 2008-2024 ASH WARE, Inc.

alu a = diob low^ 0x55, ccs. // a = diob ^ 0x000055
alu a = diob mid| 0x55, ccs. // a = diob | 0x005500
alu a = diob mid& 0x55, ccs. // a = diob & 0xFF55FF
alu a = diob mid&0 0x55, ccs. // a = diob & 0x005500
alu a = diob mid^ 0x55, ccs. // a = diob ^ 0x005500
alu a = diob high| 0x55, ccs. // a = diob | 0x550000
alu a = diob high& 0x55, ccs. // a = diob & 0x55FFFF
alu a = diob high&0 0x55, ccs. // a = diob & 0x550000
alu a = diob high^ 0x55, ccs. // a = diob ^ 0x550000

Note that the bitwise OR constant must be in one of the following ranges:

(0x0 .. 0xFF)

This limitation is due to the fact that the immediate data value is limited to eight bits. This
eight-bit value can be applied on any byte boundary.

In addition, for the bitwise AND operation only, the following constant range is also
allowed.

(0x0 .. 0xFF)

Field: ALUO PI, bit values 0b1000 through 0b10011.

9.9 Bit Set and Bit Clear

The ETEC assembler supports the bit set and bit clear operations described in this section.

9.9.1 Single-Bit Set and Bit Clear, by Register

A register is used to determine which bit to set or clear in a second register, as follows.

alu a = setb diob[sr].
alu a = clrb diob[sr].

Note that only the least significant five bits of the sr register are used to determine which
bit to set or clear. A value of greater than 32 may still perform a bit set or bit clear, as long
as the least significant five bits reference a valid bit position. The valid bit position range is
0..23 for a 24-bit register.

The B-Bus can be inverted prior to the operation using the tilde character, ~, as follows.

// Single-bit clear, B-Bus Invert
alu a = clrb diob[~sr].

9. Arithmetic Logic Unit (alu)

page 60, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Note: The CIN field is ignored in these operations except when generating the special
‘max’ constant.

Field: ALUO P, bit values 0b11101, and 0b11110

9.10 Single-Bit Exchange with the Carry Flag

Enter topic text here.

9.10.1 Exchange the “c” Flag with a Bit, Register Specified

A register-specified bit can be exchanged with the “c” flag, as follows.

alu a = excb diob[sr].

Only the least significant five bits are used in calculation of the bit position, such that values
greater than 31 are truncated to be in the range 0..31.

The B-Bus can be inverted prior to the operation using the tilde character, ~, as follows.

alu a = excb diob[~sr].

Note: The CIN field is ignored in this operation except when generating the special ‘max’
constant.

Field:: ALUO P, value 0b11100

9.10.2 Exchange the C Flag with a Bit, Constant Specified

The “c” flag and a bit can be exchanged as follows.

alu a = excb diob[14].

The result of this operation is to exchange the “c” flag with a bit in the A-bus source
register. Note that the A-bus source register is not modified; rather the result is placed in
the A-bus destination. Any bit position can be specified.

Field: ALUO PI, values 0b11001, 0b11010, and 0b11011.

9. Arithmetic Logic Unit (alu)

Assembler Reference Manual, page 61NXP Syntax (C) 2008-2024 ASH WARE, Inc.

9.11 Absolute Value

The absolute value of the result of an addition operation can be calculated, as follows

alu a = abs(diob).

Note that only the A-bus source is used to calculate the absolute value as the B-bus source
is ignored. The BINV and CIN fields are also ignored.

Field: ALUO P, values 0b10011

9.12 B-Bus Inversion and Carry-In

alu bitwise operations generally ignore the carry-in bit (CIN field) except when generating
the special ‘max’ constant. The operations that ignore the CIN field are OR, XOR, AND,
 ABS, ADC/SBC, SHL, SHR, ROR, EXCH, SETB, and CLRB. For these operations the
B-Bus can generally still be inverted using the special tilde character, ~, as follows:

alu a = diob | ~sr.

alu non-bitwise operations generally support the carry-in bit (CIN field) and in such cases
the syntax is that of subtracting the B-Bus. The asserted state of the BINV field and the
CIN field is a zero. The syntax used to generate all four possible combinations of BINV
and CIN is as follows.

alu a = diob + sr. // BINV=1, CIN=1
alu a = diob + sr + 1. // BINV=1, CIN=0
alu a = diob - sr – 1. // BINV=0, CIN=1
alu a = diob – sr. // BINV=0, CIN=0

9.13 Saving the Flags

The alu has overflow (v), negative (n), carry (c), and zero (z) flags. These flags default to
not saved. It is possible to override the default ,such that the flags are saved, as follows.

alu a = diob – sr, ccs.

The default flag discarding behavior can be actively enforced, as follows.

alu a = diob – sr, ccd.

Fields CCV, CCSV.

9. Arithmetic Logic Unit (alu)

page 62, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

9.13.1 Overriding the Default Flag Size

Each alu operation has a "natural size" base on the A-bus source, B-bus source, and
destination registers. The flags are normally calculated based on this natural size, but the
flag calculation size can be overridden to be the specified size, as follows.

alu a = diob + sr, ccs8.
alu a = diob + sr, ccs16.

Field: CCSV

9.14 Shifting the sr register

The sr register can be shifted left by one bit position, as follows.

alu sr =>> 1.

Note that this operation uses the special SRC field and is therefore available in conjunction
together with normal alu operations, as follows.

alu a = diob, shift.

Field: SRC

9.15 Overriding the Default A-Bus Source

The A-bus size is can be overridden by a casting operation similar that that used in C, as
follows..

alu a = diob(8) + sr. // Do 8-bits
alu a = diob(16) + sr. // Do 16-bits

Field: ASCE

9.16 A-Bus Source Sign Extension

The A-bus operand can be sign extended such that the register’s most significant bit is
copied through bit 24 as follows.

// 8-bit sign extension
alu p = p31_24 + diob, sext.

// 16-bit sign extension
alu p = p31_16 + diob, sext.

9. Arithmetic Logic Unit (alu)

Assembler Reference Manual, page 63NXP Syntax (C) 2008-2024 ASH WARE, Inc.

Field: SEXT

9.17 Conditional ALU/MDU Operations

alu and MDU operations can be made contingent on certain combinations of certain alu
flags. The supported combinations are as follows.

* alu's carry flag is true
* alu’s carry flag is false
* alu’s zero flag is true
* alu’s zero flag is false
* alu’s negative flag is true

alu if C == 1 then diob = diob + 0x37.
alu if C == 0 then diob = diob + 0x37.
alu if Z == 1 then diob = diob + 0x37.
alu if Z == 0 then diob = diob + 0x37.
alu if N == 1 then diob = diob + 0x37.

Field: ASCE

page 64, Assembler Reference Manual

10. The Multiply Divide Unit

Assembler Reference Manual, page 65NXP Syntax (C) 2008-2024 ASH WARE, Inc.

10
The Multiply Divide Unit

The multiply divide unit (MDU) supports multiply and divide operations. Both register-by-
register and register-by-constant-operations are supported. The MDU is distinct from the
alu for the reasons listed below.

* Results are always stored in the MAC register.
* The MDU has its own set of flags; MZ, MC, MN, MV.
* The MDU flags are always saved and are not affected by SampleFlags.
* Operations require multiple micro-cycles.

10.1 MDU Multiply

The MDU supports multiply by a constant and register-by-register multiply. Constants are
always 8-bits whereas in register-by-register multiplies, 8, 16 and 24 bit operations are
supported. All multiplies can be either signed or unsigned.

Multiply operations take multiple cycles to complete. The number of cycles depends on the
size of the operation. The reader is referred to the NXP literature for the specifics.

10.1.1 Multiply by a Constant

Both an unsigned and signed multiplication by an eight-bit constant is supported, as follows.

mdu diob multu 0x37.
mdu sr mults 0xE7.

10. The Multiply Divide Unit

page 66, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Note that the register named MAC is a 48-bit register that consists of MACH (upper 24-
bits) and MACL (lower 24-bits).

A couple special notes apply to the signed multiply only. All operands are sign extended to
24 bits prior to the operation. The result therefore fills the entire 48-bit MAC register.
Also, a 16-bit operand extends the 15th bit to fill the entire 24-bits. Likewise, an 8-bit
operand is sign extended to fill the entire 24-bit operand, per the following example.

// Bit 15 is sign-extended
mdu p7_0 mults 0x37.
// Bit 15 is sign-extended
mdu p7_0 mults 0x37.

10.1.2 MDU Register By Register Multiply

Signed and unsigned 8-, 16-, and 24-bit register-by-register multiplies are supported, as
follows. Note that unless the A-bus source size is overridden, the entire 24-bits of the A-
bus source are used. In the following examples, therefore, all 24 bits of the diob register
are used.

mdu diob multu sr(8).
mdu diob mults sr(8).
mdu diob multu sr(16).
mdu diob mults sr(16).
mdu diob multu sr.
mdu diob mults sr.

10.2 MDU Multiply and Accumulate

The ‘multiply and accumulate’ operation performs both a multiply and an addition in the
same operation. This supports a running total of a series of multiply operations.

The MAC register is always the source for the addition as well as the destination. The
multiply source is two general-purpose registers. Similar to the multiply operation, both
signed and unsigned 8-, 16-, and 24 bit operations are supported, as follows.

mdu diob macs sr.
mdu diob macu sr.

These operations require multiple cycles to complete. Some add/multiply parallelism is
allowed. For these specifics the reader is referred to the NXP literature.

10. The Multiply Divide Unit

Assembler Reference Manual, page 67NXP Syntax (C) 2008-2024 ASH WARE, Inc.

10.3 Fractional Multiply

A fractional multiply is supported for 8-bit and 16-bit signed and unsigned multiplies, as
follows.

mdu diob fmults sr(8).
mdu diob fmults sr(16).
mdu diob fmultu sr(8).
mdu diob fmultu sr(16).

Signed and unsigned fractional ‘multiply by a constant’ are also supported.

// Signed fraction multiply
mdu diob fmults 37.

// Unsigned fraction multiply
mdu diob fmultu 52.

10.4 Additional MDU B-Bus Options

In some MDU operations a combination of the negative B-Bus and a B-Bus pre-increment
can be used. But not all MDU operations support all combinations of negative B-Bus and
B-Bus pre-increment. The capabilities and limitations depend on whether the MDU
operation is considered to be signed or unsigned.

10.4.1 MDU Unsigned B-Bus operations

In unsigned B-Bus operation the B-Bus can have a pre-increment but the negative
(inverted) B-Bus is not supported. This is shown below. Surprisingly, the fractional
operations are all considered to be unsigned as far as this capability/limitation goes.

mdu diob multu sr(8).
mdu diob multu sr(16).
mdu diob multu sr.
mdu diob fmultu sr(8).
mdu diob fmultu sr(16).
mdu diob fmults sr(8).
mdu diob fmults sr(16).
mdu diob macs sr.
mdu diob div sr(8).
mdu diob div sr(16).
mdu diob div sr.

10. The Multiply Divide Unit

page 68, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

10.4.2 MDU Signed B-Bus operations

In signed B-Bus operation the B-Bus can be negative but a pre-increment is not supported.
 This is shown below. Surprisingly, the fractional operations are all considered to be
unsigned as far as this limitation goes, so this applies only signed 8, 16, and 24-bit multiplies
and the 24-bit multiply and accumulate.

mdu diob mults -sr(8).
mdu diob mults -sr(16).
mdu diob mults -sr.
mdu diob macs -sr.

Note that the pre-increment on a positive (non-inverted) B-Bus and the pre-decrement on a
negative (inverted minus one) B-Bus are not supported.

10.5 MDU Divide

MDU divides by both constants and register-by-register are supported. Unlike the MDU
multiply, only unsigned operations are supported. Divide by zero results in a global
exception.

Divide operations take multiple cycles to complete. The number of cycles depends on the
size of the operation. The reader is referred to the NXP literature for the specifics.

10.5.1 MDU Divide by a Constant

The MDU supports division by an 8-bit unsigned constant, as follows.

mdu diob div 0xE7.

10.5.2 MDU Register by Register Divide

Similar to the MDU multiply, 8, 16, and 24 bit operations are supported. But only unsigned
operations are supported.

mdu diob div sr(8).
mdu diob div sr(16).
mdu diob div sr.

10. The Multiply Divide Unit

Assembler Reference Manual, page 69NXP Syntax (C) 2008-2024 ASH WARE, Inc.

10.6 Mac Busy Wait Loop

Following a MAC operation the results are not available until several cycles later. A mac-
busy-wait loop can be constructed as follows that allows the mac operation to complete
prior to the mac results being read.

MyMacBusyWaitLoop:
seq if mbsy==true then goto MyMacBusyWaitLoop, flush.

alu p = macl;
ram p ->Result0.
<...>

Note that to support Worst Case Thread Length (WCTL) analyses and for the assembly to
be optimize-able, the 'if' sub-instruction must have 'flush' set, the loop must branch on 'true'
and the loop destination label must be immediately above the 'if' instruction.

page 70, Assembler Reference Manual

11. Channel Hardware Sub-Instructions

Assembler Reference Manual, page 71NXP Syntax (C) 2008-2024 ASH WARE, Inc.

11
Channel Hardware

Sub-Instructions

Channel sub-instructions provide the capability to modify channel hardware. Channel
hardware is differentiated from other aspects of the ETPU in that there are channel
hardware resources that belong to each of the 32 ETPU channels. For example, there are
32 Match Recognition Latch A's (MRLA), one for each channel. There is also a channel
hardware sub-instruction for clearing this latch.

Channel hardware sub-instructions generally act on the channel hardware specified by the
channel register. In most cases the channel register can be modified so that the channel
resources from a specific channel number can be modified. But this is not always the
case. Some resources are "stuck" to the original channel number so that even if the
channel register is changed, the channel resources from the original channel number are
always modified. In other cases a channel register modification takes several sub-
instructions to take affect so that channel sub-instructions one or two sub-instructions
following a channel register change still act on the original channel, and only after these
instructions act on the new channel. The reader is referred to the NXP literature for the
specifics.

11. Channel Hardware Sub-Instructions

page 72, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

11.1 Channel Flags

Each channel has two channel flags, ChannelFlag1 and ChannelFlag0. Unlike the TPU,
these channel flags cannot be directly tested using a sequencer sub-instruction. Instead,
they are used as part of the thread table to direct a thread to start at a particular section of
code.

Channel flags can directly cleared and set, as follows.

chan set flag0.
chan clear flag0.
chan set flag1.
chan clear flag1.

Both channel flags can also be set to the value of adjacent bits within the P register, as
follows. Note that the only valid P register pairs are [31..30], [29..28], and [27..26]; and
ChannelFlag1 must always be set to the higher numbered bit.

chan flag10 = p2524.
chan flag10 = p2726.
chan flag10 = p2928.

Field: FLC

11.2 Time Base and Comparator

A match can be programmed to occur on either an "equal" or "greater than or equal to"
condition.

A match event can be programmed to be based on either the TCR1 or the TCR2 counter
value.

A capture event occurs in two situations: on a match event and on an input transition event.
 On a capture event, the capture register can be programmed to be loaded with either the
TCR1 or TCR2 counter value.

In addition, since the ETPU is double pumped, it has two separate action units for each
channel. These three settings for each of the action units are programmed using the
following instruction, where X is specifies the action unit, Y specifies which counter to
match, and Z specifies the counter to capture.

chan tbsX = matchY_capZ_ge.

For example, to program action unit B to match events based on the TCR1 counter base on
the "greater than or equal to" test and to capture TCR2, the following syntax is used.

11. Channel Hardware Sub-Instructions

Assembler Reference Manual, page 73NXP Syntax (C) 2008-2024 ASH WARE, Inc.

chan tbsa = match1_cap2_ge.

To set the same set of conditions as above, but to match on "equals" condition instead of
"greater or equal," use the following.

chan tbsb = match1_cap2_eq.

Field: TBSA, TBSB

11.3 Output Buffer

Each channel has separate input and output nodes. But in some cases the input and output
nodes can be tied together forming an I/O pin on the physical device. In such case the
ETPU channel can be used as an output by enabling the output buffer, or as an input by
disabling the output buffer. This is done as follows.

chan tbsa = enable_output_buffer.
chan tbsa = disable_output_buffer.

Note that this capability uses the TBSA field, and this sub-instruction is therefore not
available in an instruction that also sets action unit A.

Field: TBSA

11.4 Immediate Output Pin State Control

Although the ETPU is best used by programming events to occur in the future using the
Output Pin Action Command fields (OPACA and OPACB), it is also possible to force an
immediate pin state, as shown below. The pin can be forced high, low, or to a value
specified in the OPACA or OPACB field.

chan pin = high.
chan pin = low.
chan pin = opaca.
chan pin = opacb.

Field: PSC, PSCS

11.5 Input Pin Transition Detection

An input pin transition can be detected on each of the action units. Detectable transitions
are a rising edge (low-to-high), a falling edge (high-to-low), or a toggle (high to low and
low to high). Detection can also be disabled by setting it to off.

11. Channel Hardware Sub-Instructions

page 74, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

chan ipaca = low_high.
chan ipaca = high_low.
chan ipaca = any_trans.
chan ipaca = no_detect.

Since the ETPU is "double pumped," input pin detection can be programmed into both
action units. The second action unit is programmed as follows.

chan ipacb = low_high.
chan ipacb = high_low.
chan ipacb = any_trans.
chan ipacb = no_detect.

A window can be created so that an input transition is detected only if it occurs within a
particular time-frame. This is done as follows.

chan ipacb = detect_input_0_on_match.
chan ipacb = detect_input_1_on_match.
chan ipaca = detect_input_0_on_match.
chan ipaca = detect_input_1_on_match.

Note that transition detection is more complicated than would be implied by just this field.
Additional conditions affect transition detection such as the ability to block detection on
action unit B until action unit A has detected a transition. Careful attention must be paid to
the channel mode as configured by the PDCM field.

Field: IPACA, IPACB

11.6 Output pin Action

The output pin can be programmed to go to a particular state on a match in action unit A as
follows.

chan opaca = high.
chan opaca = low.
chan opaca = toggle.
chan opaca = no_change.

Action unit B supports the same capability, as follows.

chan opacb = high.
chan opacb = low.
chan opacb = toggle.
chan opacb = no_change.

In addition, an input pin transition can also generate a similar output pin action.

chan opaca = transition_low.

11. Channel Hardware Sub-Instructions

Assembler Reference Manual, page 75NXP Syntax (C) 2008-2024 ASH WARE, Inc.

chan opaca = transition_high.
chan opaca = transition_toggle.

This is also supported by both action units, as follows.

chan opacb = transition_low.
chan opacb = transition_high.
chan opacb = transition_toggle.

Note that this command does not immediately modify the output pin state. Instead, it
prepares a response to some (typically) future event, and therefore it should use the
FutureOutputPin naming convention. Use of this sub-instruction, though conceptually more
difficult to understand than simply setting or clearing the current output pin via the PSC
field, is what gives the ETPU the capability for such incredibly small latencies. Use of this
sub-instruction therefore unleashes the full power of the ETPU.

The output pin action functionality is not as simple as might be implied by this description.
The exact functionality is influenced by the PDCM field.

Field: O PACA, O PACB

11.7 Writing the Match Registers

Each channel's match registers can be written. When writing a match register, the
corresponding Match Recognition Latch Enable (MRLE) is concurrently set. A set MRLE
is one of the things required to enable a match. Note that the ERT register is the only
allowed source when writing a corresponding match register.

chan write_erta.
chan write_ertb.

Field: ERWA, ERWB

11.8 Reading the Match Registers

The matchA and matchB registers can both be read into the corresponding erta and ERTB
registers with the following sub-instruction. Note that both registers MUST be written
together, and the only valid destination are their respective ERT registers.

A twist of fate put this capability in the T4ABS field thereby preventing use of this sub-
instruction with an alu instruction that would require the T4ABS field. What curious webs
we weave.

alu read_mer12.

11. Channel Hardware Sub-Instructions

page 76, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Field: T4ABS

11.9 Reading the Capture Registers

Although there is no direct way of reading the capture registers, there is an indirect way.
This is accomplished by writing the channel register as shown below.

alu chan = chan.
// The ErtA register now contains the CaptureA value
// The ErtB register now contains the CaptureB value

Note that there are numerous other consequences of writing the channel register such as
the TDL and other flags get re-sampled. Refer to the eTPU documentation for a complete
list.

11.10 Clearing the Match Recognition Latches

The match recognition latches become set when a match event occurs in their respective
action units. Such a match sets the match recognition latch. A set match recognition latch
does a number of things that are somewhat determined by the PDCM field. A set match
recognition latch generally causes a capture and generally results in a new ETPU thread.
The match recognition latches for each of the action units can be cleared, individually or in
tandem, as follows.

chan clr_mrla.
chan clr_mrlb.

Field: MRLA, MRLB

11.11 Clearing the Transition Detection Latches.

The transition detection latch gets set when the requisite set of conditions causes a
transition to be detected. Although each action unit has its own transition detection latch,
only a single sub-instruction is provided for clearing both latches, as follows.

chan clr_tdl.

Note that a significant limitation in eTPU1 is that only support ordered transition detection
is supported. The inability to individually negate each TDL latch is one aspect of that
eTPU1 limitation.

11. Channel Hardware Sub-Instructions

Assembler Reference Manual, page 77NXP Syntax (C) 2008-2024 ASH WARE, Inc.

In eTPU2 only, the TDLA and TDLB latches can be cleared individually as follows.

chan clr_tdla.
chan clr_tdlb.

Field: TDL

11.12 Clearing Link Service Requests

One channel can cause servicing of another channel by writing a channel number to the
link register. The channel number specifies the channel that will get serviced. That linked
channel’s Link Service Latch gets set, thereby causing the linked channel to get serviced.

Upon servicing, the linked channel will generally clear this request. Clearing prevents the
linked channel from immediately becoming serviced again following the end of the thread.
Clear the Link Service Request using the following sub-instruction.

chan clr_lsr.

Field: LSR

11.13 Disabling Matches

In order for a match event to occur, matches must be enabled by setting the Match
Recognition Latch Enable (MRLE). Normally this is set (enabled) automatically when the
match register is written. A single sub-instruction clears both latches, as follows. Note
that this disables matches, thereby undoing what was automatically done when the match
register was written.

chan neg_mrle.

Note that in the normal course of events the match enable latches get cleared when a
match occurs. This command is therefore somewhat redundant and is generally not used
in a typical ETPU flow of events.

Field: MRLE

11.13.1 Individual Match Disable on eTPU2

eTPU2 supports individual clearing of each action unit’s Match Recognition Latch Enable
using the following commands.

chan clr_mrlea.

11. Channel Hardware Sub-Instructions

page 78, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

chan clr_mrleb.

Field: MRLE

11.13.2 Individual Match Disable Limitation

Due to an eTPU2 (silicon) design significant oversight, when individually clearing a
MatchEnableLatch, semaphores must either be locked or freed. This is because the sub-
instruction used to individually clear semaphores is only found in instruction formats ‘D4’
and ‘D8’ and both of these formats are used to lock and free semaphores and there is no
way to quisce the lock/free semaphore mechanism in these two formats.

ASH WARE recommends the following approach to semaphores when individually
clearing a Match Recognition Latch.

* If all semaphores are free in the section of code in which an individual
MatchRecognitionLatchEnable is cleared, then clear semaphores. Clearing semaphores
in this situation is effectively a NOP.

* If a semaphore is locked in the section of code, then lock the already-locked semaphore
again. Since the semaphore is already locked, locking it again is effectively a NOP.

* If the semaphore state is indeterminate in this section of code (such that it might be
either set or clear due to conditional logic) then there is no good strategy and your code
must be re-designed to make the semaphore state determinate.

* Clear both action units’ MatchRecognitionLatchEnable in the same sub-instruction. The
sub instruction that clears them together is found in instruction formats in which
semaphore operation is quisced.

11.14 Enabling Matches

Matches are enabled by writing the match register. See the "Writing the Match Registers"
section for a description.

11.15 Disabling Match and Transition Service Requests

Servicing of match and transition events can be disabled using the sub-instruction shown
below.

chan mtd = enable_mtsr.
chan mtd = disable_mtsr.

11. Channel Hardware Sub-Instructions

Assembler Reference Manual, page 79NXP Syntax (C) 2008-2024 ASH WARE, Inc.

This command does NOT prevent the match or transition detection event. Instead, it only
prevents the micro-sequencer from entering a thread as a result of these events. The
actual events are not prevented from occurring.

Remember, servicing is normally initiated by any one of the following events:

* A match event
* A transition event
* A link from another channel
* A host service request from the host CPU

The EnableMatchTransitionServicing command prevents servicing caused only by the first
two from the above list. A link or a host service request is not blocked from generating a
service event.

In eTPU2 only, the following construct supports a mode in which the CaptureA register is
continuously updated on every incoming transition.

chan mtd = disable_mtsr_enable_cc.

Field: MTD

11.16 Setting the Channel Modes

The double-pumped nature of each ETPU channel necessitates the ability to configure the
ETPU in more detail than provided by the Time Base Selection (TBS), Input Pin Action
(IPAC), or Output Pin Action (OPAC) fields. For example, two edges can be generated,
one by each action unit. This allows generation of pulse width down to a single TCR
counter tick, something the original TPU was incapable of doing. But servicing following
both edges would be wasteful in that twice as many service routines would be generated
than are actually needed. The Channel Mode can be set up so that only the second edge
actually results in a service routine.

The details of each of the following sub-instructions are too complicated to be described by
this descriptive assembly syntax, or by this document. The user is therefore referred to the
NXP literature for an exact explanation of how each of these works.

chan pdcm = em_b_st.
chan pdcm = em_b_dt.
chan pdcm = em_nb_st.
chan pdcm = em_nb_dt.
chan pdcm = m2_st.
chan pdcm = m2_dt.

11. Channel Hardware Sub-Instructions

page 80, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

chan pdcm = bm_st.
chan pdcm = bm_dt.
chan pdcm = m2_o_st.
chan pdcm = m2_o_dt.
chan pdcm = udcm. // eTPU2 Only!
chan pdcm = sm_st.
chan pdcm = sm_dt.
chan pdcm = sm_st_e.

11.16.1 eTPU2’s User-Defined Channel Mode

In eTPU2 only, the underlying channel-mode settings can be individually programmed
thereby providing significantly improved granularity to the operation of the channel
hardware. This is done first by writing the User-Defined Channel Mode value into the
ertA register, then transferring the ertA register contents into the User Define Channel
Mode register (UDCM) then setting the Pre-Defined Channel Mode (PDCM) to ‘UDCM’
as follows.

// Desired UDCM value into ertA
alu ertA = 0x1234.
chan udcm = ertA.
chan pdcm = udcm.

Field: PDCM, UDCM

11.17 Interrupts

Each channel can interrupt the host to initiate a data transfer handler or to initiate a generic
"channel" handler. Because each channel has its own interrupts, the host can have a
separate handlers for each channels' interrupt service routines.

chan cir.
chan dtr.

A single global exception also is available. Unlike the channel interrupt, there is only a
single global exception, which is shared by all channels. Regardless of the value of the
channel register, the same global exception is generated.

chan ge.

Note that the channel interrupt and the data transfer interrupt always operation on the
channel that began the thread. For example, if a thread responds to an event on channel 4,
then the user channels the active channel to channel 21 (by writing a 21 to the ‘chan’
register) and asserts a data interrupt, the interrupt still occurs on channel 4.

11. Channel Hardware Sub-Instructions

Assembler Reference Manual, page 81NXP Syntax (C) 2008-2024 ASH WARE, Inc.

Field: CIRC

11.17.1 eTPU2’s Current Channel Interrupt

In eTPU2 the current channel’s interrupt can be set as follows.

chan set CurChan cir.
chan set CurChan dtr.

Note that this overcomes a limitation in the eTPU1 in which an asserted interrupt would
always occur on the originally-serviced channel, even when the ‘chan’ register is changed.
 With this new eTPU2 feature, if the channel register is changed an interrupt can be
generated on the new channel, or on the old channel.

Field: CIRC

11.17.2 eTPU2’s Set Both Interrupts

In eTPU2, both channel and data-transfer interrupts can be generated on the same sub-
instruction as follows. Note that the inteerupts can be generated either on the originally-
serviced channel or (assuming the ‘chan’ register has been written) on the new channel.

chan set CurChan BothIntr.
chan set SvcdChan BothIntr.

Field: CIRC

page 82, Assembler Reference Manual

12. Sequencer Sub Instructions

Assembler Reference Manual, page 83NXP Syntax (C) 2008-2024 ASH WARE, Inc.

12
Sequencer Sub Instructions

Enter topic text here.

12.1 Code Labels

A particular code location can be assigned a label, as follows.

SomeCodeLabel:

This label can be referenced by jumps or calls, as follows.

seq if z == 1 then goto ZIsSet.
// <...>
ZIsSet:

Sub instructions: BAF

12.2 Conditional Branch

A condition can be tested, and if the condition is met, then a jump can be taken, as follows.

seq if n == 1 then goto NIsSet.
// <...>
// <...>
NIsSet:

12. Sequencer Sub Instructions

page 84, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

The branch can also be taken if the condition is not met, as follows.

seq if z == 0 then goto Nope_ZAintSet.
// <...>
// <...>
Nope_ZAintSet:

Sub instructions: BCF

12.3 Conditional Call

A call is identical to a jump, except that the return address register is loaded with a return
address.

seq if z == 1 then call BeamMeUpScotty.
// <...>
// <...>
BeamMeUpScotty:
// <...>
// <...>
seq return.

Note that there is not a formal stack in the ETPU. Use of a stack, while possible, would
require a fair amount of expensive data movement. Think Pittsburg, not Hollywood.

Sub instructions: JC, BCC, BAF, BCF

12.4 Conditionals

The alu's Overflow (v), Negative, (n), Carry (c), and Zero (z) flags can be tested.

seq if v == 1 then goto ZIsSet.
seq if n == 1 then goto NIsSet.
seq if C == 1 then goto CIsSet. // NOTE CASE!!!
seq if z == 1 then goto ZIsSet.

Due to a strange web of lies and half-truths, the ‘C’ flag is case sensitive. This allows the
‘C’ flag (uppercase) to be differentiated from the ‘c’ register (lowercase.)

The alu also supports a test of multiple flags, as follows.

seq if lt then goto YupIsLessThan.

The "less than" conditional examines both the (n) and (v) flags, as follows.

isLessThan = (n && !v) || (!n && v);

12. Sequencer Sub Instructions

Assembler Reference Manual, page 85NXP Syntax (C) 2008-2024 ASH WARE, Inc.

A second multiple flag test is supported.

seq if ls then goto YupItIsLowerEqual.

This flag uses both the “c” and “z” flag, as follows.

isLowSame = C || z;

The MDU supports the same Overflow (mv), Negative, (mn), Carry (mc), and Zero (mz)
flags as the alu, as follows.

seq if mv then goto MZIsSet.
seq if mn then goto MNIsSet.
seq if mc then goto MCIsSet.
seq if mz then goto MZIsSet.

During MDU execution of a multiple, multiple-accumulate, or divide, the MAC Busy flag is
set. Upon completion of this operation the MAC busy flag is cleared. This flag can be
tested as follows.

seq if mbsy then goto MacBusyIsSet.

The state of the transition detection latches and match recognitions latches for both action
units can be tested, as follows. Note that the actual channel latches are not being tested.
Rather these are the states of those latches at the time that the thread was entered.

seq if tdla then goto Tdl_A_IsSet.
seq if tdlb then goto Tdl_B_IsSet.
seq if mrla then goto Mrl_A_IsSet.
seq if mrlb then goto Mrl_B_IsSet.

Similar to the transition detection latches, the state of the link service request latch is also
sampled at the beginning of the thread state. This is sampled as follows.

seq if lsr then goto LsrIsSet.

Each channel has both an output pin and an input pin. The current states of both of these
can be tested.

seq if psto then goto PstoIsSet.
seq if psti then goto PstiIsSet.

In addition, the input pin state is sampled at the beginning of each state, and re-sampled if
the channel register is written to. This sampled input pin state can also be read, as follows.

seq if pss then goto PssIsSet.

Each channel has two function mode bits that are written by the host CPU. These bits are
sampled at the start of the thread and can be tested by the ETPU as follows.

seq if fm0 then goto Fm0IsSet.
seq if fm1 then goto Fm1IsSet.

12. Sequencer Sub Instructions

page 86, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Semaphores provide a mechanism for coherent data access. The semaphore lock flag can
be tested as follows.

seq if smlck then goto SemaphoreLockIsSet.

The alu also supports a test of bits 24 through 31 of the P register, as follows.

seq if p_27 then goto YupBit27IsSet.

Sub instructions: BCC

12.4.1 eTPU2’s Branch on ‘Event’ input pin

In eTPU2, the input pin state is sampled at the first match or transition event that caused
the thread. This ‘Pin Request Sampled State’ (PRSS) can also be branched on, as follows.

seq if prss then goto PrssIsSet.

Sub instructions: BCC

12.4.2 eTPU2’s Branch on Channel Flag

eTPU2 support branching on the channel flags as shown below.

if flag0 == 0 then goto Flag0IsClr, no_flush.
if flag0 == 1 then goto Flag0IsSet, no_flush.
if flag1 == 0 then goto Flag1IsClr, no_flush.
if flag1 == 1 then goto Flag1IsSet, no_flush.

12.5 Unconditional Goto and Call

A code label can be called or jumped to as follows.

seq goto SomePlaceElse.
seq call SomeFunction.

12.6 Return from subroutine

A return from subroutine uses the following syntax. Note that although this causes the
program counter to be loaded by the return address register (RAR), other registers are not
affected. (This is unlike a normal stack based-processor.)

seq return.

12. Sequencer Sub Instructions

Assembler Reference Manual, page 87NXP Syntax (C) 2008-2024 ASH WARE, Inc.

Sub instructions: RD, RTN

12.7 Flush Pipeline

The jump, call, and return instructions all support a flush pipeline sub-instruction. The very
next instruction following the jump, call, or return instruction is executed prior to the change

in program flow unless flush is active. If the flush is active, then a NOP is inserted.
flushes are therefore wasteful and should be avoided. The default is no_flush;;

The following are uses of the flush instruction:

seq return, flush.
seq if z == 1 then call SomeFunction, flush.
seq if z == 1 then goto SomeLocation, flush.

Note that in a call, the flushed sub-instruction affects the value written to the return
address register. If a flush is asserted then the address of the very next instruction is
written to the return address register. If flush is not asserted then the address of the
instruction following the next instruction is written to the return address register.

The following is wasteful microcode. The order of operations is instruction A, B, C, D.

// InstructionA
// InstructionB
seq if z == 1 then call SomeFunction, flush.
// InstructionD

// <...>
SomeFunction:

// InstructionC
seq return, flush.

The following executes the exact same instructions in the same order as above, but the
wasteful flushes have been removed by re-ordering the instructions.

// InstructionA
seq if z == 1 then call MyFunction.
// InstructionB
// InstructionD
// <...>

MyFunction:
seq return.
// InstructionC

Sub instructions: FLS

12. Sequencer Sub Instructions

page 88, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

12.8 Dispatch Jump and Dispatch Call

Dispatch jumps and dispatch calls both cause a change of flow. Specifically, the program
counter is increased by the value of the upper byte of the P register. This provides the
following powerful capabilities.

* Extension of state resolution
* Table look-up

ASH WARE provides high-level constructs for both of these capabilities in section 15.6,
Constant , and section 15.5, Jump Table.

Extension of state resolution can be used to effectively extend the entry table. A table of
jump-to-addresses can generated. The upper byte of the P register, which is automatically
loaded at the start of the thread, can be used to contain additional state information. Since
each thread table has 32 addresses, and since the upper byte of the P-register contains an
offset to a table of up to 256 start addresses using this capability, the theoretical number of
unique states is 32*256 or 8092 unique states!

Table look-up is useful for generating a non-linear function or for providing linearity to a
non-linear relationship. For example, the relationship between temperature and voltage of a
thermocouple is non-linear. A linear approximation of this relationship results in an error,
when calculation temperature based on voltage. This error is reduced by looking the
temperature up in a table rather than using a linear approximation. The dispatch call and
dispatch jump can provide this capability.

Dispatch operations dispatch increment the program counter by the value of the upper byte
of the P register, as follows.

ProgramCounter += p_31_24 + flush ? 0 : 4;;

Similar to normal jumps and calls, the return address register is loaded with the return
address on a call, but is not affected by a jump. The wasteful flush option is also available,
and this affects the return address for a call, per the previous equation. The dispatch jump
and dispatch call syntax is as follows.

seq dispatch_call, flush.
seq dispatch_goto, flush.

Although the default is no_flush, it is possible to explicitly specify that the next instruction is
not flushed using the following syntax.

seq dispatch_goto, no_flush.

Sub instructions: RD

12. Sequencer Sub Instructions

Assembler Reference Manual, page 89NXP Syntax (C) 2008-2024 ASH WARE, Inc.

12.9 Ending the Current Thread - END

A thread is terminated with an end sub-instruction. Following the end sub-instruction the
micro-sequencer ceases to execute microcode until a new thread becomes active.

seq end.

Note that a flush sub-instruction has no affect when used in conjunction with an end sub-
instruction.

Sub instructions: END

page 90, Assembler Reference Manual

13. Linking to other channels

Assembler Reference Manual, page 91NXP Syntax (C) 2008-2024 ASH WARE, Inc.

13
Linking to other channels

Links are similar to host service requests but whereas host service requests are a request
from the host CPU for some action to occur on the eTPU, in a link, the request for action
is generated in the eTPU itself. The eTPU supports a rich set of linking capabilities,
including links from one channel to another channel within that same engine, links to a
specific channel in a specific engine, and cross engine links where a link in the “other”
engine is requested. The syntax for these are as follows.

A link is generated by writing a value to the link register, as follows.

#define LINK_TO_CHAN 5
alu link = LINK_TO_CHAN.

Bits 5:0 specify the channel that is to be linked destination channel. Note that the
destination of the link may be the same channel that generated the link which is known as a
“link to self” and is a common and effective way of breaking a long thread into two shorter
threads.

Bits 7:6 specify that engine being linked to where a zero is the same engine a one is engine
1, a 2 is engine 2, and a 3 is a cross engine link.

page 92, Assembler Reference Manual

14. Structured Programming

Assembler Reference Manual, page 93NXP Syntax (C) 2008-2024 ASH WARE, Inc.

14
Structured Programming

A class structure serves as a container for channel variables and callable member
functions (that can also access the channel variables as follows.

_eTPU_class MyChannelClass
{

int24 X;
int24 Y;
int24 Result;
MemberFunction MyMemberFunc;

};

14.1 Data Types

The following data types are supported.

int24 // 24-bit native eTPU data type
int32 // 32-bit data type
int8 // 8-bit data type

14.2 Data Scopes

Data scope can be global, channel, or engine.

Symbol names are limited to 256 characters.

14. Structured Programming

page 94, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

14.2.1 Global Variables

The following is an example of declaration and access of global variables.

int24 MyGlobalInt24;
int8 MyGlobalInt8;
int32 MyGlobalInt32;
ram diob <- MyGlobalInt24.
ram p31_24 <- MyGlobalInt8.
ram p_31_0 <- MyGlobalInt32.

14.2.2 Channel Variables

A class structure serves as a container for variables whose scope is a structure. Code that
accesses these channel variables must be located within a ‘using’ region as follows.

_eTPU_class MyChanVarClass
{

int8 MyChanVar8;
int24 MyChanVar24;
int32 MyChanVar32;

};

using MyChanVarClass
{
ThisThread:

alu diob = 0xBAD.
ram diob -> MyChanVar24;
seq end.

}

14.2.3 Engine Variables

Engine variables only exist in eTPU2 and later eTPUs. The –target=etpu2 command line
argument is required in order for engine variables to be allowed.

Engine variables are declared similarly to global variables. The leading keyword ‘engine’ is
used to signify that the variable is placed engine-relative instead of globally. The following
illustrates declaration of 8, 24, and 32-bit engine variables.

engine int32 MyEngine32;
engine int24 MyEngine24;
engine int8 MyEngine8;

14. Structured Programming

Assembler Reference Manual, page 95NXP Syntax (C) 2008-2024 ASH WARE, Inc.

These variables can be read and written similarly to other global variables, with one
exception. Namely, engine variables can be directly set to zero, whereas global variables
can only be loaded with the contents of the ‘p’ or ‘diob’ register.

ram p31_0 -> MyEngine32. // 32-bit write
ram p23_0 <- MyEngine24. // 24-bit read
ram diob <- MyEngine24. // 24-bit read (diob)
ram p31_24 -> MyEngine8. // 8-bit write
ram #0 -> MyEngine24. // Clr an engine variable

14.3 Referencing an Address

It is possible to reference the address of a global variable, channel variable, engine variable
or a code label as follows.

MyRefCodeLabel:
 alu diob = MyEngine24.
 alu sr = MyGlobal8.
 alu a = MyChanVar32.
 alu diob = MyRefCodeLabel.

See the next section of a discussion on why code label addresses load the word address
and not the byte address.

14.3.1 Referencing Code Address Note

When referencing a code address the WORD address is taken not the byte address. This
is because the Return Address register (RAR) operates on the WORD address and not the
byte address. By taking the byte address, the address can immediately be used (as a
pseudo indirect call) using the ‘seq return’ sub instruction, as seen in the following example.

14. Structured Programming

page 96, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

In the example shown above the referenced code address of MyCodeLabel is 0x964. But
a 0x259 is loaded into the ReturnAddr register. Why? Because 0x964/4=0x259. The byte
address is divided by four to generate the word address.

14.4 Class Member Functions

Class member functions are functions that are both callable and can access the channel
variables. If optimization or analyses is enabled in the linker, class member functions must
be surrounded by the special #pragma mimic_c_func_start and #pragma
mimic_c_func_end.

_eTPU_class MyChanMemClass
{

int24 X;
int24 Y;
int24 Result;
MemberFunction MyMemberFunc;

};

using MyChanMemClass
{
MyThread:

seq call MyMemberFunc, flush.
seq end.

#pragma mimic_c_func_start
MyMemberFunc:

14. Structured Programming

Assembler Reference Manual, page 97NXP Syntax (C) 2008-2024 ASH WARE, Inc.

alu diob = 0xBAD.
ram diob -> Result;
seq return, flush.

#pragma mimic_c_func_end
}

Note that if optimization or analyses is enabled in the linker then there are a number of
limitations to any called function (including class member functions.) These limitations are
listed below

* The only allowed program-flow exit is via a ‘return’, ‘end’, or another call
* The only allowed program-flow entry point is the very first opcode
* The function must have at least one opcode
* The function may ONLY be accessed via a call (never a goto)
* Indirect calls via writing the return address register are NOT allowed
* The return address register may only be written in save/restore operations within the

prologue/epilogue. Additionally, these save/restore operations must be marked using
#pragma start/end save/restore rar_chunk regions

14.5 Jump Table

The Jump Table construct supports index-based jumping to a label within an array of code
labels.

The Jump Table contains an array of code labels. where an offset into the array is loaded
into the p31_24 and a dispatch jump sub-instruction is executed such that the location
corresponding the label at that offset is executed. . The <N’th> code label in the array is
executed when array of code labels serve as an array of <n> jump destinations where the
<N’th> destination is determined by the value in the p31_24 register. So if the p31_24
register contains (say) a 7, then the 7’th destination is execution.

The Jump Table can effectively extend the thread table by allowing the start address to be
determined by additional state information stored in the p31_24 register. The table consists
of an array of labels, as follows.

seq dispatch_goto, flush.
JumpTable g_myJumpTable[] = {

Label1StartAddr, Label2StartAddr, Label3StartAddr,
}.

Label1StartAddr:
// <...>
Label2StartAddr:
// <...>

14. Structured Programming

page 98, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

Label3StartAddr:
// <...>

Unlike the ConstantTable construct, this ThreadState construct does not include the
dispatch call. The user is responsible for performing the dispatch-call as is seen in the
following code snippet

In the above table, the dispatch_goto generates the opcode at address 0x804. The table
itself generates a series of unconditional calls seen at addresses 0x808 through 0x810.

Similar to the ThreadState construct, no bounds checking is performed on the jump index,
p31_24. For instance, the above table consists of only four entries, so the valid range of
P31_24 is 0..3. If p31_24 contains a value of 4 or above, then the dispatch jump exceed
the bounds of the table, which would presumably be an error.

14.5.1 Jump Table Auto-Defines

The auto-defines header file generated by the ETEC linker generates the index to be used
to jump to these code-labels. Note that if optimization is enabled and the code label is close
enough to the dispatch opcode, the generated index for that jump will cause a jump directly
to the code label, thereby skipping the extra jump operation from within the table.

// Jump Table Index for jumping to the label
// alu p31_24 = _JUMP_TABLE_g_myJumpTable_Label1StartAddr_.
#define _JUMP_TABLE_g_myJumpTable_Label1StartAddr_ 0x00
#define _JUMP_TABLE_g_myJumpTable_Label2StartAddr_ 0x01
#define _JUMP_TABLE_g_myJumpTable_Label3StartAddr_ 0x02

Sub instructions: RD

14. Structured Programming

Assembler Reference Manual, page 99NXP Syntax (C) 2008-2024 ASH WARE, Inc.

14.6 Constant Lookup Table

The constant look-up high level construct provides the ability to place a table of constants
into code memory. A special construct allows reading the constant value from code
memory.look-up a constant. The following is the equation for the constant that is returned.

result = MyTableLookup[p_31_24];;

Of special interest is the ability to do run-time calibration by modifying at startup the
constants in the Constant Lookup array.

14.6.1 The Constant Lookup Table Definition

The constant table looks very much like an initialized C array, as follows.

ConstantLookup <Register> <TableName> [<Size>] =
{
 <Val0>, <Val1> ..., <ValN>
};;

ConstantLookup is a keyword. Register is the p, diob, sr, or a register. TableName is the
name that the user assigns to the table. Size indicates the number of elements in the array
and must match the number of initialized values. The size must be between two and 256,
inclusive. The “initialized values” list is a comma-separated, and the constants are 24-bits.
 An example table with eight initializes that returns the looked-up value in the diob register
is found below.

ConstantLookup sr MyTableLookup[8] =
{
 0x000220, 0x100102, 0x200226, 0x330032,
 0x400040, 0x500557, 0x606660, 0x700070,
};;

The above example is a table that returns the looked-up value in the diob register. The
name assigned to the table is “g_diobLookup.” The table contains eight members where
the first element in the array is 0x000112 and the eighth is 0xAAADFB.

The table may be accessed from multiple locations including from other files. In this case
the table can be declared, but not defined using the extern keyword as follows.

extern ConstantLookup <register> <tableName> [<size>];

14. Structured Programming

page 100, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

14.6.2 The Constant Lookup Table Declaration

A constant lookup table can be called from many locations. Prior to being called, the
constant lookup must be declared, as follows.

extern ConstantLookup diob g_myTableLookup [256];

14.6.3 The Constant Lookup Table Call

In order to retrieve the value out of the array, a call must occur. The table call has the
following format.

seq <condition> <register> = :: <TableName>[p_31_24],
<MaybeFlush>.

The condition is the program flow conditional that controls whether or not a value is
actually retrieved from the table. The register parameter describes which register the
returned value will be placed and must match the table definition. TableName must match
the table name assigned to the table in the table definition.

ram p31_24 <- TableIndex.
seq sr = :: MyTableLookup[p_31_24], flush.
alu p = sr.
ram p -> Result.

The above example puts the third element from the g_myTableLookup table into the diob
register.

14.6.4 Conditional Execution

Because the table call consists of two sub-instructions, a call and a dispatch, the call can be

made conditional. All the “Sequencer Sub-Instructions” are available. In the following
example the diob register will be loaded with a value, but only if the sr register is non-zero.

// Test the diob register value
alu nil = diob, ccs.

// TableIndex is an 8-bit DATA RAM variable
ram p31_24 <- TableIndex.

seq if z then sr = :: MyTableLookup[p_31_24], flush.

14. Structured Programming

Assembler Reference Manual, page 101NXP Syntax (C) 2008-2024 ASH WARE, Inc.

14.6.5 No-Flush

The table-lookup consists of two instructions, first a call then a dispatch. Therefore it is
possible to place an instruction after the call that gets executed prior to the dispatch as long
as the NoFlush is selected. Additionally, since the dispatch instruction follows the call, it is
possible to use the non-flushed instruction to load the index into the p31_24 register as
follows.

seq sr = :: MyTableLookup[p_31_24], no_flush.
// TableIndex is an 8-bit DATA RAM variable
ram p31_24 <- TableIndex.

14.6.6 Constant Table Initialization

There are three initialization options as listed below.

* Simple Initialization
* Via an “include <File>” Initialization
* Run-time Initialization

Simple initialization has been seen in the previous examples. The next two sections
describe run-time and ‘include file’ initialization.

14.6.7 Include File Initialization

The values that go into the array contained in a separate file that gets included. This is
particularly useful if (say) the values are automatically generated by some other tool.

ConstantLookup p g_pLookup[4] =
{
 #include “MyInitializedValues.dat”
};;

14.6.8 Run-Time Initialization (Calibration)

The last and most interesting initialization method is run-time. For this to occur, the array
must still contain dummy values, as follows.

ConstantLookup diob g_RunTimeLookup[4] =
{
 0,0,0,0,
};;

14. Structured Programming

page 102, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

At run-time the SCM image is copied into the eTPU’s SCM. Run time initialization
involves modifying the SCM image at run-time such that it contains run-time specified
values. One possible use of this might be run-time, crank teeth characterization.

In order to initialize the constant array, the address of the array (within the SCM) is
available within the auto-defines file. For instance, for Constant Table ‘MyTableLookup’
the following address is provided by the auto-defines file.

#define _CONSTANT_TABLE_ADDR_MyTableLookup_ 0x804

This indicates that the Constant Table named ‘MyTableLookup’ is located at address
0x804 relative to the base of the SCM.

The Constant Table accesses a series of format A1 opcodes that load a value into the p,
diob, sr, or a register, then return. The run-time written value is encoded into the opcode
using the following macro.

#define SCM_BASE_ADDR 0xC3FD0000 // SCM Code Memory
Address (MPC5554)
#define MODIFY_CONST_TABLE(addr, val) \

*((uint32 *) SCM_BASE_ADDR + addr) &= 0x18; \
*((unit32 *) SCM_BASE_ADDR + addr) |= \
((val & 0x000003) << 5) + \
((val & 0x0000FC) << 18) + \
((val & 0x000100) >> 6) + \
((val & 0x000E00) >> 2) + \
((val & 0x001000) >> 1) + \
((val & 0x00E000) << 13) + \
((val & 0xFF0000) >> 4) \
;

The above macro injects a new value into a constant table. The macro is used below to
inject four values into the constant table. Note that the SCM base address varies from one
microcontroller to the next, the value shown is for the MPC5554.

// Inject values 0-3
MODIFY_CONST_TABLE(_CONSTANT_TABLE_ADDR_MyTableLookup_+0x00
, 0x111111)
MODIFY_CONST_TABLE(_CONSTANT_TABLE_ADDR_MyTableLookup_+0x04
, 0x222222)
MODIFY_CONST_TABLE(_CONSTANT_TABLE_ADDR_MyTableLookup_+0x08
, 0x333333)
MODIFY_CONST_TABLE(_CONSTANT_TABLE_ADDR_MyTableLookup_+0x0C
, 0x444444)

14. Structured Programming

Assembler Reference Manual, page 103NXP Syntax (C) 2008-2024 ASH WARE, Inc.

14.6.9 Considerations and Restrictions

This constructs overwrites any previous return-address in the ReturnAddr register. It is
the user’s responsibility to save and restore this register’s contents.

The calling location and the table itself MUST agree on the register in which the looked-up
value is returned.

To save space, it is often desirable to have a table of a size less than the maximum, which
is 256 entries. But there is no mechanism for ensuring that table index (p31_24 register)
does not exceed the table size. When the jump index does exceed the table size, the jump
will overrun the end of the table, which is an error that is difficult to debug.

The intent of the table lookup is to have a single table that can be accessed from multiple
locations, including from multiple files. As a result, the table itself has been restricted such
that it must be global and cannot be defined within a scope.

If run-time Lookup Table is used than the MISC value generated in the auto-defines file is
no longer valid. As a result, the MISC value must be re-calculated at startup.

Sub instructions: RD

page 104, Assembler Reference Manual

15. Entry Table

Assembler Reference Manual, page 105NXP Syntax (C) 2008-2024 ASH WARE, Inc.

15
Entry Table

The eTPU is an event response machine. When an event occurs, a thread executes that
handles the event. The execution unit is idle if there are not pending events that require
servicing.

15.1 Event Types

There are four distinct event sources which are a Host Service Request, a Match, a
Transition, and a Link. These events are the only things that can cause a thread to occur.

A significant confuse-ifier is that there are two action units, action unit A and action unit B.
 Events from the sources are grouped together and become M1 and M2 events, as follows.

An M1 event consists of the “ORing” of a Match on action unit A (matchA) or a
Transition on action unit B.

An M2 event consists of the “ORing” on a Match on action unit B or a Transition on action
unit A.

15. Entry Table

page 106, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

15.2 Conditionals

Conditionals are funny things. Since they are not events, they do not cause a thread to
occur. Instead, conditionals determine which thread occurs when an event occur.
Consider the PIN conditional. Say an input transition occurs which is detected by the
channel hardware of a channel such that an event occurs. If the input pin is high, one
thread might handle this transition event, whereas if the input pin is low, a different thread
may handle the event. The following conditionals are supported

Channel Flag 1
Channel Flag 0
Input Pin State (high or low)
Output Pin State (high or low)

15.3 Mapping Threads to Event/Conditional Combinations

The thread table contains 32 thread pointers. The thread table is arranged such that each
of the 32 positions in the table corresponds to a combination of one or more events and
conditions. The table is structured as follows.

Using <ClassName>

{

thread_table { alternate | Standard } <TableName>

{

 | | matchA or | matchB or | | | | pre- | |

 hsr | lsr | transitionB | transitionA | pin | flag1 | flag0 | load | matches |

 1 | X | X | X | input=0 | X | 0 | low | enable | Thread0

 1 | X | X | X | input=0 | X | 1 | low | enable | Thread1

. . .

 0 | 1 | 1 | 0 | input=X | X | 1 | low | enable | Thread3

};

}

Entry tables must be located within the context of a class which is done using the ‘using’
keyword and <ClassName> which is the name of the class with which this thread table is
associated. All entry tables must be associated with a class. And the same using context
would normally enclose all code as well as entry table(s).

Thread_Table is a keyword that tells the assembler that an thread table is being defined.

Every thread table must be either alternate or standard. The alternate thread table
provides better flag support. The standard thread table provides better granularity for
HSR’s and LSR’s but does not support flag1. Note that this is used by the auto-header
capability to generated the host-side #define.

15. Entry Table

Assembler Reference Manual, page 107NXP Syntax (C) 2008-2024 ASH WARE, Inc.

The <TableName> is the name of the table. This is used to check that all the
event/conditional combinations are correct. Each table must be defined within the context
of a class, and within each class every thread table name must be unique.

The first four columns, (hsr, lsr, matchA or transitionB, and matchB or transitionA) are the
four event types that can occur.

The next three columns define the conditionals (pin, flag1, and flag0.) Additionally the pin
direction is defined (input or output). Although the pin directions is not used during code
generation, it is used in auto-header generation to set the value of the CxCr.ETPD field.

The next two columns define the preload (high, Low, or X) and the matches (enable or
disable). These settings are encoded into the thread table itself, see the PP and ME bits
for the entry point format encoding. The preload 'X' value allows the Linker/Optimizer to
choose a preload value.

The last column specifies the name of the thread that will handle the entry. If there is both
a class code label and a global code label (a code label located outside of a class context)
then the class label is used.

15.4 The Alternate Entry Table

Although it is named “alternate”, this table type is generally more useful that the standard
table type. Its big advantage is that it supports both channel flags. An example of this
table is shown below.

thread_table alternate MyAltTable

{

 | | matchA or | matchB or | | | | pre- | |

 hsr | lsr | transitionB | transitionA | pin | flag1 | flag0 | load | matches |

 2,3 | X | X | X | output=0 | X | 0 | low | enable | DanglingElse

 2,3 | X | X | X | output=0 | X | 1 | high | enable | DanglingElse

 2,3 | X | X | X | output=1 | X | 0 | low | disable | DanglingElse

 2,3 | X | X | X | output=1 | X | 1 | low | enable | DanglingElse

1,4,5 | X | X | X | output=X | X | X | low | enable | DanglingElse

 6,7 | X | X | X | output=X | X | X | low | enable | DanglingElse

 0 | 1 | 0 | 0 | output=0 | X | X | low | enable | DanglingElse

 0 | 1 | 0 | 0 | output=1 | X | X | low | enable | DanglingElse

 0 | X | 1 | 0 | output=0 | 0 | 0 | low | enable | DanglingElse

 0 | X | 1 | 0 | output=0 | 0 | 1 | low | enable | DanglingElse

 0 | X | 1 | 0 | output=0 | 1 | 0 | low | enable | DanglingElse

 0 | X | 1 | 0 | output=0 | 1 | 1 | low | enable | DanglingElse

 0 | X | 1 | 0 | output=1 | 0 | 0 | low | enable | DanglingElse

 0 | X | 1 | 0 | output=1 | 0 | 1 | low | enable | DanglingElse

 0 | X | 1 | 0 | output=1 | 1 | 0 | low | enable | DanglingElse

 0 | X | 1 | 0 | output=1 | 1 | 1 | low | enable | DanglingElse

 0 | X | 0 | 1 | output=0 | 0 | 0 | low | enable | DanglingElse

15. Entry Table

page 108, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

 0 | X | 0 | 1 | output=0 | 0 | 1 | low | enable | DanglingElse

 0 | X | 0 | 1 | output=0 | 1 | 0 | low | enable | DanglingElse

 0 | X | 0 | 1 | output=0 | 1 | 1 | low | enable | DanglingElse

 0 | X | 0 | 1 | output=1 | 0 | 0 | low | enable | DanglingElse

 0 | X | 0 | 1 | output=1 | 0 | 1 | low | enable | DanglingElse

 0 | X | 0 | 1 | output=1 | 1 | 0 | low | enable | DanglingElse

 0 | X | 0 | 1 | output=1 | 1 | 1 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=0 | 0 | 0 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=0 | 0 | 1 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=0 | 1 | 0 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=0 | 1 | 1 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=1 | 0 | 0 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=1 | 0 | 1 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=1 | 1 | 0 | low | enable | DanglingElse

 0 | X | 1 | 1 | output=1 | 1 | 1 | low | enable | DanglingElse

};

15.5 The standard entry table

The ‘standard” entry got its name because it was the first defined, not because it in any
way better. The author generally uses the alternate table because it supports more channel
flags. The standard thread table does not support channel flag1. On the other hand, the
standard thread table does support more host service request (hsr) values as well as finer
link control.

thread_table standard MyStdTable

{

 | | matchA or | matchB or | | | | pre- | |

 hsr | lsr | transitionB | transitionA | pin | flag1 | flag0 | load | matches |

 1 | X | X | X | input=0 | X | 0 | low | enable | DanglingElse

 1 | X | X | X | input=0 | X | 1 | low | enable | DanglingElse

 1 | X | X | X | input=1 | X | 0 | low | enable | DanglingElse

 1 | X | X | X | input=1 | X | 1 | low | enable | DanglingElse

 2 | X | X | X | input=X | X | X | low | enable | DanglingElse

 3 | X | X | X | input=X | X | X | low | enable | DanglingElse

 4 | X | X | X | input=X | X | X | low | enable | DanglingElse

 5 | X | X | X | input=X | X | X | low | enable | DanglingElse

 6 | X | X | X | input=X | X | X | low | enable | DanglingElse

 7 | X | X | X | input=X | X | X | low | enable | Main

 0 | 1 | 1 | 1 | input=X | X | 0 | low | enable | DanglingElse

 0 | 1 | 1 | 1 | input=X | X | 1 | low | enable | DanglingElse

 0 | 0 | 0 | 1 | input=0 | X | 0 | low | enable | DanglingElse

 0 | 0 | 0 | 1 | input=0 | X | 1 | low | enable | DanglingElse

 0 | 0 | 0 | 1 | input=1 | X | 0 | low | enable | DanglingElse

 0 | 0 | 0 | 1 | input=1 | X | 1 | low | enable | DanglingElse

 0 | 0 | 1 | 0 | input=0 | X | 0 | low | enable | DanglingElse

 0 | 0 | 1 | 0 | input=0 | X | 1 | low | enable | DanglingElse

 0 | 0 | 1 | 0 | input=1 | X | 0 | low | enable | DanglingElse

 0 | 0 | 1 | 0 | input=1 | X | 1 | low | enable | DanglingElse

15. Entry Table

Assembler Reference Manual, page 109NXP Syntax (C) 2008-2024 ASH WARE, Inc.

 0 | 0 | 1 | 1 | input=0 | X | 0 | low | enable | DanglingElse

 0 | 0 | 1 | 1 | input=0 | X | 1 | low | enable | DanglingElse

 0 | 0 | 1 | 1 | input=1 | X | 0 | low | enable | DanglingElse

 0 | 0 | 1 | 1 | input=1 | X | 1 | low | enable | DanglingElse

 0 | 1 | 0 | 0 | input=0 | X | 0 | low | enable | DanglingElse

 0 | 1 | 0 | 0 | input=0 | X | 1 | low | enable | DanglingElse

 0 | 1 | 0 | 0 | input=1 | X | 0 | low | enable | DanglingElse

 0 | 1 | 0 | 0 | input=1 | X | 1 | low | enable | DanglingElse

 0 | 1 | 0 | 1 | input=X | X | 0 | low | enable | DanglingElse

 0 | 1 | 0 | 1 | input=X | X | 1 | low | enable | DanglingElse

 0 | 1 | 1 | 0 | input=X | X | 0 | low | enable | DanglingElse

 0 | 1 | 1 | 0 | input=X | X | 1 | low | enable | DanglingElse

};

15.6 Entry Error Handler

Access of unused entries is a particularly pernicious error and this author recommends
careful attention to the handling of unused entries with the primary goal being observability
such that the underlying bug can be identified and fixed.

ETEC provides a mechanism for making the access of an unused entry observable via the
_Error_handler_entry and in fact generally points entries from unused functions to this
error handler.

It is recommended to also use this error handler for unused entries. This is done by placing
the following label in your entry table. The :: (double colons) are required because the
global error handler’s scope is global. This will access the global error handler which sets
the global error handler error and interrupts the host CPU.

::_Error_handler_entry

Note that to close the loop on finding and fixing this class of bug using the global error
handler, the global variable, ‘_Global_error_data,’ must be monitored by the host-side code.

page 110, Assembler Reference Manual

16. Writing Optimize-Able Assembly

Assembler Reference Manual, page 111NXP Syntax (C) 2008-2024 ASH WARE, Inc.

16
Writing Optimize-Able Assembly

The optimizer can generally optimize assembly code. Unfortunately, there are some
restrictions to coding style in order for the optimizer to work properly. This section
documents those assembly coding restrictions.

16.1 Functions and Function Calls

Optimization and analyses require that function calls and called functions be ‘C’ like. A
call-able function must tagged as such. A called function can only be accessed by a
function call. A called function cannot be accessed by a jump. A function can only be
exited by a return. See the Called Function section for tagging a ‘C’ like function.

16.2 Writing the Return Address Register

Writing of the ‘Return Address’ register followed by a return results in highly irregular
code-flow that can prevent optimization and analyses. Reading and writing of the return
address register within Return Address Save/Restore regions allows optimization and
analyses. See the Return Address Save/Restore section for a description.

16. Writing Optimize-Able Assembly

page 112, Assembler Reference Manual NXP Syntax(C) 2008-2024 ASH WARE, Inc.

16.3 The Dispatch Operation

The dispatch opcode results in highly irregular program flow that can prevent optimization
and analyses. Use of the Dispatch List allows optimization and analyses of this construct.
See the Dispatch List section.

16.4 MAC operations

Mac operations must be followed by a loop in which the MacBusy flag is tested, such as
the following

alu mac = diob * ((S24) sr);;
ram Result0 = diob;;

MacBusyBlockPoint:
seq if MacBusy==true then goto MacBusyBlockPoint,

flush;;
alu p = macl;;
alu diob = macl;;

The optimizer considers the write to the ‘macl’ and ‘mach’ registers to occur when the
‘MacBusy’ flag is tested, so these operations that read these registers will not be moved
above the MacBusy test.

Note that this restriction will be lifted in future optimizer versions.

16.5 Variable Names

Avoid names that conflict with assembler/compiler-assigned names. These include names
that begin with an underscore and whose second character is capitalized. Also, do not use
the name __STACKBASE.

	1 Introduction
	2 Command Line Options
	2.1 File Naming Conventions
	2.2 The Build Process

	3 Preprocessing and Directives
	3.1 Text Replacement using #define
	3.2 File Inclusion
	3.3 Automatically-Generated Directives
	3.4 Comments
	3.5 Verify Version
	3.6 Disabling Optimization in Chunks of Code
	3.7 Disabling Optimizations by Type
	3.8 Atomicity Control
	3.9 Optimization Boundary
	3.10 Thread Length Verification (WCTL)
	3.11 Forcing the WCTL
	3.12 Excluding a thread from WCTL
	3.13 Loop Iteration Count
	3.14 Memory Size (Usage) Verification
	3.15 Same Channel Frame Base Address
	3.16 Coherency
	3.16.1 Coherency Notes

	3.17 Format Specification
	3.18 Verifying Opcode Generation
	3.19 Forcing a Specific opcode
	3.20 Called Functions
	3.21 Return Address Save/Restore
	3.22 Dispatch List

	4 Notation and Syntax
	5 Data Memory Packing
	6 The Register Set
	6.1 The “Big 4” Registers
	6.2 The P Register
	6.3 The Scratchpad Registers
	6.4 Global Timebase Registers
	6.5 The ‘Chan’ (channel) Register
	6.6 Channel Base Address Register
	6.7 Engine Base Address Register
	6.8 Event Registers
	6.9 Channel to Channel Linking Register
	6.10 Multiply-Accumulate (MAC) Registers
	6.11 Angle Mode Registers
	6.12 Program Flow Registers

	7 Opcode and Sub-Instruction Structure
	7.1 Sub Instruction Types
	7.2 Sub-Instruction groups
	7.3 Opcode Termination
	7.4 The ‘No-Operation’ (NOP)

	8 Parameter RAM Accesses
	8.1 Accessing Data at a Specific Address
	8.2 Accessing a Channel's Data
	8.3 Accessing an Engine’s Data
	8.4 Address Nomenclature
	8.5 diob Register Relative Accesses
	8.6 Clearing Parameter RAM and Registers
	8.7 diob Pre-Decrement and Post-Increment
	8.8 Operation Size
	8.9 Semaphore Locking and Freeing
	8.10 Taking a Variable’s Address

	9 Arithmetic Logic Unit (alu)
	9.1 Irreversible Bus Sources
	9.2 Case Insensitivity
	9.3 Special Constants
	9.3.1 Loading a 24-bit Constant
	9.3.2 The "One" Constant
	9.3.3 The ‘max’ Constant

	9.4 Addition And Subtraction
	9.4.1 Two-Register Addition
	9.4.2 Subtraction of One Register by another Register
	9.4.3 Addition by a Constant

	9.5 Addition and Subtraction with the Carry Flag
	9.6 Single-Bit Shift and Rotate
	9.6.1 Two-Register Addition with Shift or Rotate
	9.6.2 Two-Register Subtraction with Shift or Rotate
	9.6.3 Addition to a Constant with Shift or Rotate

	9.7 Multiple-Bit Shift and Rotate
	9.7.1 Multiple-Bit Shift and Rotate by a Register
	9.7.2 Multiple-Bit Shift and Rotate by a Constant

	9.8 Bitwise operations; 'OR', 'AND', and 'XOR'
	9.8.1 Register-Register ‘Or’, ‘And’ and ‘Exclusive Or'
	9.8.2 Bitwise Or, And, and Exclusive Or Using a Constant

	9.9 Bit Set and Bit Clear
	9.9.1 Single-Bit Set and Bit Clear, by Register

	9.10 Single-Bit Exchange with the Carry Flag
	9.10.1 Exchange the “c” Flag with a Bit, Register Specified
	9.10.2 Exchange the C Flag with a Bit, Constant Specified

	9.11 Absolute Value
	9.12 B-Bus Inversion and Carry-In
	9.13 Saving the Flags
	9.13.1 Overriding the Default Flag Size

	9.14 Shifting the sr register
	9.15 Overriding the Default A-Bus Source
	9.16 A-Bus Source Sign Extension
	9.17 Conditional ALU/MDU Operations

	10 The Multiply Divide Unit
	10.1 MDU Multiply
	10.1.1 Multiply by a Constant
	10.1.2 MDU Register By Register Multiply

	10.2 MDU Multiply and Accumulate
	10.3 Fractional Multiply
	10.4 Additional MDU B-Bus Options
	10.4.1 MDU Unsigned B-Bus operations
	10.4.2 MDU Signed B-Bus operations

	10.5 MDU Divide
	10.5.1 MDU Divide by a Constant
	10.5.2 MDU Register by Register Divide

	10.6 Mac Busy Wait Loop

	11 Channel Hardware Sub-Instructions
	11.1 Channel Flags
	11.2 Time Base and Comparator
	11.3 Output Buffer
	11.4 Immediate Output Pin State Control
	11.5 Input Pin Transition Detection
	11.6 Output pin Action
	11.7 Writing the Match Registers
	11.8 Reading the Match Registers
	11.9 Reading the Capture Registers
	11.10 Clearing the Match Recognition Latches
	11.11 Clearing the Transition Detection Latches.
	11.12 Clearing Link Service Requests
	11.13 Disabling Matches
	11.13.1 Individual Match Disable on eTPU2
	11.13.2 Individual Match Disable Limitation

	11.14 Enabling Matches
	11.15 Disabling Match and Transition Service Requests
	11.16 Setting the Channel Modes
	11.16.1 eTPU2’s User-Defined Channel Mode

	11.17 Interrupts
	11.17.1 eTPU2’s Current Channel Interrupt
	11.17.2 eTPU2’s Set Both Interrupts

	12 Sequencer Sub Instructions
	12.1 Code Labels
	12.2 Conditional Branch
	12.3 Conditional Call
	12.4 Conditionals
	12.4.1 eTPU2’s Branch on ‘Event’ input pin
	12.4.2 eTPU2’s Branch on Channel Flag

	12.5 Unconditional Goto and Call
	12.6 Return from subroutine
	12.7 Flush Pipeline
	12.8 Dispatch Jump and Dispatch Call
	12.9 Ending the Current Thread - END

	13 Linking to other channels
	14 Structured Programming
	14.1 Data Types
	14.2 Data Scopes
	14.2.1 Global Variables
	14.2.2 Channel Variables
	14.2.3 Engine Variables

	14.3 Referencing an Address
	14.3.1 Referencing Code Address Note

	14.4 Class Member Functions
	14.5 Jump Table
	14.5.1 Jump Table Auto-Defines

	14.6 Constant Lookup Table
	14.6.1 The Constant Lookup Table Definition
	14.6.2 The Constant Lookup Table Declaration
	14.6.3 The Constant Lookup Table Call
	14.6.4 Conditional Execution
	14.6.5 No-Flush
	14.6.6 Constant Table Initialization
	14.6.7 Include File Initialization
	14.6.8 Run-Time Initialization (Calibration)
	14.6.9 Considerations and Restrictions

	15 Entry Table
	15.1 Event Types
	15.2 Conditionals
	15.3 Mapping Threads to Event/Conditional Combinations
	15.4 The Alternate Entry Table
	15.5 The standard entry table
	15.6 Entry Error Handler

	16 Writing Optimize-Able Assembly
	16.1 Functions and Function Calls
	16.2 Writing the Return Address Register
	16.3 The Dispatch Operation
	16.4 MAC operations
	16.5 Variable Names

