Compiler Reference Manual
by

John Diener and Andy Klumpp

ASH WARE, Inc.

Version 3.01 A aﬂ
6/8/2024

(C) 2008-2024 ASH WARE, Inc. ASH WARE Inc.

page 2, Compiler Reference Manual

Compiler Reference Manual

Table of Contents

Foreword 9
Part 1 Introduction 11
Part 2 Supported Targets 13
Part 3 References 15
Part 4 Keywords and Abbreviations 17
Part5 eTPU Programming Model 19
TN R I =T = Ue} VN Y/ (o To TP 19
Accessing Channel Variables From Outside eTPU Function Scope 23
LEQACY MOAE ISSUEBS .ueiiiiiieiiie ettt ettt et 24
5.2 Enhanced ETEC Mode (ETPU Class)ocvviiiiiiieiiieiii e ee e ee e 25
€TPUCIAsSS EXAMPIE .ot 27
LI LT =T= o TSP UROPP 29
Enabling/Disabling Matches in the Thread...........coccooviieiiinieneenceeeeee, 30
Controlling the Preload Parameter Bit (PP)..........cccovveiirieiiinieiee e 30
ENEFY TADIES oo et

Member Functions (Methods)
Member Function Fragments

Channel Variables ... st
Hiding Channel Variables (PUDIIC/Private)............cocooviiieieenieneec e 35
INIHAL VAIUES. ...ttt ettt e et e sabe e sbee e
Access Oustide Class Scope
ChANNEI GIrOUPS ittt b e bbbt b et e be e s 38
EXteNnsion SYyNtax DELailSccoceiiiiiiiiiieiie e 39
5.3 B T P U Ty DS it 40
L0 o 11 1 (= = 42
5.5 €TPU Data PaCKIiNg ..cuuieiiiiiiieee et e e e e e e aaenaas 43
GlODAl VArIADIES ..o 44
Static Variables in Callable C-FUNCLIONSccccoiiiiiiiiiiiciee e 45
Explicitly Locating Global Variables ... 45

Compiler Reference Manual, page 3

Compiler Reference Manual

5.6

5.7

5.8

5.9
5.10

eTPU2 Engine Relative AdAress SPACEcccovieiiiiieniiiiieieceee e 45
eTPU Channel Frame Variablesccccoooiiiiiiiiii e 46
Channel Fram e PACKTIGHT MOAE ..cccciiiiiiiiiiiiie et 46
Local/Stack Variables
SETUCTUTES & UNIONS ittt e et e e snbeesateeateaas
Structure PACKTIGHT MOGE ..oouiiiiiieiiie ettt 49
SETUCTUTE Bit FIEIAS oot 50
ATTAYS ittt 51
Array PACKTIGHT MOGE ...oouiiiiiiiciee ettt 51
F N] 1Y o e [T USSP 52
ETPU HardWare ACCESS ..ouuiieiii et et e et e e e e e e e e e e e eennas 52
Channel HardW are ACCESS ...uiiciiiiiiieeie ettt 53
Baseline eTPU Channel Hardware Programming Modelcccooieiiiiiininnnene 53
eTPU+ Extensions to the Channel Hardware Programming Model 54
eTPU2 Extensions to the Channel Hardware Programming Model 56
REGISTET ACCESS ittt bttt b e e be e sbneeanee
Using Special Registers for General Purpose
ALU COoNdition COUE ACCESS ..viiiiiiiieiiirieierre ettt
Built-in / INtrinSiC FUNCHIONS ...oiiiiiiiiceee e
Compatibility FUNCHIONScouiiiiiiiiie e e
ETEC Coherency & Synchronization Control....
TR18037 Fixed-point Library SUPPOIt.......cccceiiiiiiieeiiie e
ALUMDU INEFNSICS ...ttt
Rotate RIght SUPPOIT........ooiiiiiiiie e
Absolute Value SUPPOTL.......oceiiiiieiiie e
Shift RegISter SUPPOIL.......ooiiieiiieiiie et
Shift By 2(N+1) SUPPOIL...cooiiieiiieeiie et
Set/Clear Bit SUPPOIt......c.coiiiieiiie ittt
Exchange Bit Support..
MAC/MDU SUPPOIeeeiitieaiieeetie ettt et beeeanneas
COdE FragmMeENntS ..ou it e
_ETPU_LNIrEad CallSocoiiiiiiieiee ettt 68
State SWItCh CONSIIUCES ... e 68
State ENUM ETALION ..oiiiiiiiiie ettt ettt e et e e ae e et e e e taeessbeesnraeeseeas 69
SEALE VANIADIE it et s 70
SEALE SWITCI Leeiiiie e e et et e e st e e et e e e nb e e enreeerae s 70
AdAITIONal NOTES oottt st e e e e sabe e s be e e saaeesaneesnnes 74
€TPU CoNnstant TablesSciuuiii e 74
ETEC Local Variable Model & Calling Conventionsccccvvvvviveennnennnn. 76
Stack-based MOGE] ...cceeiiiiiiiec e 76
CalliNg CONVENTION oottt e st e st e e snbeesabeeaeee s 79
Scratchpad-based MOlooiiiiiiii e s 81

Calling Convention

page 4, Compiler Reference Manual

Compiler Reference Manual

5.11 In-Line ASSEMDIY oo 85
Calling the Error Handler from User COOecccooiieiiiiiiiiiiiiee e 86
5.12 ETEC Standard Header FileS ... 86
Part 6 C Preprocessing 87
Part 7 Auto Code Generation 89

7.1 AULO-SITUCE FIle .ot e 89
24-Dit VS. NON-24-Dit ACCESSES eoiiiiriiiitieitieitie ittt sttt sbe et nne e s 90
Naming CONVENTIONS ..cviiiiiiiiitiiti it 91
€TPUDAta iN AUTO-SEIUCES ..eiiiiieiiiieiiiestie ettt n 92
ETPU StrUCLUTES/UNIONS ..ottt sbe e st enne e s 93
AFrays iN AULO-SEIUCES ..o 95
Bit-field and _Bool Variablesccccveiiiiiiiiie s 97
EXAM PIE COAE . 98

7.2 AULO-DEfINES FIl .o 99
Global Prepended MNEMONICccociiiiiiiiiiicicc s 99
Auto Header File NAM @ ...oc.ooiiiiiiii e 99
ENAIAN SUPPOTT ottt
TEXE GENEIALION ..iiiiiiiiit ittt b et be e
TYPE INFOrMALION oottt
Array Variables
_Bool Type Variables
Struct/Union Variables ..o 103
Tag Types (Structures, Unions, ENUMErations)cccecvevinienieneeneesc e 103
GlODAl MNEMONIC .t 106
Settings, Register Fields, and MNEMONICccoiiiiiiiiiiiiiiece e 106
INClUdE RACE KEEPOUL ...ttt 112
NXP APICOMPALIDITITY ©ooeiiiiiiiiiei e 112
ASHWARE Simulator Com patibilityccocoiiiiiiiiieee e 112
Support for Additional Languages
SCM ARRAYY .ttt ettt bbbt Rt n et e bbb bbbt neene e e e e
PWM EXBM PIE oottt ettt ettt be e ate e st e et e e snbeeaneee s

7.3 AUL0-CoUE FIleS oo
KEY FIlES o
Editing TEMPIAte FIIES ..ooiiieee e e

System Simulation Support

Part 8 Initialized Data Files 117

8.1 Initialized Global MEMOIYuiiiiii e 117

Compiler Reference Manual, page 5

Compiler Reference Manual

8.2
8.3

Part 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Part 10

10.1
10.2
10.3
10.4

Part 11
11.1

Part 12

12.1
12.2
12.3

Part 13
13.1

Initialized Channel MEemMOIYoieiiii e 118
Using the Initialized Data Macros in the Simulatorcccoovveiieinnns 119
Global Error Handling 121
Global Error DAtaocceeiiiiei et 122
Error Handling Library ... 123
Invalid Entry Error HANAING ..ocovveeiii e 124
In the SCM OFF Weeds Error Handlingcooooiviiiiiiiiniiinceeeis 124
In the FILL Weeds Error Handlingccocooviiiiiiiii e, 124
Unexpected Thread Error Handlingccooveiiiiiiiiiii e 125
Extending the Error Handler ... 126
Accessing the Error Handler ... 127
Creating a User-Defined Error Handlerccoooiiiiiiiiiiiiie e 128
Command Line Options 131
Compiler Command Line OPtiONS ...c.uiiiiiiiii e 131
C Preprocessor Command Line OPtioNScoovviiiiiiiiiiiiiicieeeeeeeee 143
Console Message Verbosity (-Verb)coveiiiiiiii e 147
VEISION (-VEBISION) 1.ttt e e e 148
Limitations 149
Restrictions to the ISO/IEC 9899 C Definitioncoooviiiiiiiniiiineeen, 149
Supported Features 151
General CLanguage SUPPOTT ..ceeuiveiieeieei et ee e 151
eTPU Programming Model SUPPOItc..vviiiiiiiieiicieee e 151
Compatibility MOde SUPPOIt ..o e 152
ENtry Table SUPPOTT ..o 152

#pragmasupport

Appendix A : Pragma Support 153

RN =Y a1 YA V=1 £ o T o TN 154

page 6, Compiler Reference Manual

Compiler Reference Manual

13.2 Disabling Optimization in Chunks of Codecccoviiiiiiiiiiiiii, 155
13.3 Disabling OptimizationsS BY TYPEoiiriiiiiiiiiii e 155
13.4 AtOmMICity CONIOl v 156
13.5 Optimization Boundary (Synchronization) Controlcc.ccevvivineennnns 156
13.6 Thread Length Verification (WCTL)ovviiiiiiiiice e 156
13.7 FOrcing the WCTL ..oouiiiiiiii et 158
13.8 Excluding a thread from WCTLcooiiiiiii e 158
13.9 Loop Iteration COUNT ... e e e 158
13.10 Code Size Verificationcoooiiiiiie e 159
13.11 Memory Size (Usage) Verificationccoiiiiiiiiiiiiiini e 159
13.12 Same Channel Frame Base AdAressccoviiiiiiiiiiiiiiiieiiiee e 160
13.13 AUtO-defiNneS EXPOIT coeeii i 161
13.14 Private Channel Frame Variablesc.coooiiiiiiii 162
13.15 EXPHCIt LOCAING ovvvniiiiiiii ettt 163
13.16 ByteCraft #pragma Write SUPPOIt ..oivniii i 164

Part 14 Appendix B : Data Packing

Details 165
14.1 Channel Frame FASTACCESS MOEccuiiiiiiiiiiiiiiieiie e 165
14.2 Structure FASTACCESS MOGEuciuiiiiiiiiiiiee e 166
14.3 Structure PACKTIGHT with ANSI Mode Enabledcc.ccooiiiiiiiiinninnnnn. 167
14.4 Structure FASTACCESS with ANSI Mode Enabledc.ccovveiiiiiinnennnns 168
14.5 Array FASTACCESS MOGEuiiiiieiiiii et e 169

Part 15 Appendix C: eTPU Annotated

Object File Format 171
15.1 €O LaAB OIS oniiiiiii 178
T 11 < 179

Part 16 Appendix D : Error, Warning and
Information Messages 181

16.1 Compiler Error MESSAGES ..ccuuiiri ittt ettt ettt 181

Compiler Reference Manual, page 7

Compiler Reference Manual

16.2 Compiler Warning Messages

page 8, Compiler Reference Manual

Compiler Reference Manual

Compiler Reference Manual, page 9

page 10, Compiler Reference Manual

1. Introduction

1

Introduction

The eTPU Embedded C Compiler System is based upon the 1SO/IEC 9899 C standard
(“C99") and the ISO/IEC TR 18037 Embedded C extension. ETEC is a highly optimizing
C compiler for all versions of the eTPU. ETEC has its own version of the programming
model with regards to entry table definition and thread function definition, but also has a
Legacy Mode mode for compiling software written using existing programming paradigms.
This document covers the details of these programming models, the ETEC Tools Suite

itself such as command line options, as well as details on the various outputs of the ETEC
Compiler Tools Suite.

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 11

page 12, Compiler Reference Manual

2. Supported Targets

2

Supported Targets

The ETEC C compiler toolkit current supports the following targets.

eTPU - select Qorivwa MPCB55xx parts, select Coldfire MCF52xx parts (compiler/linker
option '-target=etpul’)

eTPU2 - select Qorivwa MPC56xx parts, select STMicro SPC563Mxx parts
(compiler/linker option '-target=etpu2’)

eTPU2+ - select Qorivwva MPC57xx parts. There is not a separate target option for
eTPU2+ - use the eTPU2 target. The eTPU2+ has no instruction set differences versus
the eTPU2. The only programming model difference is that a third bit has been added to
the missing tooth count field in the tooth program register (TPR). If using the default TPR
struct defined in the ETpu_Hw.h header file, this third bit is accessed via the previously
unused TPR10 field.

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 13

page 14, Compiler Reference Manual

3. References

3

References

| SO/IEC 9899:TC2 Programming Languages — C

ISO/IEC TR 18037 Programming Languages — C — Extensions to support embedded
processors

Enhanced Time Processing Unit (eTPU) Preliminary Reference Manual (ETPURM/D
5/2004 Rev 1)

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 15

page 16, Compiler Reference Manual

4. Keywords and Abbreviations

A

Keywords and Abbreviations

Channel Frame

Channel
Variable

ETEC

eTPU

eTPU-C

eTPU Class

The collection of channel variables associated with a
single eTPU Function or ETEC eTPU Class.

A variable that is addressed relative to the channel
base register. This storage is static and there is one
copy per channel to which it is assigned at run-time.
Sonetimes channel variables are referred to as
parameters.

eTPU Enmbedded C Conmpiler
Enhanced Time Processor Unit (and derivatives)

The C code development systemfor the eTPU by Byte
Craft Limted.

The native ETEC programming model aggregates all
threads, Menber Functions (methods), channel
variables and entry tables associated with a single
application into a class-like structure called an eTPU
class.

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 17

4. Keywords and Abbreviations

e€TPU Function

eTPU Thread

An eTPU-C termthat refers to a C function that defines
a set of channel variables, an entry table, and the
threads that make up the vectors for that entry table.

With regards to ETEC, it refersto entry tables, channel
variables and threads that are all associated, an ETEC
“class’.

An ETEC term A C function that can be used as an
entry vector, but cannot be called fromany other C
code.

Shared Code Menory. The location of the eTPU code
and entry tables. Not readable fromthe eTPU.

Shared Data Menory. Multi-ported data memory
accessible fromthe host CPU and the eTPU.
Historically this memory has been referred to as
parameter RAM.

page 18, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.1

5

eTPU Programming Model

This section discusses the two major portions of the eTPU hardware programming model —
direct access to the eTPU hardware, and the syntax for defining entry tables. Unlike a
more conventional microprocessor, the eTPU does not typically process in any kind of
continuous manner. Rather, it behaves more like a set of interrupt handlers reacting to
events. Entry tables map events to the code / threads that need to process the event. In
between such activations the eTPU microengine is completely idle.

ETEC uses a stack-based approach for local variables and function calls. The user must
allocate stack space in SDM. This portion of the programming model is discussed in more
detail in the section 4.7.

Legacy Mode

The ETEC Compiler toolset supports 'Legacy Mode' style programming to maintain
compatibility with existing code built using other toolsets. It is possible to mix and match
Legacy Mode and 'ETEC Mode' code such that (say) one eTPU Function is built in ETEC
mode and another eTPU function is built using Legacy Mode. It is (generally) easy/trivial
to convert code from Legacy Mode to Enhanced ETEC Mode.

In Legacy Mode, entry tables are encoded via if-else blocks within functions designated as
eTPU Functions. eTPU Functions are designated with a #pragma (different formats
shown) that can include table type & function number information:

#pragma ETPU function <func_name>; /1l inplies standard

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 19

5.

eTPU Programming Model

#pragma ETPU_function <func_nane> @ <func_num>; // inplies standard
#pragma ETPU_function <func_nane>, [alternate | standard];
#pragma ETPU_function <func_nane>, [alternate | standard] @ <func_nunp;

The special if-else block resides at the top scope level of the function, with each if
expression defining the entry conditions for the ensuing thread. Each compound statement
following an if/else represents an eTPU thread. [TBD note: statement following if/else
must be a compound statement { } at the current time for proper compilation.] Below, a
skeleton of an eTPU Function is shown as an example.
#pragma ETPU function TEST, standard;
/1 A B, and C are channel vari abl es
void TEST(int A, int B, int O
{
/1 Dis allocated as a channel variable
static int D
int E; // local variable

i f ((hsr==1) && (pin==0) && (flag0==0))
{ int F; // local variable
/'l thread 1
Llse if (hsr==1)
{ /'l thread 2
Llse if (hsr==2)
{ /'l thread 3
Llse if (lIsr==1)
{ /'l thread 4
Llse if ((lsr==0) && (ml==0) && (n2==1))
{ /'l thread 5
Llse if ((Isr==0) && (nl==1) && (pin==0))
{ /'l thread 6
}(;I se if ((Isr==0) && (ml==1) && (n2==0) && (pin==1))
{ /'l thread 7

page 20, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

// default "catch-all" thread

There are up to 7 different inputs into the entry table, although all seven are never
meaningful at the same time. The seven entry conditions are:

hsr

channel . LSR

mi

ng

channel . PI N

channel . FLAQD

channel . FLAGL

11

11
11

11
11
11
11
11

11
11

11
11
11

host service request — valid value 1-7

link service request — 0 or 1;
‘“lIsr’ is equivalent to channel.LSR

match A or transition B—- 0 or 1

match B or transition A—- 0 or 1

pin val ue (host setting determ nes whet her
it is the input or output pin) — 0 or 1;

‘pin is equivalent to channel.PI N

channel flag0 — 0 or 1; ‘flag0
is equivalent to channel.FLA®

channel flagl — only used in entry tables
of alternate type — 0 or 1; ‘flagl
is equivalent to channel.FLAGL

Besides one exception, tests of these conditions can be logically ANDed and ORed
together to determine the conditions for entry into a given thread. Host service request
(hsr) conditions can never be ANDed together.

When defining an entry table of alternate type, specifying just one hsr condition from a
grouped set is sufficient to cover that group’s entries. For example, if (hsr==1){ ... } is
equivalent to if ((hsr ==1) || (hsr ==4) || (hsr ==5)) { ... }. The latter format is
recommended as it is clearer to read & understand.

Within an entry condition specification, the operators ||, & &, !, ==, and = are allowed. The
I=and ! operators are not allowed for use with the hsr condition, only the other Boolean

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 21

5

eTPU Programming Model

conditions. The Boolean conditions may also be specified just by themselves (not hsr), e.g.
if (ml) { ... } whichisequivalenttoif (mLl==1){ ... }.

The conditions in successive if expressions can overlap; the latter if only covers any
remaining open entry table slots for which its conditions apply. |f no open slots remain a
compilation error is reported. Here's an example of a standard entry table definition:

If (hsr == 1)

{

}

Else if (nml && nR)

{

...I'l covers entry slots 10, 11, 20, 21, 22, 23

}

Else if (L)

{

/'l covers entry slots 16, 17, 18, 19, 30, 31
/1 (but not 10-11, 20-23 since they were already taken)

}

The if-else array can end in a dangling else that covers any remaining entry slots in the
table. A dangling else is required if all of the *if’ expressions do not fully cover a table.
Typically the dangling else executes error code.

In each thread defined by the if-else array, the default is for the Match Enable (ME) entry
to be set true, matches enabled. The Match Enable can be set explicitly, or disabled, by
making one of the below intrinsic function calls or macro synonyms somewhere in the
thread (no code is generated by the intrinsic, only the entry ME hit is affected).

mat ch_enabl e() ;

mat ch_di sabl e() ;

/'l synonyns

enabl e_mat ch();

di sabl e_match();

Enabl eMat chesl nThread() ;
Di sabl evat chesl nThread() ;

For more information on entry tables and entry conditions reference eTPU documentation.

page 22, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.11

Accessing Channel Variables From Outside eTPU Function Scope

When using legacy mode one constraint is that channel frame variables cannot be (easily)
accessed outside the eTPU function scope. This means code cannot be broken out into
subroutines for more readable code or efficient processing, without take special steps. The
way to overcome this is via use of the register 'register_chan_base'. This register
represents the CPBA address register for the current channel (as controlled by the ‘chan'
register). To make it all work, several steps are necessary. First, encapsulate the entire
eTPU channel frame in a structure.

struct ETPU_FUNC_CHAN_FRAME

{
int24 a;
int24 b;
/1

b

Then use that in the eTPU function definition:

#pragma ETPU functi on ETPU_FUNC, standard;
voi d ETPU_FUNC(

struct ETPU_FUNC_CHAN_FRAME et pu_func_| ocal
)

{
if (hsr == 1)
{
/1
}
else //
}

Once the above is in place, other functions can access the channel frame using the syntax
shown below. Since 'register_chan_base' represents an address the register access should
be mapped to a pointer to the channel frame struct.

i nt 24 ETPU_FUNC_hel per (i nt24 pl, int24 p2)
{

regi ster _chan_base struct ETPU_FUNC FRAME
*et pu_func_l ocal _p;

et pu_func_l ocal _p->sonme_chan_var = pl *
et pu_func_l ocal _p->sonme_ot her _chan_var;
11

}

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 23

5. eTPU Programming Model

Although it doesn't make quite as much sense syntactically, the compiler supports mapping
the channel frame struct directly to 'register_chan_base' as well.

i nt 24 ETPU_FUNC _hel per (i nt24 pl, int24 p2)
{

regi ster_chan_base struct ETPU_FUNC_FRAME
et pu_func_I ocal ;

et pu_func_Il ocal . some_chan_var = pl *
et pu_func_Il ocal . sonme_ot her _chan_var;
11

}

When using ETEC classes, this kind of access generally comes naturally as member
functions have access to channel frame variables directly. However, in the case of global
functions, or where one functiorn/class needs to access another functior/class data, the
same strategy can be used by encapsulating all of the class data members in a structure.
However, it better, and more easily accomplished using the class scope syntax - see
Access Outside Class Scope for more information.

5.1.2 Legacy Mode Issues

The original eTPU compiler had been available for about 5 years when we noticed that
numerous customers experienced repeated instances of common bugs. These bugs were a
result of various issues with the Legacy Mode programming model enumerated below.
ASH WARE decided to address these issues by developing a new coding mode which we
named Enhanced ETEC Mode which would address many of the common issues through
the use of an enhanced coding pattern that matches the unique nature of the eTPU. The
following drawbacks were addressed.

e |t was difficult to share code that accessed Channel Variables in different threads. This
lead to the use of unstructured 'GOTOs' . ETEC Mode supports this using Member
Functions.

o |t was difficult to group functions that could all share Channel V ariables, Member
Functions, and Threads. ETEC Mode supports this by allowing multiple entry tables in
the same eTPU Class. Threads can be referenced by just one (or multiple) Entry
Tables.

¢ Legacy Mode hides critical aspects of the Entry Table making it challenging to properly
design the entry table code. The authors of this manual have seen numerous instances

page 24, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.2

of buggy customer code due to major issue. ETEC Mode fully exposes the Entry Table,
thereby forcing the user to consider the Entry Table in its entirety and eliminating this
common source of buggy code.

Legacy Mode Entry Table code does not always operate the way it reads. For instance,
the order of execution of thread described in the if/else array is defined by the hardware,
not by the if else array. It is common for Entry Table code to read one way, but operate
adifferent way. ETEC Mode Entry Tables execute exactly the way they are written.

Legacy Mode does not operate the way it reads. A common coding error is to attempt
to write code before or after the Entry Table defining if/else array. This is not an issue
in ETEC Mode because there is no entry table.

Legacy Mode Entry Table if/else array only supports a small subset of the 'c' language
because it must be dedicated solely to the entry table which is not intuitive. This is not an
issue in ETEC Mode because there is no entry table.

Legacy Mode Channel V ariables appear to be static and are actually dynamic and it isin
no way intuitive that there is a single copy of each Channel Variable for each channel.
The way Channel Variables are declared and used in ETEC mode makes it intuitive that
each channel gets its own static copy of its Channel Variables.

Legacy Mode Channel V ariables can also be declared using the 'static' keyword within
the scope of the eTPU function. In'C' there is normally one copy of these variables
whereas in the eTPU each eTPU channel gets its own copy making these variables very
confusing and nor-intuitive. ETEC Mode handles Channel V ariables in an intuitive way
that is obvious that Channel V ariables are static and each channel gets its own copy.

Legacy Mode Channel V ariables are all exposed to the host CPU, whereas there are
really two categories, those that are shared between the Host CPU and the eTPU and
those that are private to the eTPU. ETEC Mode supports this important differentiation
through the use of the 'private’ and 'public’ keywords.

Enhanced ETEC Mode (eTPU Class)

The Enhanced ETEC Mode was developed to address numerous shortcoming of the earlier
Legacy Mode as described in the Legacy Mode |ssues section.

The ETEC programming model for the eTPU uses extensions to the C language to more
cleanly match the eTPU hardware. A class-like syntax connects all the pieces that apply

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 25

5.

eTPU Programming Model

to a single eTPU channel (or group of channels that must work in concert and share a
Channel Variables.) This class-like syntax, referred to as an “eTPU class”, is used to
aggregate the data and code that is used to perform a single eTPU function/application.

Although it is somewhat similar in syntax to a C++ class, it is actually quite simplified in that
there are no concepts like overloading or derivation Rather it acts as a way to aggregate
all the necessary pieces of an eTPU application (typically maps to one channel, but can
map to multiple channels) into a clean package. An eTPU Class consists of the following.

e Threads which are sections of code that executed in response to an HSR, LSR, Match
or Transition event, detailed in the

e The Entry Table (sometimes referred to as the Event Vector table) which maps events
and combinatorial's the event-handling threads.

e Member Functions (methods) that can be called by threads and other member functions
and can access channel variables.

e The data which is called the “channel frame”, or Channel Variables.
These are covered in more detail in subsequent sections

e Inthe eTPU programming model, there is a static copy of the channel frame for each
channel, or set of channels, to which the eTPU class is assigned. The assignment itself
is done via a combination of the channel function select register (CFSR) and allocating
room for the channel frame in SDM (SPRAM) and properly setting the channel
parameter base address (CPBA).

The last main piece of an eTPU class is the entry table definition. A class may be
associated with one or more eTPU entry tables, each of which has a unique eTPU function
number. These entry tables are defined like initialized arrays and the user must explicitly
specify an eTPU thread for each of the 32 different entry conditions allowed per table. As
part of the entry table definition, table qualifiers such as type (standard or alternate), pin
direction, and CFSR (function number) value are specified.

The ETEC compiler supports an alternative syntax for thread declarations. The
" eTPU_thread" keyword can be used interchangeably with "void
__attribute__ ((interrupt_handler))", which is a GNU-based syntax.

page 26, Compiler Reference Manual (C) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.2.1 eTPU Class Example

The example below shows the overall eTPU class syntax. Subsequent sections of this
manual describe the following in more detail.

/1 Standard Conpil er-supplied header
#i ncl ude <ETpu_Std. h>

/1 Exclude Init and Error threads from WCTL cal cul ati ons
#pragma exclude_wctl MyClass::Init
#pragma exclude_wctl _Error_handl er _unexpected_t hread

_eTPU cl ass MyCl ass

{
/1 Channel Vari ables
i nt24 _nyChanVar ;
/1 Thread Decl arations
_eTPU thread Init(_eTPU matches_di sabl ed);
_eTPU_t hread Handl eivat chA(_eTPU_mat ches_enabl ed) ;
/1 Menmber Functions (nethods)
i nt 24 Cal cul at eQut put (i nt 24 nyPassedVar) ;
/1 Entry Tabl e declaration(s)
_eTPU entry_table MyCl ass;
b
eTPU thread MyClass::Init(_eTPU nmatches_di sabl ed)
{
...
_nmyChanvar = tecri,
/1
}
_eTPU thread MyCl ass: : Handl eMat chA(_eTPU_nat ches_enabl ed)
{
...
_myChanVar = Cal cul ateQut put(erta);
/1
}
i nt24 MyCl ass:: Cal cul at eQut put (i nt 24 nyPassedVar)
{

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 27

5. eTPU Programming Model

/1 Class Menber Function can directly access channel vari ables
return _myChanVar + nyPassedVar;

}

DEFI NE_ENTRY_TABLE(M/d ass, Myd ass, standard, outputpin, autocfsr)
{

/] Host Service Request (HSR) 7

/1 is used for initialization

/1 HSR LSR ML M2 PIN FO F1 vector

ETPU VECTORL(7, X, X, X, X, X, X, Init),

/1 Only valid conbination when toggling the output pin
/1 using Action Unit Ais MRL-Ais set and MRL-B is clear

/1 HSR LSR ML M2 PIN FO F1 vect or
ETPU VECTORL(O, 0, 1, 0, 0, 0, x, Handl eNatchA),
ETPU VECTORL(O, 0, 1, 0, 1, 0, x, Handl eNatchA),

/1 Host Service Requests (HSR) 1 through 5 are not used.
/'l Therefore, these HSR s set get steered to the error handl er.
I HSR LSR ML M PIN FO F1 vector

ETPU VECTORL(1, X, X, X, 0, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(1, X, X, X, 0, 1, x, _Error_handl er_unexpected_t hread),
ETPU VECTORL(1, X, X, X, 1, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(1, X, X, X, 1, 1, x, _Error_handl er_unexpected_t hread),
ETPU VECTORL(2, X, X, X, X, X, X, _FError_handl er_unexpected_t hread),
ETPU VECTORL(3, X, X, X, X, X, X, _FError_handl er_unexpected_t hread),
ETPU VECTORL(4, X, X, X, X, X, X, _FError_handl er_unexpected_t hread),
ETPU VECTORL(5, X, X, X, X, X, X, _FError_handl er_unexpected_t hread),
ETPU VECTORL(6, X, X, X, X, X, X, _FError_handl er_unexpected_t hread),

/'l Links are not used, should never get a link
/1 Therefore, threads with LSR set get steered to the error handler.
I HSR LSR ML M PIN FO F1 vector

ETPU VECTORL(O, 1, 1, 1, x, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, 1, 1, 1, x, 1, x, _FError_handl er_unexpected_thread),
ETPU VECTORL(O, 1, O, O, 0, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, 1, O, O, 0, 1, x, _FError_handl er_unexpected_thread),
ETPU VECTORL(O, 1, O, O, 1, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, 1, O, O, 1, 1, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, 1, O, 1, x, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, 1, O, 1, x, 1, x, _FError_handl er_unexpected_thread),
ETPU VECTORL(O0, 1, 1, 0O, x, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, 1, 1, 0O, x, 1, x, _FError_handl er_unexpected_thread),

page 28, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.2.2

/1 Al though Flag0 is not used,

/1 it is set to zeroin init.

/'l Therefore, threads that respond

/1 when Flag0 is set are invalid

/1 and get steered to the error handler.

ETPU VECTORL(O, O, 1, 0, O, 1, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 1, 0, 1, 1, x, _Error_handl er_unexpected_thread),

/1l Action Unit B is not used.
/1 Therefore, MRL-B should never get set.
/1 Threads with M2 set get steered to the error handler.

/1 HSR LSR ML M2 PIN FO F1 vector

/1 HSR LSR ML M PIN FO F1 vector

ETPU VECTORL(O, O, 0, 1, 0, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 0, 1, 0, 1, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 0, 1, 1, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 0, 1, 1, 1, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 1, 1, 0, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 1, 1, 0, 1, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 1, 1, 1, 0, x, _Error_handl er_unexpected_thread),
ETPU VECTORL(O, O, 1, 1, 1, 1, x, _Error_handl er_unexpected_thread),

b
Threads

The most critical elements of the eTPU class are the threads. A thread is a section of
code that quickly responds to event(s). When a thread ceases to execute it ‘ends. The
scheduler then queues up another thread for execution by the execution unit. However, if
none of the 32 channels in the engine are requesting service, then the execution unit can
actually go idle such that nothing at all is executing. While the execution is'ldle’ (waiting
for a channel to request service) the SDM memory is read as part of a 'safety’ mechanism
to assure that there are no memory errors.

Note that threads are by definition of type 'void' since when a thread ends no data is
returned.

_eTPU cl ass My C ass

{
/Il <... SNIP ...>
_eTPU_t hread Handl eMat chA(_eTPU_mat ches_enabl ed) ;
/Il <... SNIP ...>

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 29

5. eTPU Programming Model

b
_eTPU thread MyClass::Init(_eTPU matches_di sabl ed)
{
[l <... SNIP ...>
_myChanVar = tcrl;
[l <... SNIP ...>
}

5.2.2.1 Enabling/Disabling Matchesin the Thread

While a thread executes matches for the channel executing the thread can either be
enabled to disabled. Note that this applies to just to the single channel executing the thread.
This is controlled by the first argument in the thread declaration as shown below. The
setting is called the Match Enable (ME) Bit which is actually encoded into the Entry Table.
The keywords that support thisare”_eTPU_matches_disabled" and

" _eTPU_matches_enabled". It is generally recommended that users write their
functions/threads in such a way that matches can be enabled during thread processing. If
possible, only initialization & shutdown threads should have matches disabled.

_eTPU_t hread Handl evat ch(_eTPU_nat ches_enabl ed) ;

5.2.2.2 Controlling the Preload Parameter Bit (PP)

Immediately prior to execution of a thread, there is a Time Slot Transition (TST) in which
two or three Channel Variables are pre-loaded into the eTPU's execution unity thereby
improving performance many cases. There is some configurability in which variables are
preloaded which is controlled by the Preload Parameter Bit (PP). It is generally preferable
to allow the toolset to contral this setting as it is chosen as part of an execution speed and
code size optimization strategy. However, this can be overridden using an optional
(second) argument in the thread declaration as shown below. Note that supported
keywords are"_eTPU_preload low" and"_eTPU_preload high". Note that this option is
(correctly) seldom used.

_eTPU_t hread Handl eMat ch(_eTPU_mat ches_enabl ed, _eTPU_prel oad_hi gh);

page 30, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.2.3

Entry Tables

The last main piece of an eTPU class is the entry table definition. A class may be
associated with one or more eTPU entry tables, each of which has a unique eTPU function
number. These entry tables are defined like initialized arrays and the user must explicitly
specify an eTPU thread for each of the 32 different entry conditions allowed per table. As
part of the entry table definition, table qualifiers such as type (standard or alternate), pin
direction, and CFSR (function number) value are specified.

The entry table definition takes the form of an array initializer, with a total of 32 entries,
one for each possible unique entry. The entry table is qualified by whether it is alternate or
standard, whether it is based upon an input or output pin value, and what channel function
select number it should be assigned. The input/output setting generates a #define in the
auto header for use during host initialization of the eTPU; note that some microcontrollers
only support an input pin setting. 1t does not actually affect eTPU code generation. The
entry table will be given the specified function number, unless during link a conflict is found
in which case linking fails. 1f no function number is specified (autocfsr), the linking process
automatically assigns a function number. Each entry vector is specified by its entry
conditions, and the thread activated by those conditions. Vectors may be specified in any
order as long as the complete set of 32 is defined. To simplify the entry table definition,
several macros have been defined. The first begins the table definition:

#def i ne DEFI NE_ENTRY_TABLE(cl assNane, tabl eNane, tabl eType, pinDrection, cfsrValue)

The className and tableName must match the names used in the class declaration. The
tableType parameter must be standard or alternate. The pinDirection argument can be
either inputpin or outputpin. Finally, the cfsrValue can be either a number from [0-31],
or it can be autocfsr, in which case the linker assigns the entry table a CFSR value.

Then, three different macros are used to specify each entry vector. Three are required
since depending upon entry table type, up to 3 HSR values can contribute to the entry.

#def i ne ETPU VECTCRL(hsr1, Isr, nil, n2, pin, flag0, flagl, threadName)
#define ETPU VECTCR2(hsr1, hsr2, Isr, nil, n2, pin, flag0, flagl, threadName)
#def i ne ETPU VECTCR3(hsr1, hsr2, hsr3, Isr, nil, n2, pin, flag0, flagl, threadNane)

Below is an example of the definition of a standard entry table with a user-specified CFSR
value.

DEFI NE_ENTRY_TABLE(d assNane, EntryTabl eNane, standard, inputpin, 3)
{

I HSR LSR ML M2 PIN FO F1 vector

ETPU VECTORL(1, x, X, X, 0, 0, x, Initialize),
ETPU VECTORL(1, x, X, x, 0, 1, x, Initialize),
ETPU VECTORL(1, x, X, X, 1, 0, x, Initialize),
ETPU VECTORL(1, x, X, x, 1 1, x, Initialize),

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 31

5. eTPU Programming Model

ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,

d obal _Error_Thread),
d obal _Error_Thread),
d obal _Error_Thread),
d obal _Error_Thread),
d obal _Error_Thread),
d obal _Error_Thread),
Handl eMat ch),

Handl eMat ch),

ETPU VECTORL(2, X, X, X, X, X, X, dobal_Error_Thread),
ETPU VECTORL(3, X, X, X, X, X, X, dobal_Error_Thread),
ETPU VECTORL(4, X, X, X, X, X, X, dobal_Error_Thread),
ETPU VECTORL(5, X, X, X, X, X, X, dobal_Error_Thread),
ETPU VECTORL(6, X, X, X, X, X, X, dobal_Error_Thread),
ETPU VECTORL(7, X, X, X, X, X, X, dobal_Error_Thread),
ETPU VECTOR1(O, 1, 1, 1, x, 0, x, Handl eMatch),
ETPU VECTORL(O, 1, 1, 1, x, 1, x, Handl eMatch),
ETPU VECTORL(O, O, O, 1, 0, O, x, dobal_Error_Thread),
ETPU VECTORL(O, O, O, 1, 0, 1, x, dobal_Error_Thread),
ETPU VECTORL(O, O, O, 1, 1, O, x, dobal_Error_Thread),
ETPU VECTORL(O, O, O, 1, 1, 1, x, dobal_Error_Thread),
ETPU VECTOR1(O, O, 1, 0, 0, O, x, HandleMatch),
ETPU VECTORL(O, O, 1, 0, 0, 1, x, HandleMatch),
ETPU VECTORL(O, O, 1, 0, 1, 0, x, Handl eMatch),
ETPU VECTORL(O, O, 1, 0, 1, 1, x, Handl eMatch),
ETPU VECTORL(O, O, 1, 1, 0, O, x, HandleMatch),
ETPU VECTORL(O, O, 1, 1, 0, 1, x, Handl eMatch),
ETPU VECTORL(O, O, 1, 1, 1, 0, x, Handl eMatch),
ETPU VECTORL(O, O, 1, 1, 1, 1, x, Handl eMatch),

1, 0, 0, 0, 0, Xx

1, 0, 0, 0, 1, x

1, 0, 0, 1, 0, X

1, 0, 0, 1, 1, x

1 0, 1, x 0, x

1 0, 1, x 1, x

1 1, 0, x 0, x

1 1, 0, x 1, x

An example of an alternate entry table might look like:
DEFI NE_ENTRY_TABLE(UART, UART, alternate, outputpin, autocfsr)

{

I HSR LSR ML M PIN FO F1 vector

ETPU_VECTOR2(2, 3, X, X, X, 0, 0, x, @obal_Error_Thread),
ETPU_VECTOR2(2, 3, X, X, X, 0, 1, x, dobal_Error_Thread),
ETPU_VECTOR2(2, 3, X, X, X, 1, 0, x, dobal_Error_Thread),
ETPU_VECTOR2(2, 3, X, X, X, 1, 1, x, dobal_Error_Thread),
ETPU VECTOR3(1,4,5, X, X, X, X, X, X, TXINT),
ETPU_VECTOR2(6, 7, X, X, X, X, X, X, RXINT),
ETPU_VECTORL(O, 1, 0, 0, 0, Xx, x, @obal_Error_Thread),
ETPU_VECTORL(O, 1, 0, 0, 1, Xx, x, @obal _FError_Thread),

page 32, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.2.4

ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,
ETPU_VECTORL(O,

Test _New Data_TX),
Send_Seri al _Data_TX),
Recei ve_Seri al _Data_RX),
Recei ve_Seri al _Data_RX),
Test _New Data_TX),
Send_Seri al _Data_TX),
Recei ve_Seri al _Data_RX),
Recei ve_Seri al _Data_RX),
d obal _Error_Thread),

d obal _Error_Thread),

Det ect _New Data_ RX),

Det ect _New Data_ RX),

d obal _Error_Thread),

d obal _Error_Thread),

Det ect _New Data_ RX),

Det ect _New Data_ RX),
Test _New Data_TX),
Send_Seri al _Data_TX),
Det ect _New Data_ RX),

Det ect _New Data_ RX),
Test _New Data_TX),
Send_Seri al _Data_TX),
Det ect _New Data_ RX),

Det ect _New Data_ RX),

PRPPRPPPPPPOOO0OO0OOOOORRRERRREREREE
PRPPPPPPPPPPPPPPPOOO0OOOOODO
PPPPOOOORPRPPOOOORRPRRRPRLROOOO
PORPOPRPOPOPRPORPRORPROPORPRORORORO
PPOOPRPPOORPRPRPOORHFHRPOORRPRPROORROO

X X X X X X X X X X X X X X X X X X XXX X XX

s
The linker would assign a function number to the UART entry table assigned above, and

the auto-header output would not contain information for host on setting the entry table to
the input or output pin.

Entry tables must contain all 32 of the entry vectors shown above for either a standard or
aternate table, however, there is no constraint on the ordering of the entries. They can be
re-arranged for ease of reading, etc.

Member Functions (Methods)

Member Functions (methods) are very cool. This is a section of code that can be called
from thread and other Member Functions within the same class, thereby addressing the
"two copy' problem of Legacy Mode code. A key aspect of Member Functions (and an
important way the differ from regular 'c' functions) is that they can access the channel
variables. See below.

_eTPU cl ass MyCl ass

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 33

5. eTPU Programming Model

{
Il <... SNIP ...>
/1 Member Functions (nethods)
i nt 24 Cal cul at eQut put (i nt 24 nyPassedVar) ;
Il <... SNIP ...>
1
i nt24 MyCl ass:: Cal cul at eQut put (i nt 24 nyPassedVar)
{

/1 Class Menber Function can directly access channel
vari abl es
return _myChanVar + nyPassedVar;

}

A frustration with Member Functions in the Scratchpad or Engine programming model is
that they pass parameters either in 'Global Scratchpad' or in the 'Engine’ data space. A
workaround is to set the programming model for just this code file to the 'Stack’
programming model. This has the advantage that the 'Stack’ programming model passes the
first few parameters in registers which is significantly faster and tighter. Then, to make
sure that no stack is actually used, use the following pragma.

#pragma verify_nmenory_size stack O bytes

The above does not actually force there to be no variables passed on a stack. Instead, it
makes this potential problem observable by issuing a compile-time error.

5.2.4.1 Member Function Fragments

Member Functions can also be declared as 'fragments which have no 'return’. Instead,
execution always ends in the fragment. This eliminates much of the call/return structure
thereby reducing code and increasing execution speed as shown below in mixed
source/assembly view.

page 34, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

525

5251

_eTPT_fragment MyClass::DoSomethingThenEnd (int24 myPassedVar)
{
link = myPassedVar + 0x3;

_eTPT _thread MyClass::Init(eTPU matches disabled)
{

_myChanVar = tcrl;

DoSomethingThenEnd (0x5) ;

Channel Variables

Class data is called the “channel frame” which consists of one of more Channel Variables.
Each channel contains its own variable-sized channel frame. There is a static copy of the
channel frame for each channel, or set of channels, to which the eTPU class is assigned.
The assignment itself is done via a combination of the channel function select register
(CFSR) and allocating room for the channel frame in SDM (SPRAM) and properly setting
the channel parameter base address (CPBA).

_eTPU cl ass MyCl ass
{

/1 Channel Vari abl es

int24 _nyChanVarl, _nyChanVar2;
int8 _nmyiBitChanVar;

/Il <... SNIP ...>

Hiding Channel Variables (Public/Private)

The visibility of eTPU classes Channel Variables can be 'public' (the default) or 'private’
visibility setting using the "public" and "private” keywords, much like in C++. Items get
their visibility setting based on the nearest visibility keyword declared above them, or are
"public” if no visibility keywords are present. The visibility setting only applies to Channel

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 35

5. eTPU Programming Model

Variables and whether their interface information is exported into the auto-defines and
auto-struct files. Private data is not referenced in the generated auto-defines and/or auto-
struct. Below is an example class definition showing this feature.

_eTPU cl ass Test
{
public:

int ri;

int r2;

private:
int opl;
int op2;

public:
int r3;
int r4;

private:
int op3;
i nt8 op4;
struct S op5;

/] et hods

/'l threads
_eTPU thread Mai n(_eTPU nmat ches_enabl ed) ;

/'l entry tables
_eTPU entry_table Test;

3
The Channel Variables r1 - r4 are public and their location information will be output in the
auto-defines and auto-struct files. The opN variables are private and will not be exposed in
the auto-generated interface files.

page 36, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.2.5.2 Initial Values

Channel variables (class data members) can be given initial values that flow through to the
auto-generated initialized data files output by the linker. 1n most cases channel variable
initialized data is not used, as channels need to be initialized programatically anyways, but
occasionally it is useful. The below code sample shows how it is done.

/1 ETEC cl ass decl aration nmust come first (can be in an
i ncl uded header file)
_eTPU cl ass SoneCl ass

{
/1
int8 _sone8BitVar;
int24 _sone24Bit Var;
int24 * sonmePoi nter;
/1

b

int g_int24,

/1l provide initial values for SoneCl ass data menbers
/1 type portion must match type as declared in class
int8 SoneC ass:: _sone8BitVar = 33;

i nt24 SonmeCl ass:: _sonme24BitVar = 1234;

i nt24 *SoneCl ass::_sonePoi nter = &g_int 24;

5.2.5.3 Access Oustide Class Scope

A class public channel variables can be accessed outside its scope. Presumably this would
be done in conjunction with a chan register change in order to get or set data on another
channel. The syntax is shown below.

#include "OherClass.h" // declaration of OherClass eTPU
cl ass

11

_eTPU thread Thi sCl ass:: Thi sThread(_eTPU_mat ches_enabl ed)
{

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 37

5. eTPU Programming Model

5.2.6

11

chan = SonmeQt her Chan; // change chan

tempLocal 1 = OtherCl ass:: _otherCl assMenber1; // get
O herCl ass::_otherCl assMenber2 = tenpLocal 2; // set
chan = ThisChan; // return to chan

11

Channel Groups

Multiple channel groups are really cool! Multiple channel groups can ...

e Share channel variables.
e Contain any combination of shared and unshared threads.
e Have separate entry tables.

The 12C code found below is available for download from the ASH WARE website

All threads, member
functions, and fragments
running on multiple channels

SR @llagy I8E rmEfEen can access the shared channel

{

variables

unsigned intZ4 _tLOW;

unsigned int24 _tHIGH;

// threads

_eTPU thread InitSCL out(eTPU matches disabled);

_eTPU_thread Processhck(_eTPU matches enabled);

Because there are multiple
entry tables, thread can be
assigned to just a single
channel or to multiple

// entry tables channels

_eTPU entry table I2C SCL out;

_eTPU entry table I2C SCL in;

_eTPU entry table I2C SDA out; . .

“eTPU_entry table I2C_SDA in; Multiple entry tables in the same class
BE support event response threads to be

associated to just one channel or to

multiple channels

page 38, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.2.7 Extension Syntax Details

The ETEC syntax extensions have been added into the C99 grammar as follows:

Several productions have been added to type-specifier:
type-specifier:

et pu-cl ass-specifier

_eTPU t hread

_eTPU entry_table

/1 only to be used in thread declaration / definition
_eTPU _nmat ches_enabl ed

/1 only to be used in thread declaration / definition
_eTPU _nmat ches_di sabl ed

/1 only to be used in thread declaration / definition
_eTPU prel oad_I| ow

/1 only to be used in thread declaration / definition
_eTPU prel oad_hi gh

et pu-cl ass-specifier:
/1l function declarators are
//allowed in the struct-declaration-I|ist
_eTPU cl ass identifier { struct-declaration-list }

The following production has been added to declarator:
decl arator:

scope director-decl arator

scope:
scope- nane :

scope- nane:
identifier // eTPU cl ass nane

The following productions have been added to type-qualifier — they can only apply to the
_eTPU_entry_table type:

Type-qualifier:

_eTPU_standard_ET

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 39

5. eTPU Programming Model

_eTPU al ternate ET
_eTPU_i nput pi n_ET
_eTPU out put pi n_ET
eTPU cfsr_[0-31] _ET
_eTPU cfsr_autocfsr_ ET

In order to support the public/private feature, two productions have been added to

struct_declaration:

struct _decl aration
specifier_qualifier_list struct_declarator_Iist

" public’
"private'

5.3 eTPUTypes

The C basic types map to the eTPU hardware as follows:

char, unsigned char

8 hits

int8 is a synonym for char

short, unsigned short

16 bits

int16 is a synonym for short

int, unsigned int

24 bits

int24 is a synonym for int

long int, unsigned long int

32 bits

int32 is a synonym for long int; 32-bit
int usage is limited as the eTPU ALU
only operates on 24-bits. Essentially
only load/store operations are
supported. Any use of 32-bit data in an
expression that involves arithmetic
operations outside assignment
(load/store) result in compilation errors.
Conversion via typecast to
signed/unsigned int32 is supported.

long long int, unsigned long
long int

32 bits

treated like long types (see comment
above)

page 40, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

1 bit / 8 bits

_Boal

_Bool needs to hold O or 1. By default,
it is packed into 1 bit that is part of an
8-bit unit. Global _Bool variables
consume an entire 8-bit unit by
themselves so that external linking
works correctly. Up to 8 channel
frame _Bool variables can packed into
one 8-hit unit.

Arrays of _Bool are treated as special
“bit arrays’ and are limited to a length
of 24.

If the —ansi mode is specified, then all
_Booals consume and 8 bits and arrays
of _Booals are similar to arrays of
chars.

_Complex

Not supported

Not supported

float

Not supported

Not supported

double

Not supported

Not supported

The TR 18037 Embedded C extensions defines additional types. ETEC supports these as

follows:

no TR18037 defined type | 8 bits, s.7 format | fract8 is a synonym
[use 'fract8]
no TR18037 defined type | 8 bits, 0.8 format | unsigned fract8 is a synonym

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 41

5. eTPU Programming Model

[use 'unsigned fract8]

short _Fract 16 bits, .15 fractl6 is a synonym for short _Fract
format
unsigned short _ Fract 16 bits, 0.16 unsigned fract16 is a synonym for
format unsigned short _ Fract
_Fract 24 bits, .23 fract24 is a synonym for _Fract
format
unsigned _Fract 24 bits, 0.24 unsigned fract24 is a synonym for
format unsigned _Fract
long _Fract 32 bits, s.31 fract32 is a synonym for long _Fract.
format Note the eTPU ALU/MDU does not
support 32-bit operations so 32-hit fract
operations are relegated to load/store.
unsigned long _Fract 32 hits, 0.32 unsigned fract32 is a synonym for
format unsigned long _Fract. Note the eTPU
ALU/MDU does not support 32-bit
operations so 32-hit fract operations
are relegated to load/store.
_Accum TBD TBD

54 Pointers

Pointers in the eTPU programming model are sized to 24-hits as this is the natural size of
the machine (16-bits would provide sufficient range, however). In the default mode,
pointers to 8-hit types increment in 1-byte steps, 16-bit types increment in 2-byte steps, and

page 42, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.5

pointers to 24-bit types increment in 4 bytes steps. Some data packing modes cause all
pointers to basic types to increment in 4 byte steps (see later sections).

All pointers are always kept in global address space. Thus when the address operator is
applied to a channel frame variable the address is computed to be the sum of the channel
frame offset and the CPBA register. The same is true with eTPU2 engine-relative
address space.

_Bool pointer note. Pointers to type _Bool are allowed, and will increment/decrement like
a pointer to an 8-bit. Depending upon _Booal bit packing they may point to any of the 8 bits
ina_Booal unit. It is recommended pointers to type _Bool not be used, unlessin ANSI
mode.

eTPU Data Packing

Because of the unique memory & addressing architecture of the eTPU, memory allocation
of variables and data packing is a much more complex process than in many processor
architectures. The sections below provide details on how global variables are allocated,
channel frame variables, and lastly the aggregate types: structures/unions and arrays. Note
that the array packing option also impacts the behavior of pointer arithmetic; see section
4.3.11 for details.

Most of the packing algorithms are based around the following information:

The natural data sizes of the eTPU memory architecture are 1-byte, 3-byte and 4-byte
(limited 4-byte support, however — just load/store).

Single-byte data is best accessed when placed in a modulo 4 address, unless it does not
share a 3-byte location with any other data.

3-byte data is best accessed when placed in an address that is modulo 4 plus 1.

Packing multiple non-3-byte (< 3) data into 3-byte locations can result in data coherency
issues.

Multiple data packing modes are available in order to help tailor compilation to the
application requirements. Note however, that linking object files compiled under different
modes will result in link errors in many cases. It is highly recommended that all object files
to be linked be compiled with the same data packing settings (the linker has checks for
this).

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 43

5. eTPU Programming Model

55.1 Global Variables

Because global variables can be declared in one translation unit (source file), and
referenced externally by other translation units, the global variable packing algorithm must
properly account for this in order to have a reasonable linking process. To that end, all
global variables are allocated at natural locations for their size. Thus all 1-byte data
variables are located at modulo 4 addresses, all 3 byte variables at modulo 4 plus 1
addresses, etc. Note that by default global variables are located starting at address 0 of
shared data memory (SDM).

Given these global declarations:

char c1, c2, c3, c4,;

int32 s32;

unsi gned intl1l6 ul6;

int s24;

struct SomeStruct sonestruct; // sizeof (SonmeStruct) ==

The memory allocation looks like:

SDM Address M SByt 3 LSBytes
e
0 cl unused ul6
4 c2 s24
8 c3 unused
12 c4
16 s32
20 somestruct
24

Note that the order of declaration does not necessarily match the address order of the
variable locations. This is necessary to avoid significant wasted memory. Also note that

page 44, Compiler Reference Manual (C) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.5.2

5.5.3

5.54

global variables declared in different translation units may be intermixed in the final linked
memory map depending upon sizes and fitting (link) order.

All implicitly located global variables must fit in the directly accessible portion of shared
data memory (SDM), which on the eTPU is the first 1KB. It is possible to explicitly locate
global variables in any portion of SDM - see Explicitly L ocating Global V ariables for more
information.

Static Variables in Callable C-Functions

Because these types of C functions are not associated with a particular eTPU Function (or
eTPU Class), any static variables declared within them cannot be assigned to a channel
frame. Thus they are assigned global storage. WARNING: if using a dual eTPU part
(e.0. MPC5554) and running code containing such static variables on BOTH eTPUs, there
is risk of collisions between the two. This must be taken into consideration when using
such a construct; use of semaphore protection may be required depending upon the
intended application.

Explicitly Locating Global Variables

Global variables can be explicitly located in any part of shared data memory (SDM) via the
#pragma locate_symbol preprocessor directive. This capability should be used carefully
and is primarily provided as a way to locate large data items and buffers at the end of
SDM. More detailed information can be found in the Explicit L ocating section of the
manual.

eTPU2 Engine Relative Address Space

V ariables can specified for allocation in engine-relative address space through use of the

_ENGINE intrinsic address-space type qualifier. Note that automatic variables cannot be
so qualified; variables declared within the scope of a function with the _ENGINE qualifier
must have a storage class of either static or extern. Such variables are allocated with
respect to the user-configured engine base address register.

_ENGI NE i nt24 e_duty_cycl e;

On a dual-eTPU2 microcontroller, each engine references unique copies of e_duty_cycle,
assuming the engine-relative base address has been configured properly for each eTPU2.
It is generally recommended that the use of engine-relative variables be avoided as they

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 45

5. eTPU Programming Model

5.5.5

5.5.6

complicate the memory layout. An exception is if the user is also selecting the engine
scratchpad programming model.

eTPU Channel Frame Variables

Although channel frames are configured and located at run-time, channel variable
allocation is static to the channel frame base and thus the compilation process. The
mechanism for declaring channel variables differs between Legacy Mode and Enhanced
ETEC Mode, but in either case there are two packing modes for channel variables. The
default mode is called “PACKTIGHT”, and its goal is to use the least memory possible in
the allocation of the channel frame while still providing reasonable performance. The other
mode is called “FASTACCESS’, which places variables at their most natural locations for
efficient processing, even though it can result in more “holes” of unused memory ina
channel frame and thus greater memory usage. In either case, the order of declaration
does not necessarily result in monotonically increasing address offsets.

The default PACKTIGHT mode is described in more detail below; FASTACCESS is
described in an appendix. In either case the algorithm could change slightly over time, OR
the optimizer could re-arrange parameters depending upon level of optimization specified.
Should a user want complete control over the location of channel variables they should use
the explicit locating mechanism described in section 4.3.8 (TBD).

Channel Frame PACKTIGHT Mode

The PACKTIGHT mode packing algorithm first locates every variable of size 3 bytes or
larger. Next variables of size 2 bytes are located, followed by 1-byte variables last.

The set of channel frame variables (likely declared as parameters to an eTPU function in
Legacy Mode):

int x, y; [/l 24-bit vars

char c1, c2, c3, c4, c5, c6;

short a, b, c; // 16-bit vars

struct SomeStruct sonestruct; // sizeof (SomeStruct) == 8

Would get packed like:

SDM Channel Frame MSByte 3 LSBytes
Address Offset

page 46, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.5.7

5.5.8

0 cl X

4 c2 y

8 somestruct

12

16 a b

20 ¢ c3 c4
24 c5 c6 unused

Note that tight packing can potentially introduce coherency issues, such as at address
offsets 16 (a, b) and 20 (c3, ¢4, ¢). Ingeneral, it is best to avoid 16-hit data in eTPU code,
and to avoid 8-bit data ending up in non-optimal locations.

Local/Stack Variables

The ETEC compiler aggressively uses registers for local / temporary variables when
paossible, but sometimes such variables need to be stored in memory (e.g. when they have
the & address operator applied to them). ETEC uses a stack-based approach for local
variable overflow. Each stack variable takes up at least one 4-byte data word, and more if
the variable has size greater than 4 bytes, allowing for efficient access to such variables.

Structures & Unions

Like channel frames, structures can be packed in either a“PACKTIGHT” mode or a
“FASTACCESS’ mode. For structures, one additional mode exists — “LEGACY”. An
additional variable is ANSI mode, which forces the compiler to allocate members in
monotonically increasing offset order, even though the result can be significant wasted
memory.

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 47

5. eTPU Programming Model

Unions do not need to be packed, per se, as union members overlay each other. However,
by ANSI/ISO standard every union member is expected to be placed at an offset of O from
the union base... but that is not very practical on the eTPU with its unusual addressing
constraints. Take this union for example:

uni on Exanpl eUni on

{
i nt24 s24;
int8 array[4];
intl6e sl16;
int8 s8;

b

For efficient access, the byte offsets for the union members are best s24 -> 1, array -> 0,
s16 ->2, s8 -> 0. When ANSI mode is enabled, such a union would generate a warning;
the compiler will not (at this time) attempt to generate ANSI-compatible unions.

The data packing of C structures faces some of same issues discussed in channel frame
packing, with an additional twist. Per ANSI/ISO standard, struct member offsets are
expected to be in monotonically increasing order, however, on the eTPU this can result in
impractical data packing and significant memory waste. Once again there are essentially
two data packing flavors: “PACKTIGHT” attempts to minimize the amount of wasted
memory, while structures are laid out in “FASTACCESS’ mode to promote efficient
access, potentially at the cost of extra memory usage. The third mode, “LEGACY", is
only for handling certain cases where existing code is highly dependent upon the packing
done by legacy toals (e.g. a mix of C code and inline assembly). “LEGACY” packing is
very similar to “PACKTIGHT” except that members such is 8-hit variables will pack in
holes only within the last 4 bytes; they will not get packed back at the very first hole
available in the structure.

The default mode packing algorithm, PACKTIGHT, is detailed below. The algorithm may
change over time so it is recommended to always use the auto define data for referencing
structures from the host side. If complete control of data packing is required, the explicit
member locating constructs should be used. Also note that the ANSI mode affects
structure packing by forcing offsets to monotonically increasing.

page 48, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.5.9 Structure PACKTIGHT Mode

This is the default mode of the compiler, and uses the same algorithm as the channel frame
PACKTIGHT pack mode. The one difference occurs on small structs where the
component member’ s size totals 3 bytes or less. In this case the struct is packed to fit in
the same slot that basic typed variables of the same size would occupy. Some examples:

struct ByteBitfield

{
int8 a:?2;
int8 b:3;
int8 c:3;
}; /1 sizeof() == 1, gets packed like a char in channel

frame, array, etc.

struct TwoByteStruct

{
char x; // offset O
char y; // offset 1
}; /1 sizeof() == 2, gets packed like an intl6

struct ThreeByteStruct

{
intl6é twobytes; // offset 1
int8 onebyte; // offset O
}; I/l sizeof() == 3, gets packed |like an int24

The set of struct members:
int x, y; [/ 24-bit vars
char c1, c2, c3, c4, cb, c6;
short a, b, c¢; // 16-bit vars
struct SonmeStruct sonestruct; // sizeof(SomeStruct) == 8

Would get packed like:

SDM Channel Frame MSByt 3 LSBytes
Address Offset e

0 cl X

4 c2 y

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 49

5. eTPU Programming Model

8 somestruct

12

16 a b

20 c c3 c4
24 c5 c6 unused

The sizeof() this struct would be 28, including the two padding bytes at the end.

5.5.10 Structure Bit Fields

Bitfields can be made out of int8, int16 or int24 types. Bitfields are allocated starting with
least significant bit of the storage unit, and are never split across storage units by ETEC.

struct BitFiel dexanmpl e

{
int24 x : 10; // bit offset == 14
int24 y : 10; // bit offset == 4
int24 z : 10; // bit offset == 46

}; /1 sizeof() == 8

Structures (and thus bitfields) can also be mapped onto a register using the TR18037
named register concept, e.g.

struct tpr_struct {

unsi gned int16 TICKS 10;
unsi gned int16 TPR10 1;
unsi gned int16 HOLD 1;
unsi gned int16 | PH 1;
unsi gned int16 M SSCNT : 2;
unsi gned int16 LAST 1,

} register _TPR tpr_reg;

page 50, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.5.11 Arrays

5.5.12

The packing of arrays is also tied into how pointer arithmetic is handled in the compilation
process. Pointer arithmetic follows the array stride size settings, which are governed by
the array packing mode. Once again, the modes are termed PACKTIGHT (default) and
FASTACCESS. Because this setting affects pointer arithmetic (e.g. in FASTACCESS
mode incrementing a char pointer results in an increment by 4 bytes), care should be taken
in using the non-default setting. Additional PACKTIGHT mode specifics are given below;
further FASTACCESS information is in the appendix.

Note that FASTACCESS and ANSI modes are incompatible and compilation will error.

Array PACKTIGHT Mode

Inarray PACKTIGHT mode, the array stride size matches the element size with the
exception of 24-bit elements. For element types with a byte size of 3, the array stride size
is 4 bytes, thus leaving an unused byte between each element. These unused bytes are
open to be allocated, except if ANSI mode is enabled. Once an element is greater than 4
bytes in size, the stride size is rounded up to the next multiple of 4 bytes. Once again, the
unused memory between array elements is open for allocation (under default settings).

Some example declarations and the ensuing memory allocations are shown below:

char a[6];
int b[3];
struct FiveByteStruct
{

char f1;

int f2;

char f3;
}ocl2];
int24 x;
int8 vy;
intle z;

The resulting memory allocation map would look like (PACKTIGHT channel frame pack
mode):

SDM Channel Frame M SByt 3 LSBytes
Address Offset e

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 51

5. eTPU Programming Model

0 a[0] a[1] a[2] a[3]
4 a[4] a[5] z

8 y b[0]

12 unused bl1]

16 unused bl2]

20 c[0].f1 c[0].f2

24 c[0].f3 X

28 c[1].f1 c[1].f2

32 c[1].f3 unused

5.5.13 ANSI Mode

ANSI mode (controlled with the —ansi option) has been mentioned several times above.
Essentially it forces ANSI/ISO compatibility wherever possible, particularly in data packing
(structs are always packed in order, for example). Also, _Bools are packed as 8-bit units
rather than as single bits (LSB holds the O or 1 value). It is not recommended for use in
production eTPU code as it typically increases memory usage and decreases performance.

5.6 eTPU Hardware Access

Most eTPU hardware access involves the channel hardware or portions of the register set.
The underlying hardware programming model described here is defined in the ETpu_Hw.h
header file that is part of the ETEC distribution.

page 52, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.6.1

5.6.2

Channel Hardware Access

The channel hardware is represented by a large structure of bitfields. Each field
represents an accessible piece of channel hardware. This structure type has the name
chan_struct and as part of the standard programming model a “variable” of this type
named “channel” is declared. No actual memory space is allocated. Most fields are write-
only, none are readable in the normal sense. Some are test-only, whereas a few are both
writeable and testable.

Baseline eTPU Channel Hardware Programming Model

The eTPU chan_struct is defined as:
typedef struct {

CRC int : 2; [/l wite-only
ERWA int 1; // wite-only
ERVB int 1; // wite-only
FLC int 3; [/l wite-only
| PACA int 3; /] wite-only
| PACB int 3; /] wite-only
LSR int 1; // witeable, testable, entry condition
MRLA int 1; // witeable, testable
MRLB int 1; // witeable, testable
MRLE int 1; // wite-only
MID int 2; [/l wite-only
OPACA int 3; /] wite-only
OPACB int 3; /] wite-only
PDCM int 4 ; /] wite-only
PI N int 3; /] wite-only
TBSA int 4 ; /] wite-only
TBSB int 4 ; /] wite-only
TDL int 1; // wite-only
SWPR int 2; I/l witeable, testable
/] [setting to -1 triggers senmaphore free]
FLAGD int 1; // witeable (also via FLC), entry condition
FLAGL int 1; // witeable (also via FLC), entry condition
FMD int 1; /] test-only
FML int 1; /] test-only
PSS int 1; /] test-only
PSTI int 1; /] test-only
PSTO int 1; /] test-only
TDLA int 1; /] test-only

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 53

5. eTPU Programming Model

5.6.3

TDLB

int
} chan_struct;

l .

1

Il test-only

See eTPU documentation for the details on each field.

Note that the ETpu_Std.h header file defines many macros that simplify interaction with
the channel hardware and make it more user-friendly.

eTPU+ Extensions to the Channel Hardware Programming Model

For the eTPU+, chan_struct has been modified and extended to the following:

typedef struct {

C RC
ERVWA
ERVB
FLC

| PACA
| PACB
LSR
MRLA
VRLB
MRLE
MID
OPACA
OPACB
PDCM
PI'N
TBSA
TBSB
TDL

UDCVRVWA

SVPR
FLAGD
FLAGL
FMD
FML

PSS
PSTI

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

nt

nt

nt

nt

nt
nt

NPFPPRPADMOPMNWCWONPPRPPPWOWWWERPW

N Y =

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

wite-only
wite-only
wite-only
wite-only
wite-only
wite-only
writeabl e,
writeabl e,
writeabl e,
wite-only
wite-only
wite-only
wite-only
wite-only
wite-only
wite-only
wite-only
wite-only
wite-only
writeabl e,
[setting t
witeabl e
testabl e,
witeabl e
testabl e,
test-only
test-only
test-only
test-only

testable, entry condition
testabl e
testabl e

testabl e
o -1 triggers semaphore free]
(also via FLO),
entry condition
(also via FLO),
entry condition

page 54, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

PSTO int : 1; // test-only
TDLA int : 1; /] witeable, testable
TDLB int : 1; /] witeable, testable

} chan_struct;

The following changes have been made to the eTPU+ chan_struct channel hardware
programming model from the baseline:

New fields are:

UDCMRWA - Controls writing of erta register to the UDCM regi ster.
Witing a value of 0 to this field triggers
the wite to the UDCM register.

Modi fied fields are:
Cl RC - This field has been extended by 1 bit,
with this new bit treated as inverted.

The 3-bit CIRC field then has the foll owi ng meani ngs:

Value ~CIRC[2] CIRC[1] CIRC[0] Meaning

0 0 0 0 channel interrupt request from
service channel [same as eTPU]
1 0 0 1 data transfer request from
service channel [sanme as eTPU]
2 0 1 0 gl obal exception [sane as eTPU]
3 0 1 1 do nothing; don't request
interrupt [same as eTPU]
4 1 0 0 channel interrupt request from
current channel
5 1 0 1 data transfer request from
current channel
6 1 1 0 channel interrupt & data
transfer request from current
channel
7 1 1 1 channel interrupt & data
transfer request from service
channel
FLAGO - Now testable for conditional junps
FLAGL - Now testable for conditional junps
TDLA - Now writeable (clearable) independent of TDLB
TDLB - Now writeable (clearable) independent of TDLA

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 55

5. eTPU Programming Model

5.6.4 eTPU2 Extensions to the Channel Hardware Programming Model

For the eTPUZ2, chan_struct has been modified and extended to the following:
typedef struct {

Cl RC int : 3; [// wite-only

ERWA i nt 1; /] wite-only

ERVB i nt 1; /]l wite-only

FLC i nt 3; // wite-only

| PACA int 3; [/ wite-only

| PACB i nt 3; [/ wite-only

LSR i nt 1; /Il witeable, testable, entry condition

MRLA i nt 1; // witeable, testable

VRLB int 1; // witeable, testable

MRLE i nt 1; /] wite-only

MTD i nt 2, I/ wite-only

OPACA int 3; /] wite-only

OPACB int 3; [/ wite-only

PDCM i nt 4 ; [/ wite-only

PI'N i nt 3; [/ wite-only

TBSA i nt 4 ; /] wite-only

TBSB int 4 ; [/ wite-only

TDL i nt 1; /] wite-only

UDCMRWA i nt 1; /]l wite-only

SMPR i nt 2 ; |/ witeable, testable
/]l [setting to -1 triggers semaphore free]

FLAGO i nt 1; /I witeable (also via FLC),
/'l testable, entry condition

FLAGL i nt 1; // witeable (also via FLC),
/'l testable, entry condition

FMD i nt 1; /] test-only

FML i nt 1,; /] test-only

PSS i nt 1; /] test-only

PSTI int 1; /] test-only

PSTO i nt 1; /] test-only

TDLA int 1; /]l witeable, testable

TDLB i nt 1; // witeable, testable

MRLEA int 1; /] wite-only

VRLEB i nt 1; /] wite-only

} chan_struct;

The following changes have been made to the eTPU2 chan_struct channel hardware
programming model from the eTPU+:

New fields are:

MRLEA - Now writeable (clearable) independent of MRLEB
(MRLE still clears both | atches)

page 56, Compiler Reference Manual (C) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

VMRLEB - Now writeable (clearable) independent of MRLEA
(MRLE still clears both | atches)
In order to allocate variable storage to eTPU2 engine-relative space, the address-space
type qualifier _Engine should be used.

5.6.5 Register Access

The eTPU has several special-purpose registers for which direct C-level access is
appropriate. Infact all registers can be accessed using the TR18037 named register
feature. The following named register keywords have been implemented in ETEC:

_SR

_TCR1
_TCR2
_TPR
_TRR

_ CHANBASE
P 31 24

These names are qualifiers to the ‘register’ storage class keyword. Typedefs have been
defined for the entire register set, using the names register_<name> in order to be
compatible with many existing applications (see etpu_hw.h). They are as follows:

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 57

5. eTPU Programming Model

typedef register _A regi ster_ac;
typedef register _B regi ster_b;
typedef register _C regi ster_c;
typedef register _D regi ster_d;
typedef register _CHAN regi ster_chan;

typedef register _DIOB regi ster_diob;
typedef register _ERTA register_erta,;
typedef register _ERTB regi ster_ertb;
typedef register _LINK regi ster_Ilink;
typedef register _MACH regi ster_nach;
typedef register _MACL regi ster_nacl;
typedef register _P regi ster_p;
typedef register _RAR register_rar;
typedef register _SR regi ster_sr;
typedef register _TCR1 register_tecri,
typedef register _TCR2 register_tcr?2;
typedef register _TPR regi ster_topr;
typedef register _TRR register_trr;

typedef regi ster _CHANBASE regi ster_chan_base;
typedef register P 31 24 regi ster_p31l_24;
typedef register P 23 16 regi ster_p23_16;

typedef register _P_15 8 regi ster_pl5_8;
typedef register P 7 0 regi ster_p7_0;
typedef register P 31 16 regi ster_p31_16;
typedef register _P_15 0 regi ster_pl5_0;
typedef register _P 31 0 regi ster_p31_0;

typedef register _CC regi ster_cc;

register_cc (register _CC) does not map to an actual physical register that can be
read/written by the eTPU. The register_cc type provides direct access to the ALU and
MDU condition codes. This is discussed further in the next section.

The register_chan_base (register _CHANBASE) type provides a way to specify a
channel relative pointer.

For the most part, the variables of the general purpose register types should not need to be
declared (e.g. &, p, diob, b, c, d, sr, macl, mach). In some cases variables of these registers
act as aliases only — they do not allocate them for the sole use of the variable (e.g. p).
However, registers a, b, ¢, d, diob and sr can be allocated directly by the user, locking out
the compiler from using them (except stack access can override b & diob). This capability
should be used very carefully as it can prevent the compiler from generating code resulting
in compilation errors.

page 58, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.6.6

An important difference between named register variables declared in a function scope,
and local variables which the compiler assigns to registers, occurs on function calls.
Named register variables are not saved/restored to prevent overwriting by the called
function; instead they are treated as if they have a global scope. True local variables, on
the other hand, are saved/restored if necessary when function calls are made.

The special purpose registers need to frequently be directly accessed, and are therefore
are declared in the ETpu_Hw.h header file as follows:

regi ster_chan chan ; /'l 5 bits
regi ster_erta erta ; /'l 24 bits
regi ster_erta ertA ; /'l 24 bits
register_ertb ertb ; /'l 24 bits
register_ertb ertB ; /'l 24 bits
register_tcrl terl ; /'l 24 bits
register_tcr2 ter2 ; /'l 24 bits
register _tpr tpr /1 16 bits
register _trr trr /'l 24 bits
regi ster_link link ; /1 8 bits

Using Special Registers for General Purpose

There are 4 special purpose registers that can potentially be designated for general purpose
instead in order to allow the compiler to generate more efficient code. The registers are
the tooth program register (TPR), tick rate register (TRR), TCR1 counter register and the
TCR2 counter register. When the angle mode hardware is not enabled, the TPR and TRR
registers are available for general purpose use. The TPR register is only 16 hits, so the
compiler will not use it as a temporary for expression processing, but will use it to hold local
variables of size 16 hits or less. The TRR register, when designated for general purpose,
can be used as a temporary or hold a local variable. Many non-engine control applications
do not use the TCR2 counter, and it can be configured as frozen such that it can then be
used by eTPU code for any general purpose. Last, in some unusual applications, TCR1 is
not used (e.g. if the eTPU is simply used as a co-processor to offload the host from some
processing) - it too can be frozen to allow for general use. These special registers are
designated as general purpose via the compiler command line option -
setRegGP=<REG[,REG]>". Note that all object files linked must have been compiled with
matching settings or the link will error and fail.

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 59

5. eTPU Programming Model

5.6.7

5.6.8

5.6.8.1

ALU Condition Code Access

Although best to avoid as a general coding practice, the ALU and MDU condition codes
can be accessed (tested) directly via_CC (register_cc). The comment in ETpu_Hw.h
best describes this feature:

/'l register_cc type is syntactically accessed |ike a struct (bitfield)

/1 of the follow ng declaration
/1 typedef struct {

Il unsigned int V: 1; // ALU overflow condition code
11 unsigned int N: 1; // ALU negative condition code
/1 unsigned int C: 1; // ALU carry condition code

/1 unsigned int Z : 1; // ALU zero condition code

Il unsigned int MW : 1; // MU overflow condition code
11 unsigned int MN: 1; // MU negative condition code
/1 unsigned int MC: 1; // MDU carry condition code

/1 unsigned int MZ : 1; // MDU zero condition code

Il unsigned int MB : 1; // MU busy flag

11 unsigned int SMCLK : 1; // semaphore | ocked flag

/'l } register_cc;

Built-in / Intrinsic Functions

This section covers available built-irvlibrary/intrinsic functions available in ETEC.

Compatibility Functions

The following built-in functions provide user control of eTPU hardware settings & features,
but generate no code; they provide compatibility with existing solutions.

match_enable() - when called out in a thread, it causes matches to be enabled during the
thread by setting the match enable bit in the entry table for all vectors pointed at the thread.
Note that threads default to matches enabled. Not needed in ETEC enhanced mode.

match_disable() - when called out in a thread, it causes matches to be disabled during the
thread by setting the match enable bit in the entry table for all vectors pointed at the thread.
Note that threads default to matches enabled. Not needed in ETEC enhanced mode.

preload_p01() - when called out in an eTPU-C thread, specifies that the low preload entry
option is to be used - this means p gets loaded with the data at channel frame address 0 (32
bits), and diob gets loaded with the data at channel frame address 5 (24 bits). The default
is to let the tools decide which preload results in the best code (recommended). In ETEC

page 60, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.6.8.2

mode, the preload is specified by specifying a second parameter to the eTPU thread,
" eTPU_preload low" or "_eTPU_preload high'".

preload _p23() - when called out in an eTPU-C thread, specifies that the high preload entry
option is to be used - this means p gets loaded with the data at channel frame address 8 (32
bits), and diob gets loaded with the data at channel frame address 13 (24 bits). The default
is to let the tools decide which preload results in the best code (recommended). In ETEC
mode, the preload is specified by specifying a second parameter to the eTPU thread,

" eTPU_preload low" or " _eTPU_preload high".

Functions that affect code generation:

read_mer() — triggers the contents of the A and B match registers to be transferred into
the erta/ertb registers.

NOP() — injects a no-op opcode into the code stream that does not get optimized out.

ETEC Coherency & Synchronization Control

These functions allow users to clearly state their needs in terms of coherency, ordering,
etc.

_AtomicBegin(), _AtomicEnd() - code located between a pair of these calls will be packed
into a single opcode; if this cannot be done a compilation error results. Another side-effect
of these atomic regions is that the optimizer will not optimize the code out, or move any of
the sub-instructions apart from each other. Other sub-instructions may be optimized into
the atomic opcode. See the Atomicity Control section for a matching pragma definition.

Example 1, Coherently clear any old match and schedule a new match,

/'l Coherently clear any old match and schedul e a new match
_Atom cBegi n();

Wit eErt AToMat chAAndEnabl e() ;

Cl ear Mat chAEvent () ;

_Atom cEnd();

Example 2, the provided macros for working around the T2/T4 (see provided standard file
‘etpu_std.h'):
/* eTPU2 unanbi guous nmatch set when in T2/ T4 tim ng node */

#defi ne Enabl eMat chA T2T4() { _Atom cBegin();
channel . ERWA = 0; channel. MRLEA = 0; _Atom cEnd(); }

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 61

5. eTPU Programming Model

#def i ne Enabl eMat chB_T2T4() { _Atom cBegin();
channel . ERWB = 0; channel . MRLEB = 0; _Atoni cEnd(); }

_SynchBoundaryAll() — disables any code from moving acrass the boundary during the
optimization process. See the Optimization Boundary (Synchronization) Control section for
a matching pragma definition.

Example 3, enforcing order of operations when setting a lock.

dat aLock = 1;
_SynchBoundar yAl | ();
*ptr++ = SomeVal ;
_SynchBoundar yAl | ();
dat aLock = 0;

5.6.8.3 TR18037 Fixed-point Library Support

_Fract support includes a portion of the fixed-point library specified in TR 18037, as well as
some extensions. Supported functions are:

int mulir(int, _Fract) — under ordinary arithmetic conversion rules the result of a
multiplication of an integer and a_Fract isa _Fract. There are applications where instead
the desired result is the integer portion of the result; this library function provides that

capability.

unsigned int muliur(unsigned int, unsigned _Fract) — unsigned version.
Other versions to support 8 and 16 bit int-fract multiplication:
int8 muli8r8(int8, fract8);

unsigned int8 muli8ur8(unsigned int8, unsigned fract8);

int16 mulil6r16(int16, fract16);

unsigned int16 mulil6ur16(unsigned int16, unsigned fract16);
int24 muli24r8(int24, fract8);

unsigned int24 muli24ur8(unsigned int24, unsigned fract8);
int24 muli24r16(int24, fract16);

unsigned int24 muli24ur 16(unsigned int24, unsigned fract16);

page 62, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.6.8.4 ALU/MDU Intrinsics

The eTPU has a number of hardware features that are not directly accessible via standard
C syntax. The intrinsics defined here provide C function-like access to these capabilities.
The eTPU Reference Manual should be consulted for additional details, particularly as
related to condition code calculations.

5.6.8.4.1 Rotate Right Support

/1 Rotate right by 1 bit the lower 8 bits

/1 (result[6:0] = v[7:1]; result[7] = v[O];

/1 result[23:8] = v[23:8];)

/1 Condition code flags are sanpled on 8 bits.
int24 _ _rotate_right_1 b7 _0(int24 v);

/1 Rotate right by 1 bit the |ower 16 bits

/1 (result[14:0] = v[15:1]; result[15] = v[O];

/1 resul t[23:16] = v[23:16];)

/1 Condition code flags are sanpled on 16 bits.
int24 _ _rotate_right_1 bl1l5 0(int24 v);

/1 Rotate right by 1 bit all 24 bits

/1 (result[22:0] = v[23:1]; result[23] = v[O0];)
/1 Condition code flags are sanpled on 24 bits.
int24 _ _rotate_right_1(int24 v);

/1 Rotate the 24-bit value v

/1 to the right by 27(bitexp+l) bits,

/'l where bitexp can be

/1 0, 1, 2 or 3.

/1 Condition code flags are sanpl ed

/1 per _sfXX extension, if used.

/1 See eTPU reference manual for details

/1 on condition code conputation

/1 with nulti-bit rotate.

int24 _ _rotate_right_2n(int24 v, int24 bitexp);
int24 _ _rotate_right_2n_sf8(int24 v, int24 bitexp);
int24 _ _rotate_right_2n_sf16(int24 v, int24 bitexp);
int24 _ _rotate_right_2n_sf24(int24 v, int24 bitexp);

5.6.8.4.2 Absolute Value Support

/1 Compute the absolute value of v.

/1 Condition code flags are sanpl ed

/1 per _sfXX extension, if used.

/1 See eTPU reference manual for details

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 63

5. eTPU Programming Model

/'l on
int24
int24
int24
int24

5.6.8.4.3 Shift Register Support

condition code computation with absol ute val ue.

__abs(int24 v);

__abs_sf8(int24 v);
__abs_sfl6(int24 v);
__abs_sf24(int24 v);

/1 Shift the SR register right one bit.
void __shift_right_SR();

11
11
11
11
11
11
11

Shift v right by one bit and return it.
Regi ster SR al so gets shifted right by one
bit and SR bit 23 gets the bit shifted out of v.
Condi tion code flags are sanpl ed

per _sfXX extension, if used.

See eTPU reference manual for details
on
i nt 24
i nt 24
i nt 24
i nt 24

condition code conmputation with add/shift
__shift_right_SR48(int24 v);
__shift_right_SR48_sf8(int24 v);
_shift_right_SR48_sf16(int24 v);
__shift_right_SR48_sf24(int24 v);

5.6.8.4.4 Shift By 2(N+1) Support

Il
Il

/10,

Il
Il
Il

/1 on

nt 24
nt 24
nt 24
nt 24
nt 24
nt 24
nt 24
nt 24

1, 2 or 3.

Condi tion code flags are sanpl ed

per _sfXX extension, if used.

See eTPU reference manual for details
condition code conputation with nulti-bit rotate.

__shift_left_2n(int24 v, int24 bitexp);
__shift_left_2n_sf8(int24 v, int24 bitexp);
__shift_left_2n_sf16(int24 v, int24 bitexp);
__shift_left_2n_sf24(int24 v, int24 bitexp);
__shift_right_2n(int24 v, int24 bitexp);
__shift_right_2n_sf8(int24 v, int24 bitexp);
__shift_right_2n_sf16(int24 v, int24 bitexp);
__shift_right_2n_sf24(int24 v, int24 bitexp);

right

Shift 24-bit value v left or right by 2*(bitexp+1l) bits
where bitexp can be

page 64, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.6.8.4.5 Set/Clear Bit Support

/1 Set or clear (bitval==0 -> clear, bitval==1 -> set)
/'l the bit specified by bitnumin v.
/1 1f revbitnumis not equal to O,
/] then the updated bit is actually 31 - bitnum
/1 Condition code flags are sanpled per _sfXX extension,
/1 if used.
/'l See eTPU reference nanual for details on condition code
/1 conputation with bit set/clear.
int24 _ bit_n_update(int24 v, int24 bitnum

int bitval, int revbitnum;
int24 _ bit_n_update_sf8(int24 v, int24 bitnum

int bitval, int revbitnum;

int24 _ bit_n_update_sf16(int24 v, int24 bitnum

int bitval, int revbitnum;
int24 _ bit_n_update_sf24(int24 v, int24 bitnum
int bitval, int revbitnum;

5.6.8.4.6 Exchange Bit Support

/'l Exchange the bit in v specified by the bitnum
/1 with C condition code flag.
/1 1f revbitnumis not equal to O, then the updated bit
/1 is actually 31 - bitnumrather then bitnum
/1 Condition code flags are sanpled per _sfXX extension,
/1 if used.
/'l See eTPU reference nanual for details on condition code
/] conmputation with bit exchange.
int24 _ bit_n_exchange_C(int24 v, int24 bitnum
int revbitnum;
int24 _ bit_n_exchange_C sf8(int24 v, int24 bitnum
int revbitnum;

int24 _ bit_n_exchange_C sf16(int24 v, int24 bitnum

int revbitnum;
int24 _ bit_n_exchange_C sf24(int24 v, int24 bitnum

int revbitnum;

5.6.8.4.7 MAC/MDU Support

All MAC/MDU intrinsic functions include a spin-while-busy loop after the operation is
begun. The optimizer will attempt to fill the pipeline with non-dependent opcodes and
eliminate the spin loop.

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 65

5. eTPU Programming Model

5.7

/1 Signed multiplication, with second argunent 8, 16, or 24 bit

/1 {mach,macl} = x * vy

void __mults8(int24 x, int8 vy);

void __multsl6(int24 x, intl6 y);

void __mults24(int24 x, int24 y);

/'l Unsigned nutliplication, with second argunent 8, 16, or 24 bit

void __rmultu8(unsigned int24 x, unsigned int8 y);

void __multulé(unsigned int24 x, unsigned intl6 y)

void __mul tu24(unsigned int24 x, unsigned int24 y)

/'l Signed 24-bit multiply-accunul ate

/'l {mach, macl} += x * y

void __macs(int24 x, int24 vy)

/1 Unsigned 24-bit nultiply-accumul ate

/'l {mach, macl} += x * y

void __macu(unsigned int24 x, unsigned int24 vy);

/1 Multiply signed value x and unsigned 8-bit fractional value f. The
manti ssa

/'l portion of the result ends up in mach, and the fractional portion ends
in macl.

void __frults8(int24 x, unsigned fract8 f)

/1 Multiply signed value x and unsigned 16-bit fractional value f. The
manti ssa

/'l portion of the result ends up in mach, and the fractional portion ends
in macl .

void __frultsl6(int24 x, unsigned fractl6 f)

/1 Multiply unsigned value x and unsigned 8-bit fractional value f. The
manti ssa

/1 portion of the result ends up in mach, and the fractional portion ends
in macl.

void __fmultu8(unsigned int24 x, unsigned fract8 f)

/1 Multiply unsigned value x and unsigned 16-bit fractional value f. The
manti ssa

/1 portion of the result ends up in mach, and the fractional portion ends
in macl.

void __fmultul6(unsigned int24 x, unsigned fractl16 f);

/1 Unsigned division, 24 bit / 8,16,24 bit

/1 {macl} = x / y, {mach} = reminder

void __divu8(unsigned int24 x, unsigned int8 y);

void __divul6(unsigned int24 x, unsigned intl6 y);

void __divu24(unsigned int24 x, unsigned int24 y);

Code Fragments

Given the thread-based nature of eTPU execution, ETEC provides the concept of “no-
return” function calls — such functions are called “fragments” and are specified by using
the special return type “_eTPU_fragment”. Give the no-return functionality,
_eTPU_fragment is essentially equivalent to the void type.

up

up

up

up

page 66, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

When a call to a fragment is made, the compiler generates a jump opcode rather than a call
opcode since no return occurs. Additionally, no state such as registers, stack frame, etc. is
saved since execution cannot return to the caller, thereby saving unnecessary overhead.
Fragments support passing parameters just like normal functions, and the calling
conventions are the same except for the state save (on both caller and callee sides). Note
that on the fragment (callee) side, there is also reduced state saving — non-volatile registers
do not need to be saved, nor does the return address register. Internally, fragments work
just like any other C function — they can make calls, even to other fragments. A simple
example of using common initialization code is show below.

_eTPU thread PPA::INIT_TCR1(_eTPU mat ches_di sabl ed)

{

}

/* set up tine base for TCRL1*/
ActionUnitA(MatchTCR1, CaptureTCRl, GreaterEqual);
Conmmonlnit(); // no return fromthis call

_eTPU thread PPA:: I NI T_TCR2(_eTPU mat ches_di sabl ed)

{

}

/* set up tinme base for TCR2 */
ActionUnitA(MatchTCR2, CaptureTCR2, GreaterEqual);
Conmonlnit(); // no return fromthis call

_eTPU fragnent PPA:: Commonl nit ()

{

Di sabl eCut putBuffer(); /* required for Puna */

/1 Needed so ouptut pin does not get toggled
OnMat chA(NoChange) ;

/1 Needed so ouptut pin does not get toggled
OnMat chB(NoChange) ;

Cl ear Al | Lat ches();
Measurenent = | nacti ve;

/1 Enabl e service request when first edge occurs
Si ngl eMat chSi ngl eTransi tion();

11

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 67

5. eTPU Programming Model

5.7.1

5.8

Note that the compiler will attempt to detect stranded code that follows a call to a
fragment, and issue a warning if it finds such code.

The ETEC compiler supports an alternative syntax for fragment declarations. The
"_eTPU_fragment" keyword can be used interchangeably with "void
__attribute__((noreturn))”, which is a GNU-based syntax.

_eTPU_thread Calls

ETEC supports “calls’” to_eTPU _thread functions — these act like calls to fragments in
that they execute a jump rather than call. Although this is functional, in most casesiit is
recommended that such common code be placed in an _eTPU_fragment instead and called
from two locations, rather than directly callingan _eTPU_thread. Threads
(_eTPU_thread functions) may contain additional prologue code that the caller does not
actually want to execute, although such code does not cause invalid behavior.

State Switch Constructs

ETEC provides a specialized version of the C switch statement that provides reduced
thread length operation and in most cases reduced code size, at the cost of user control
over state values and some of the robustness features of the standard C switch statement.
The tradeoffs should be carefully considered before choosing to use this feature. This
‘state switch’, as it is referred to, makes efficient use of the eTPU architecture’ s dispatch
instruction. The dispatch instruction allows a jump (or call) to the instruction at the address
of the current program counter, plus a variable displacement which can be up to 255
instructions/opcodes. This feature is activated through two new keywords:

/[l simlar to “switch” keyword in C syntax
_eTPU state_switch

/[l simlar to “enunf keyword in C syntax
_eTPU state_swi tch_enum

The sections below provide the details on this feature.

page 68, Compiler Reference Manual (C) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.8.1 State Enumeration

A state enumeration must be declared as only expressions of this type may be used in state
switches. A state enumeration is like a regular *C’ enum, with a few of exceptions.

A state enumeration is denoted withthe *_eTPU_state switch_enum’ rather than
‘enum’ keyword.

The enumerators in a state enumeration cannot be assigned values. Code such
“_eTPU_state switch_enum CrankState { STALL =5, };” will result in a compile
error.

The enumerator values assigned by the compiler/linker may not match the ANS|
standard for C code, wherein they start at 0, and increment by 1 with each

successive enumerator. Rather, the compiler/linker assigns values such that the
dispatch instruction used for the matching _eTPU_state switch works correctly.

_eTPU_state switch_enum tag types (or typedef thereof) cannot be used in
typecasts. Thisis to prevent potentially dangerous code.

Variables declared with an _eTPU_state_switch_enum tag type are always
allocated as a single unsigned byte.

State enumeration literals must be unique among all the enumeration literals (state
or regular) of all the code that is to be linked together. This limitation is due to the
fact that the enumeration literals only get computed at link time and if the literals
are not uniquely named there can be clashes.

An example of a state enumeration type declaration is as follows:

_eTPU state_switch_enum CrankSt at es

{
CRANK _SEEK,
CRANK_BLANK_TI ME,
CRANK_BLANK_TEETH,
CRANK_FI RST_EDGE,
CRANK _SECOND_EDGE,
CRANK_TEST_POSSI BLE_GAP,
CRANK_VERI FY_GAP,
CRANK_GAP_VERI FI ED,
CRANK_COUNTI NG,
CRANK_TOOTH_BEFORE_GAP,
CRANK_TOOTH_AFTER_GAP,

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 69

5. eTPU Programming Model

5.8.2

5.8.3

CRANK_TOOTH_AFTER GAP_NOT_HRM

State Variable

A “state” variable must be declared with a state enumeration type. Variables of this
special tag type are 1 byte in size, and unlike variables of the standard enum tag type, strict
type checking is performed by the compiler. Such a state variable cannot be assigned to a
constant integer value, for example, or assigned the value of another variable of integer
type. It can only be assigned to one of the _eTPU_state switch_enum enumerators, or to
another variable of exactly the same type.

/'l declare state variable
_eTPU state_switch_enum CrankSt ates Crank_St at e;

/1 compilation error — nust assign to an enunerator
Crank_State = 0;

/1 valid
Crank_State = CRANK_SEEK;

State Switch

For each _eTPU_state_switch_enum tag type there can be up to one

_eTPU_state switch statement. It is the contents of this statement that determine the
state (enumerator) values. The linker issues an error if it finds more than one
_€eTPU_state switch associated with the same _eTPU_state switch_enum tag type.
Statements denoted with _eTPU_state switch are very much like the standard ‘' C' switch
statement, with a few exceptions:

e The controlling expressioninan _eTPU_state switch statement must have an
_eTPU_state switch_enum tag type.

e No‘default’ caseisallowedinan_eTPU_state switch.

e All enumeratorsinthe eTPU_state switch_enum tag type used in the controlling
expression must be associated with a case, even if it does nothing but ‘break’.

e When multiple cases are associated with the same piece of code, the compiler
implicitly inserts a NOP() between them — it must do this to ensure that each
enumerator isthe _eTPU_state switch_enum tag type gets a unique value.

page 70, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

No range or validity check is done on the controlling expression value.
Programmers using this feature MUST ensure that the state variable does not get
assigned an invalid value. The compiler assists with this via its strict type checking
on_eTPU_state_switch_enum tag types.

Note that a state variable, although it can only be used in a single _eTPU_state switch
statement, can be used other places in a normal ‘C’ switch statement.

An example of a state switch, shown in a listing file, is shown below (some code removed
for brevity). Note that every enumerator is covered by a case, and note the NOPs inserted
where multiple cases fall through to the same code.

_eTPU_state_switch (Crank_State)

O0CF4.:
OCF8:

0CFC:
0D0O0:

0D04:

0DO08:

0DOC:

0D10:

OxCFEFF987
O0x FFDFDEF9

Ox000FA439
OxCFFFF986

OxBFEC2F87

Ox1F783FFF

Ox58FFFELF

0xOFFF9FFF

ram
seq

{

p_31_24 = *((channel int8 *) 0x10);;

goto ProgranCounter + p_31_ 24, flush;;

case CRANK_BLANK_TI ME:

al u
ram

al u
ram
alu

chan

alu
seq

/1 timeout is expected
Bl ank_Ti me_Expi red_Fl ag
p_31_24 = ((u24) 0)+0x1;;
*((channel int8 *) 0x18) = p_31_24;;

/1 Timeout tine

ertb = Tooth_Time + Blank_Ti me;

ertA = tcr1+0x0;

di ob = *((channel int24 *) 0x1D);;

ertB = p+di ob;;

/'l schedule an immediate match to open the w ndow
erta = tcrl,;

Cl ear Mat chALat ch() ;

cl ear Mat chRecognitionLatchA, matchA = ertA,

set Mat chEnabl eLat chA,

cl ear Mat chRecogni ti onLat chB,

mat chB = ertB, set MatchEnabl eLat chB,

detectA = of f;;

Cl ear Mat chBLat ch();

Wit eErt AToMat chAAndEnabl e() ;

W it eErt BToMat chBAndEnabl e() ;

/1 don't detect transition during blank tinme
OnTransA (NoDetect);

1;

tcr2 = 0;

tcr2 = ((u24) 0)+0x0;
end; ;

br eak;

case CRANK_BLANK_TEETH:

/'l schedul e an i medi ate match
/1l to open the w ndow
erta = tcrl;

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 71

5. eTPU Programming Model

/'l clear MatchB
/1 & don't set new match val ue
Cl ear Mat chBLatch ();
0D14: OxDFEFD984 ram p_31_24 = *((channel int8 *) 0x10);
: chan clear MatchRecognitionLatchB;;
/1 so it always enabled wi ndowis fully open
/1 MatchA is left pending;
/1 in this channel node
/1 it doesn't request service
Bl ank_Toot h_Count - - ;
0D18: Ox1EF2AFFF al u p_31_24 = p_31_24-0x0-1;;
0D1C: OxCFFFF984 ram *((channel int8 *) 0x10) = p_31_24;;

/| < REMOVED>

case CRANK_FI RST_EDGE:
/1 Tinmeout time
ertb = Tooth_Tine + First_Tooth_Ti meout;
0D34: OxBFEF9F89 al u tecr2 = ((u24) 0)+0x0;
: ram diob = *((channel int24 *) 0x25);;
0D38: O0Ox1F783FFF alu ertB = p+diob;;
W it eErt BToMat chBAndEnabl e();
0D3C: Ox7FFFFFIF chan clear MatchRecognitionLatchB, matchB = ertB,
set Mat chEnabl eLat chB; ;
Cl ear Mat chBLat ch();
Crank_St ate = CRANK_SECOND_EDGE;
0D40: O0x005FA439 al u p_31_24 = ((u24) 0)+0x15;;
0D44: OxCFFFF987 ram *((channel int8 *) 0x1C) = p_31_24;;
tcr2 = 0O;

/| <REMOVED>

case CRANK_SECOND_ EDGE:
Tooth_Period_A = Tooth_Time - Last_Tooth_Ti ne;
0D50: OxBFEF9F95 al u tecr2 = ((u24) 0)+0x0;
: ram diob = *((channel int24 *) 0x55);;
0D54: 0xBC787B91 al u p = p-diob;
: ram *((channel int24 *) 0x45) = p_23_0;;
Crank_State = CRANK_TEST_POSSI BLE_GAP;
0D58: 0x009FA459 al u p_31_24 = ((u24) 0)+0x26;;
0D5C: OxCFFFF987 ram *((channel int8 *) 0x1C) = p_31_24;;
tcr2 = 0;

/| <REMOVED>

case CRANK_TEST_POSSI BLE_GAP:
Tooth_Period_B = Tooth_Time - Last_Tooth_Ti ne;
0D94: OxBFEFFF95 ram diob = *((channel int24 *) 0x55);;
0D98: 0xBC787B93 alu p = p-diob;
: ram *((channel int24 *) 0x4D) = p_23_0;;

page 72, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

/| <REMOVED>

OE4C:
0E50:

0E54:
0E58:
0E5C:
0E60:
0E64:
0E68:
0E6C:

OE70:
OE74:

OxBFEFFF95
0xBC787B91

OxBFEFFB93
OxBFEFFF86
Ox2F78FFE9
O0xF3587307
OxBFEFFB91
Ox1C17FEEF
OxF4D87607

Ox01FFA459
OxCFFFF987

/'l <REMOVED>

OEF4:

OEFS8:
OEFC:

OxCFEB3980

0x0002A439
OxCFFFF980

/'l <REMOVED>

0F40:
0F44:
0F48:

OF4C:

OF50:
OF54:
OF58:

OX4FFFFFFF

0x4FFFFFFF

OX4FFFFFFF

0x4FFFFFFF

OxCFEFF982
0x0C42AB82
OxC7FFF982

case CRANK_VERI FY_GAP:

Toot h_Period_A = Tooth_Time - Last_Tooth_Ti ne;

ram diob = *((channel int24 *) 0x55);;
alu p = p-diob;
ram *((channel int24 *) 0x45) = p_23_0;;
/1l Gap is verified
if (muliur(Tooth_Period_B, Gap_Rati o)
> Toot h_Period_A)
ram p_23_0 = *((channel int24 *) 0x4D);;
ram diob = *((channel int24 *) 0x19);;
al u mac = p * ((u24) diob);;
seq if MacBusy==true then goto OXE60, flush;;
ram p_23_0 = *((channel int24 *) 0x45);;
alu nil = mach-p, Sanpl eFl ags; ;
seq if LowerOrEqual ==true then goto OxECO, flush;;
{
Crank_State = CRANK_GAP_VERI FI ED;
alu p_31_24 = ((u24) 0)+0x7E;;
ram *((channel int8 *) 0x1C) = p_31_24;;
case CRANK_GAP_VERI FI ED:
Toot h_Count ++;
ram p_31_24 = *((channel int8 *) 0x0);
chan set Channel Fl agl, set SvcdChan Channel Intr;;
al u p_31_24 = p_31_24+0x1;;
ram *((channel int8 *) 0x0) = p_31_24;;
case CRANK_SEEK:
nop; ;
case CRANK_COUNTI NG
nop; ;
case CRANK_TOOTH_BEFORE_GAP:
nop; ;
case CRANK_TOOTH_AFTER_GAP:
nop; ;

case CRANK_TOOTH_AFTER_GAP_NOT_HRM
Error_Status = Error_Status
| CRANK_I| NTERNAL_ERROR,;

ram p_31_24 = *((channel int8 *) 0x8);;
alu p_31_24 = p_31_24 | 0x10;;

ram *((channel int8 *) 0x8) = p_31_24;
seq end; ;

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 73

5. eTPU Programming Model

5.84

5.9

br eak;

Additional Notes

The compiler/linker calculated state enumeration values are output through all the
supported host interface mechanisms. For example, given the examples above, this is what
is output for the CrankStates state enumeration:

/1 defines for type _eTPU state_swi tch_enum CrankStates

/'l size of a tag type

/'l value (sizeof) = _CHAN_TAG TYPE_SI ZE_Cr ankSt at es_

#define _CHAN_TAG TYPE_SI ZE_CrankStates_ 0x01

/1 values of the literals of an enum type

/1 value = _CHAN_ENUM LI TERAL_Crank_CrankSt at es_ CRANK_SEEK _

#define _CHAN_ENUM LI TERAL_Crank_CrankSt at es_ CRANK_SEEK_ 0x91

#define _CHAN_ENUM LI TERAL_Crank_CrankSt at es_ CRANK_BLANK_TI ME_ 0x00
#define _CHAN_ENUM LI TERAL_Cr ank_CrankSt at es_ CRANK_BLANK_TEETH_ 0x06
#define _CHAN_ENUM LI TERAL_Cr ank_CrankSt at es_ CRANK_FI RST_EDGE_ 0xOE
#define _CHAN_ENUM LI TERAL_Cr ank_CrankSt at es_ CRANK_SECOND_EDGE_ 0x15
#define _CHAN_ENUM LI TERAL_Crank_CrankSt at es_ CRANK_TEST_POSSI BLE_GAP_ 0x26
#define _CHAN_ENUM LI TERAL_Cr ank_CrankSt at es_ CRANK_VERI FY_GAP_ 0x54
#define _CHAN_ENUM LI TERAL_Cr ank_CrankSt at es_ CRANK_GAP_VERI FI ED_ Ox7E
#defi ne _CHAN_ENUM LI TERAL_Crank_CrankSt at es_ CRANK_COUNTI NG_ 0x92

#define _CHAN_ENUM LI TERAL_Crank_CrankSt at es_ CRANK_TOOTH_BEFORE_GAP_ 0x93
#define _CHAN_ENUM LI TERAL_Cr ank_CrankSt at es_ CRANK_TOOTH_AFTER_GAP_ 0x94
#define _CHAN_ENUM LI TERAL_Cr ank_CrankSt at es_ CRANK_TOOTH_AFTER_GAP_NOT_HRM_
0x95

If the code that makes up the state switch exceeds 255 opcodes, there may be some cases

that still require the dispatch jump plus a regular jump. Such cases can be minimized but
putting the most code-intensive case(s) at the end of the state switch.

The user can easily convert ETEC-specific state switch code to ANSI-compliant code by
utilizing macros such as:

#define eTPU state _switch switch
#define eTPU state switch_enum enum

eTPU Constant Tables

The eTPU instruction set provides a fairly efficient way to create 24-hit constant lookup
tables in the code. These special lookup tables are not any more efficient than the use of a
regular C arrays for lookup tables, and in fact access is aimaost always slightly slower.
However, they do offer one key difference that can be advantageous in some cases - the

page 74, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

constant table is stored in the code memory rather than the data memory. If system being
programmed is out of data memory (SDM), but is not using all of code memory (SCM),
then the use of this constant lookup table construct can be very helpful. Below, the syntax
and usage is described. For much more detail on eTPU constant lookup tables, including
how to perform run-time data calibration, please see the Assembler Reference Manual
Constant Lookup Table section.

In C code, constant tables are defined as arrays of the special type

' eTPU_constant_table'. The arrays can be multi-dimensional. Typically an initializer
should be used to load the constant table. Any uninitialized array elements are given a
value of 0. When a 24-bit value is retrieved from the table, it is treated as a signed integer
by default. Type casting can be used to change to unsigned, _Fract (fractional), or
whatever type is desired.

/1 constant table definition (gl obal)
_eTPU constant _table sin_table[64] = { 0x000000,
0x034517, ... };

/'l external declaration for reference fromother files
extern _eTPU constant table sin_table[64];

/1 multi-dinmensiona
_eTPU constant _table switch_table[2][2] ={ { 3, 2, }, {1

0} }

/1 table static to a scope
static _eTPU constant _table coef _table[8] = { 0x0,
0x200, ... };

Syntactically, accessing elements of the table is handled just like normal array element
access.

int coef = coef_table[index]; // get the coefficient
speci fied by index
fract24 sin_val = (fract24)sin_table[angle];

Because constant tables exist in code memory which is not writeable and utilize a special
eTPU microcode instruction, there are several limitations associated with them:

- tables can contain at most 256 elements

- because the table lives in immutable, inaccessible code memory, the only operation that
can be performed on the table symbol is a full array de-reference. No conversion to a
pointer or other operations.

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 75

5. eTPU Programming Model

5.10

5.10.1

- tables can only be defined at global scope, or static to a function scope

ETEC Local Variable Model & Calling Conventions

When local variables are declared & used, they are allocated to available registers if
possible, but the resources are limited. The same situation arises when function calls with
parameters are made — some parameters may be passed by registers but again it is a very
limited resource on the eTPU. Thus local variables, parameters, and other data that needs
to be saved/restored on function calls must be kept somewhere in memory. The default
model that ETEC uses for this is a stack that builds upwards in memory as function call-
tree depth increases.

The stack approach allows any C code to compile and run without fail (within memory
limits), but in some cases may not generate as optimal code as that compiled using a
“scratchpad’” model. ETEC supports “—globalScratchpad” “-engineScratchpad” options to
enable compilation with this model. When scratchpad is enabled and data overflows
registers, rather than go onto a dynamic stack; it is allocated to static addresses in global
memory (engine relative available on the eTPU2). While generally less efficient with
regards to memory usage than a stack solution, the eTPU instruction set is such that the
resulting code tends be slightly more efficient in size and performance. The greatest
weakness of this solution is that it can lead to a very insidious bug in the original eTPU (or
whenever global scratchpad is used) — when the same function runs simultaneously on both
eTPUs of a dual-eTPU engine micro, and the function uses scratchpad memory, there can
be corruption/coherency issues as both eTPUs simultaneously use the same scratchpad
memory. Users of the global scratchpad model must be very careful to use functions that
access scratchpad on only one eTPU at a time.

Both models are discussed in further details in the sections below. Note that source
compiled to different models can be linked successfully, it is recommended that for most
cases one model or the other should be chosen for all code that is to be linked into an
executable image.

Stack-based Model

ETEC uses a stack-based approach for local variables and function calls by default. Any
eTPU threads / functions for which local variables overflow register availability, or perform
function calls, reference a stack base variable. This stack base parameter is allocated as a
channel variable in the function’s (class’) channel frame, and thus each channel with a
function that uses the stack has a stack base parameter that must be initialized when the

page 76, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

rest of the channel is initialized. Note that channels on each eTPU should share the same
stack base, which is a byte address in the eTPU SDM address space. On a dual eTPU
system, each eTPU engine must have unique stack base addresses.

On the eTPU, on a dual engine system, the SDM layout may look as follows:

global variables start at address 0

engine 0 stack

engine 1 stack

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

[including conpiler allocated stack base to
be filled in during host eTPU initialization]

engine 0, channel 5 channel variables

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

[including compiler allocated stack base to
be filled in during host eTPU initialization]

engine 1, channel 27 channel variables

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 77

5. eTPU Programming Model

On the eTPUZ2, the SDM layout may look something like the following if there is user-
defined engine relative data:

global variables start at address 0

engine-space variables (engine 0)

user engine data

engine-space variables (engine 1)

user engine data

engine 0 stack

engine 1 stack

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

[including conpiler allocated stack base to
be filled in during host eTPU initialization]

engine 0, channel 5 channel variables

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

page 78, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

be filled in during host eTPU initialization]

[including compiler allocated stack base to

engine 1, channel 27 channel variables

5.10.2 Calling Convention

The stack-based programming model uses registers, and if necessary stack-space, to pass
parameters when function calls are made. Stack is also used to save function state such as
volatile registers that are in use at the time of the call. The detailed calling convention
procedure is outlined below:

First, any volatile registers that are in use at the time of the function call are saved
onto the stack, if any. Volatile registers are: P, A, SR, MACH, MACL. The
exception to this are named register variables. The registers used for such
variables are not saved and restored during a function call, which allows for implicit
parameter passing via register (as is done in some legacy applications).

Next, if the stack frame offset is changing (the stack is used by the current
function for local variables, or any volatile registers have been saved), the current
stack frame (register B) is saved to the stack.

At this point the current stack pointer is the stack frame for the called function.

The arguments to the function are processed. The first argument that can fit in a
24-bit register is allocated to the A register. The next argument that can fit in a
register is allocated to the SR register. Finally, the next argument that can fit in a
register is allocated to the MACL register. Any further arguments, or those that
do not fit in a register (e.g. a structure larger than 24-bits), are placed on the stack
in order.

The stack frame (register B) is updated to the new value if necessary, and the call
is made. Note that if the called function has a return type/value that fitsin a
register, it will be returned in register A. Otherwise, space is allocated on the
stack after the parameters.

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 79

5. eTPU Programming Model

e On the callee side, the following is done.

e |f the callee itself makes further function calls, it saves the RAR (return address)

register onto the stack.

e |f the function uses any of the non-volatile registers (registers C and D), it saves

them to the stack.

e Last, passed parameters are moved to their final locations, if they are different.
For example, a parameter passed via register may get allocated to a stack location,

or a parameter passed on the stack may be moved to a register.

Based on the sample code below:
struct S{ int x, vy; };

..(in a function)

char a;

struct S b;

int c, d, e;

struct Sf = CalcPos(a, b, c, d, e);
...(rest of function)

struct S Cal cPos(char a, struct S b, int ¢, int d, int e)

{

return b;

}
The resulting stack may look like:

caller SF+ N+ O: register A saved (for
exanmple’s sake, it was in use at time of call)

caller SF + N+ 4 : current stack frame saved

*** NEW CALLEE STACK FRAME ***

callee SF + 0 : paranmeter ‘b’

callee SF + 4 : parameter ‘b’ continued

page 80, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.10.3

callee SF + 8 : parameter ‘e

callee SF + 12 : return value location

callee SF + 16 : return value location
continued

callee SF + 20: register RAR saved

callee SF + 24 : register D saved

callee SF + 28 : register C saved

callee SF + 32 : parameter ‘a’ noved from
register A to this stack location

... any additional callee stack usage starts here

Note that in most real eTPU code, much less stack space is required for a function call
(good eTPU code should not pass & return structures).

The ETEC compiler pre-definesamacro_ ETEC_EABI_STACK_V1 0 whenthe
above calling convention is in use. Should the calling convention ever change in future
versions of the compiler, this macro’ s version number will also be changed. This allows
users who write code (e.g. inline assembly) that depends upon the calling convention to
detect a change and prevent to possible compilation of non-function code.

Scratchpad-based Model

When the scratchpad-based model is enabled, local variables that overflow register
availahility, and function state that needs to be saved when function calls are made
(including parameters) get allocated in what is called “scratchpad” space. On the eTPU,
scratchpad is just global memory, placed after (above) user global variables. When
compiled for the eTPU2 target, scratchpad data may be assigned to engine-relative space
rather than global address space. Each eTPU2 engine sees its own independent engine-

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 81

5. eTPU Programming Model

relative space; the global location of these engine-relative spaces is configured via a host
CPU register. One down-side of the eTPU2 engine-relative space is that it can only be
configured to begin on 256-byte boundaries, and thus may result in wasted Shared Data
Memory (SDM). Additionally, in some cases engine-relative memory accesses are less
efficient than global address accesses. If the protection provide by engine-relative
addressing on a dual-eTPU is not needed, it is not recommended that it be used.

On the eTPU (or when —globalScratchpad is specified on the eTPU2), the SDM layout
looks essentially the same whether it is a single or dual-engine part:

global variables start at address 0

global scratchpad allocation

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

engine 0, channel 5 channel variables

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

engine 1, channel 27 channel variables

On the eTPU2, there is one engine space allocated per engine, and the scratchpad can be
allocated out of this address space if specified with the “-engineScratchpad” option. The
diagram below shows an example SDM layout for a dual-engine target. Note that the

page 82, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

engine space allocations could be anywhere in memory, with the only limitation being they
begin on a 256-byte boundary.

global variables start at address 0

engine 0 engine-relative space
user engine-relative data

engine-relative scratchpad

engine 1 engine-relative space
user engine-relative data

engine-relative scratchpad

engine 0, channel 0 channel variables

engine 0, channel 1 channel variables

engine 0, channel 5 channel variables

engine 1, channel 0 channel variables

engine 1, channel 3 channel variables

engine 1, channel 27 channel variables

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 83

5. eTPU Programming Model

5.10.4 Calling Convention

The scratchpad-based programming model uses scratchpad space to pass all parameters
when function calls are made. Scratchpad is also used to save function state such as
volatile registers that are in use at the time of the call. The detailed calling convention
procedure is outlined below:

First, any volatile registers that are in use at the time of the function call are saved
into unique scratchpad locations. Volatile registers are: P, A, SR, MACH, MACL.
The exception to this are named register variables. The registers used for such
variables are not saved and restored during a function call, which allows for implicit
parameter passing via register (as is done in some legacy applications).

The arguments to the function are processed and each is placed into a unique
scratchpad location. Note that this scratchpad location is the same for each
invocation of the function (thus scratchpad eliminates the ability to use recursion).

The call is made. Note that if the called function has a return type/value that fits in
aregister, it will be returned in register A. Otherwise, scratchpad space is
allocated

On the callee side, the following is done.

If the callee itself makes further function calls, it saves the RAR (return address)
register into scratchpad.

If the function uses any of the non-volatile registers (registers C and D), it saves
them to scratchpad.

Last, passed parameters are moved to their final locations, if they are different
than the location via which they were passed. For example, a parameter may be
moved to a register.

The ETEC compiler does provide a mechanism that allows users some control as to how
parameters are passed. Function parameters can be designated with a named register
storage class, and thus the specified parameter will be passed in the specified register.
This capahility should be used with caution, however. This capahility is available in either
the stack-based or scratchpad-based programming model.

The ETEC compiler pre-definesamacro _ ETEC EABI_ SCRATCHPAD V1 0
when the above calling convention is in use. Should the calling convention ever change in
future versions of the compiler, this macro’ s version number will also be changed. This

page 84, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

5. eTPU Programming Model

5.11

allows users who write code (e.g. inline assembly) that depends upon the calling convention
to detect a change and prevent to possible compilation of non-functional code.

The compiler option -passParamByReg can be used to make the generated code more
efficient by passing some parameters via register rather than scratchpad. See the stack
programming model calling convention to see which registers and how parameters are
selected to passed by register. When this option is active, the compiler pre-defines the
macro__ ETEC_EABI_PARAM_BY_REG .

In-Line Assembly

The ETEC compiler supports an in-line assembly capability. However, it is important to
note that whenever C code and assembly are mixed, the potential for buggy code
increases. It is recommended that other avenues, such as the use of intrinsic functions, be
explored before resorting to inline assembly. That being said, there are times where only
inline assembly can solve the problem at hand. This reference manual describes the syntax
for specifying inline assembly, but not the actual assembly syntax itself; see the assembler
reference manual for those details.

Inline assembly can be specified in one of two ways. Single-line assembly instructions can
be packaged in #asm():

#asm(ram p -> by diob.)

For multiple lines of inline assembly, the better technique is to bracket the text with a
#asm / #endasm pair:

#asm
/* if (hd_comon->timer==HD TCR1) */
ram di ob <- hd_commmon.
alu diob = diob + 0x04.
ram p31l_24 <- by diob++. // p = timer
alu nil = p31_24, ccs.

#endasm

In either case, C pre-processing is applied to the text just like any other portion of the
source. The #asm, #endasm, and #asm() directives do not have to be the first text on a
source line, thus they can be used in macraos to group sets of inline assembly instructions.
Note that the C preprocessor is run in ETPUC mode, and thus treats “#asm” and
“#endasm” text special, allowing them to pass as-is within function-like macros.

Inline assembly can make references to C global variables and channel frame variables.
References to static symbols can be made in either RAM instructions, or in ALU

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 85

5. eTPU Programming Model

5.11.1

5.12

instructions where a register is getting loaded with an address of a symbol. In these cases,
ETEC supports symbol reference expressions of the form <complex symbol reference> [+
offset] [+ offset] [...] where itemsin[] are optional. A complex symbol reference can
include the “.” and “[]” operators if the symbal is of the appropriate type : struct/union or
array. The referenced address must be static.

Assembly and C treat code labels in a similar way. Labels have function scope and thus
jumps/gotos outside of the current function scope do not work. C functions can be called
from assembly code, and pure assembly “functions’ can be called from see (the assembler
reference manual contains details on how to create these assembly functions.

The Inline Assembly Porting Guide contains additional detailed information on ETEC's
support of inline assembly.

Calling the Error Handler from User Code

The entry points into the error handler are exposed in the eTpu_Lib.h standard header file:

_eTPU_thread _Error_handler_entry();
_eTPU thread _Error_handl er_scm of f _weeds();
_eTPU thread _Error_handler _fill_weeds();

In ETEC mode, users can specify these entry points in any of their entry tables. When
user code calls one of these, ETEC actually generates a jump opcode under the hood since
these “eTPU threads” end with a “seq end” thread exit.

ETEC Standard Header Files

The ETEC distribution contains three standard header files. ETEC does not implement the
C Standard Library. The ETEC standard header files are:

ETpu_Hw.h — contains key programming model definitions required by maost code.

ETpu_Std.h — macros built on top of the programming model to make code more readable.
Since this includes both ETpu_Hw.h and ETpu_Lib.h, it is the only standard header that
actually needs to be included.

ETpu_Lib.h — function prototypes for the built-in “library” functions, including the fixed
point library functions.

page 86, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

6. C Preprocessing

6

C Preprocessing

In the ETEC compiler toolkit, C preprocessing is performed by a standalone tool called
ETEC cpp.exe. When source code is put through the ETEC compiler, it automatically
spawns ETEC_cpp.exe as a process and passes the source through the C preprocessor
first.

The following macras are pre-defined in the compilation environment and passed to
ETEC_cpp.exe when spawned by ETEC_cc.exe:

__ETEC__

__ ETEC VERSION__is defined to a text string of the compiler version. The formis
<major version>.<minor version><build letter>.

Oneof TARGET_ETPU1l , TARGET_ETPUZ2 depending upon the —target
option specified.

ETEC_cpp has other pre-defined macros per the C99 specification:

_ _DATE_ _ The date of translation of the preprocessing translation unit: a character
string literal of the foom"™ Mym dd yyyy" , where the names of the months are the
same as those generated by the asct i me function, and the first character of dd isa
space character if the value is less than 10. If the date of translation is not available, an
implementation-defined valid date shall be supplied.

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 87

6. C Preprocessing

_ _FILE_ _ The presumed name of the current source file (a character string
literal).
_ _LINE_ _ The presumed line number (within the current source file) of the current

source line (an integer constant).

_ _STDC_ _ Theinteger constant 1, intended to indicate a conforming
implementation.

__STDC _HOSTED __ Theinteger constant 1 if the implementation is a hosted
implementation or the integer constant O if it is not.

__STDC_VERSI ON_ _ Theinteger constant 199901L.

_ _TIME_ _ Thetime of translation of the preprocessing translation unit: a character
string literal of the form ™ hh: nm ss" asinthe time generated by theasct i ne
function. If the time of translation is not available, an implementation-defined valid time
shall be supplied.

The ETEC compiler also specifies the “—~mode=ETPUC” to ETEC _cpp.exe. This triggers
some minor exceptions to regular C preprocessing in order work with existing code better.

ETEC cpp.exe can be used as a standalone tool to perform C preprocessing. See section
8.1.1 for details on ETEC_cpp.exe command-line options.

page 88, Compiler Reference Manual (C) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.1

v

Auto Code Generation

The linker can generate C code files that contains information for the host CPU build. This
includes information such as variable offset information, code image information, function
number, etc.

The auto-struct header file is generated by default, and provides C structures for the host-
side code that overlay the actual memory layout. Auto-struct generation can be disabled.

The auto-defines header file is automatically generated by default (but can be disabled),
and the text within the file is generated by concatenating things like the user-assigned
function name with the user-assigned variable name. Additionally, the user can specify a
global mnemonic that is pre-pended to all generated text for the purpose of avoiding
clashes.

The auto-code files provide a template for complete eTPU module and application
initialization, and make use of the auto-defines and auto-struct generated files as well as
additional files supplied with the tools install.

Auto-Struct File

The global memory space, engine memory space (eTPU2 only) and each channel frame
are output in the form of structures that from the host-side overlay the corresponding
portions of the Shared Data Memory (SDM) between the host CPU and eTPU. These
structures allow for simple reading/writing of SDM from the host via structure member

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 89

7. Auto Code Generation

7.1.1

references. Note that this file only contains data structures — the auto-defines file contains
many other eTPU interface items such as function numbers that are needed. The auto-
struct is generated by default, but can be disabled on request via the linker option —
autostruct. By default, the name is the base executable output file name extended by

“ struct.h”, but the user can also specify a name by supplying it with —autostruct=<auto-
struct file name>.

For example, an auto-struct generated from the NXP PWM function may look like:

typedef struct

{
/* 0x0000 */

etpu_if_sint32 Peri od;

/* 0x0004 */

etpu_if_sint32 ActiveTi me;

/* 0x0008 */

etpu_if_sint32 Coher ent _Peri od;
/* 0x000c */

etpu_if_sint32 Coherent _ActiveTi ne;
/* 0x0010 */

etpu_if_sint32 Last Fr ane;

/* 0x0014 */

etpu_if_sint32 Next Edge;

} etpu_i f_PWM CHANNEL_ FRAME_PSE;

Assuming in the host code a pointer of type “etpu_if PWM_CHANNEL_FRAME_ PSE”
has been initialized correctly (named “etpu_pwm _pse _chan 7" for sake of example), the
host code could initiate a coherent update of the PWM signal with code like:

et pu_pwm pse_chan_7->Coherent _Peri od = new_period_data;

et pu_pwm pse_chan_7->Coherent _ActiveTime = new_active_time_data;

/'l set coherent update host service request

Additionally, host debugging tools will be able to cleanly see the eTPU data through these
structures for an enhanced debugging experience.

24-bit vs. Non-24-bit Accesses

For each memory space (global, engine, channel frames), up to two data overlay structures
may be auto-generated. The first is for accessing non-24-bit data, and the other is for
accessing 24-bit data. The idea is that the 24-hit data struct will overlay the PSE
(parameter sign extended) mirror, which allows easy read/write of 24-bit parameters
through 32-bit accesses on the host side. The non-24-bit data struct is meant to overlay the
regular SDM (shared data memory) window. One important item to note regarding 24-bit
data, is that on readback through the PSE, the data is always sign extended regardiess of

page 90, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.1.2

whether the data type is signed or unsigned. Unsigned data read through the PSE should
still have the top 8 bits masked off.

In order to simplify the access of signed and unsigned 24-bit data through the PSE mirror,
up to 3 different overlay structures are generated for PSE access. One includes all 24-hit
data, while the other two are signed and unsigned only (and are only generated if there is

24-bit signed data, and/or 24-bit unsigned data).

Note that for non-PSE data a little endian based structures will be generated along with the
default big endian based overlay structures. When the MULTI endian option is selected in
the linker, the two structures are set up to be conditionally compiled based upon the endian

macro setting (see the file etpu_endian_api.h in the tool Include directory).

Naming Conventions

The auto-generated structures are typedef’ ed to the following names:

/1 gl obal non-24-bit data
etpu_i f _GLOBAL_DATA;

/1 gl obal 24-bit data (PSE access)
etpu_i f _GLOBAL_DATA PSE;

/1l engine non-24-bit data (eTPU2-only)
et pu_i f _ENG NE_DATA;

/1l engine 24-bit data (eTPU2-only)
et pu_i f _ENG NE_DATA_PSE;

|/ <func/class nane> non-24-bit data
etpu_if_<func/cl ass nane>_CHANNEL_FRANE;

/'l <func/class nanme> 24-bit data
etpu_i f_<func/cl ass nane>_CHANNEL_ FRAME_ PSE;

Every data member has one of 6 basic types. Rather than use raw C type names, another
naming convention is used. Users of the auto-struct file must provide their own type
definitions for these type names.

etpu_if_sint8; /1 signed 8-bit data
etpu_if_uint8; /1 unsigned 8-bit data
etpu_if_sintl6; // signed 16-bit data
etpu_if_uintl6; // unsigned 16-bit data

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 91

7. Auto Code Generation

/'l signed 32-bit data
/'l (also used for 24-bit data)
et pu_if_sint32;
/'l unsigned 32-bit data
/'l (also used for 24-bit data)
et pu_if_ui nt 32;
For every auto-struct that is generated, a macro is also defined. The macro is defined to
the expected size of the structure. The idea is that the user should use this to perform a
run-time check to ensure that the structure is compiling correctly under their host compiler.
The auto-naming convention of the macros is as follows:

#define etpu_if_GLOBAL_DATA EXPECTED Sl ZE <si ze>
#define etpu_if_GLOBAL_DATA_EXPECTED_SI ZE_PSE <size>
#define etpu_if_ENGI NE_DATA_EXPECTED_SI ZE <size>
#define etpu_if_ENG NE_DATA_EXPECTED_SI ZE_PSE <si ze>
#define etpu_if_<func/class nane>_CHANNEL_FRAME_EXPECTED_SI ZE <size>

#define etpu_if_<func/class nane>_CHANNEL FRAME_EXPECTED S| ZE_PSE <size>

7.1.3 eTPU Data in Auto-Structs

For eTPU variables of basic type, the variable name is used as-is as the member name in
the auto-generated data overlay structure. For example, the NXP PWM function has the
following eTPU code that defines its channel frame:

void PWMint8 Flag, int24 Period, int24 ActiveTine,
i nt 24 Coherent _Peri od,
i nt 24 Coherent _ActiveTine)

static int24 LastFrane;
static int24 NextEdge;
/1

}

As can be seen, the variable names become the member names in the data overlay
structure (note that the 8-bit “Flag” variable ends up in the non-24-bit data structure, which
is not shown):

typedef struct
{
/* 0x0000 */
etpu_if_sint32 Peri od;
/* 0x0004 */
etpu_if_sint32 ActiveTi ne;
/* 0x0008 */
etpu_if_sint32 Coher ent _Peri od;

page 92, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.1.4

/* 0x000c */

etpu_if_sint32 Coherent Acti veTi ne;
/* 0x0010 */

etpu_if_sint32 Last Frane;

/* 0x0014 */

etpu_if_sint32 Next Edge;

} etpu_if_PWJ CHANNEL FRAVE_PSE;

The exception to this naming convention is for eTPU data of struct, union or _Bool type —
these cases are discussed in the ensuing sections.

Often there are gaps in the data overlay where no named data to be referenced exists.
These gaps are filled by appropriately sized unnamed bit-fields.

eTPU Structures/Unions

When eTPU variables of struct or union type are encountered, they are “flattened” by
concatenating the variable and member name (or members of there are multiple levels to
the struct/union). The original eTPU struct type cannot be re-generated on the host side
because eTPU structures can have size and alignment that are not possible to replicate in
host code. For example, the global variable definition:

struct CBA
{

char a, b;

unsi gned int c;
} cha;

Results in:

typedef struct

{
/* 0x0000 */
etpu_if_uint8 cba_a;
etpu_if_uint8 :
etpu_if_uint8 :
etpu_if_uint8 : 8;
/* 0x0004 */
etpu_if_uint8 cba_b;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;

} etpu_if_ GLOBAL_DATA;

typedef struct

Qo ®

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 93

7. Auto Code Generation

/* 0x0000 */

etpu_if_uint32 cba_c;

/* 0x0004 */

etpu_if_uint32 : 32;

} etpu_if_G.OBAL_DATA PSE;

Unions present additional challenges to auto-struct generation. The algorithm for
generating an auto-struct when a union is encountered is as follows. For a given byte
address, find the first union member located at that address and use it to determine the
auto-struct member name and type. Note that this is done for both the 24-bit pas and the
non-24-hit pass. So a union such as:

uni on Utype

{
si gned char s8;
short s16;
int s24;
int32 s32;

}og_ul;

Results in:

typedef struct

{
/* 0x0000 */
etpu_if_sint8 g_ul_s8;
etpu_if_uint8 : 8;
etpu_if_sintl16 g_ul si6;

} etpu_if_GLOBAL_DATA;
typedef struct

{
/* 0x0000 */

etpu_if_sint32 g_ul s24;
} etpu_if_ GLOBAL_DATA PSE;
Through ordering of the union members, users can potentially get the auto-struct output
they are looking for.

Bit-field members present special issues and are discussed in the next section. Note that
arrays of struct/union types are not supported at this time.

page 94, Compiler Reference Manual (C) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.1.5

Arrays in Auto-Structs

Arrays are handled two different ways by auto-struct, depending upon the element type of
the array and the packing of the array. If it all possible the array defined in eTPU-space is
output into the auto-struct as an array. This can be done when the following conditions are
met: (1) the element type is a basic type, and (2) the stride size and element size are the
same (exception: an array of 24-bit basic typed elements can be output as an array through
the PSE). Here are afew examples of this, compiled with default "packtight” memory-
packing options:

char g_al[4];

char g_a2[2][2];
Y ields the following in the auto-struct:

/* 0x00a4 */

etpu_if_uint8 g_al[4];
/* 0x00a8 */
etpu_if_uint8 g_az2[2][2];

The memory architecture of the eTPU prevents all array cases being handled as cleanly as
the above, unfortunately. In all other cases the array is "flattened” like struct and union
type variables are handled. In the array case, the element index gets appended to the base
array name. The most typical case where this must be done is when arrays of elements of
type struct or union are encountered. The other case is that of "gapped" arrays. Gapped
arrays can occur when other memory-packing modes besides "packtight” are used
("fastaccess"). For example, arrays of 8-hit integers get packed in the upper byte of each
4-byte word, leaving 3-byte gaps between elements. These gaps can be filled by other
data. When the following declarations are compiled in "fastaccess" mode:

int8 g _s8 array[4];

intl6 g_s16;

They yield the following in the auto-struct:
t ypedef struct

{
/* 0x0000 */
etpu_if_sint8 g_s8_array_0;
etpu_if _uint8 : 8;
etpu_if_sint16 g_sl6;
/* 0x0004 */
etpu_if_sint8 g_s8_array_1,
etpu_if _uint8 : 8;
etpu_if _uint8 : 8;

etpu_if _uint8 : 8;

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 95

7. Auto Code Generation

/* 0x0008 */
etpu_if_sint8 g_s8 array_2;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
/* 0x000c */
etpu_if_sint8 g_s8 array_3;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
} etpu_if_ GLOBAL_DATA;

In the case of an array of struct type, the declaration below
typedef struct

{
unsi gned int8 a;
unsigned intl6 b
unsi gned int24 c;
unsi gned int32 d;

} S1;

S1 g si[2];

generates the following section of auto-struct (non-PSE only; the PSE struct contains the
references to member 'c’):

/* 0x0048 */

etpu_if_uint8 g_sl 0_a;
etpu_if_uint8 : 8;

etpu_if_uint8 : 8;

etpu_if_uint8 : 8;

/* 0x004c */

etpu_if _uint32 g_sl1l 0 _d;
/* 0x0050 */

etpu_if_uint8 : 8;

etpu_if_uint8 : 8;

etpu_if_uintl6 g_sl 0 _b;
/* 0x0054 */
etpu_if_uint8 g_sl 1 a;

etpu_if_uint8 : 8;

etpu_if_uint8 : 8;

etpu_if_uint8 : 8;

/* 0x0058 */

etpu_if _uint32 g_sl 1 d;
/* 0x005c */

page 96, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.1.6

etpu_if_uint8 : 8;
etpu_if_uint8 : 8;
etpu_if_uint16 g_sl 1 b;

Bit-field and _Bool Variables

Bit-field struct/union members and _Bool variables (_Bool variables can act like bit-fields
in that they are assigned to an 8-bit unit, and in some cases, multiple _Booal variable can be
packed into different bits of one unit) are handled differently than other members of the
auto-struct. One reason for this is that compilers can pack bit-fields in different manners —
one way is to pack from the MSB of the enclosing data unit, and the other is to pack from
the LSB of the enclosing data unit. The auto-struct capability supports both techniques by
enclosing bit-field/_Bool member declarations in conditional compilation clauses controlled
by the macros MSB_BITFHIELD ORDER and LSB_BITFIELD_ORDER. The user of
the auto-struct header file must define one of these two macros for the code to compile.

#i f defined(MSB_BI TFl ELD_ORDER)
etpu_if_uint8 : 5;

etpu_if_uint8 b3 : 1;

etpu_if_uint8 b2 : 1;

etpu_if_uint8 b1 : 1;
#elif defined(LSB_BI TFl ELD_ORDER)

etpu_if_uint8 b1 : 1;

etpu_if_uint8 b2 : 1;

etpu_if_uint8 b3 : 1;

etpu_if_uint8 : 5;
#el se
#error Users of auto-struct nust define either
MSB_BI TFI ELD_ORDER or LSB_BI TFI ELD_ORDER
#endi f

A second reason for handling bit-fields different from other members of the auto-struct is
that host code may need access to the enclosing data unit of the bit-field. This is because
writing a bit-field member generates read-modify-write code that is not coherent — this may
not be acceptable in some cases. Or, a user may need to write/read multiple bit-fields
simultaneously. Thus bit-fields (and _Bools) are placed under a union in the auto-struct,
along with the data unit. This union is given an auto-generated name _BF _UNIT_<addr
offset>, where <addr offset> is the byte offset within the data overlay segment of the bit-
field unit. An entire bit-field unit declaration looks like:

(C) 2008-2024 ASH WARE, InC. compiler Reference Manual, page 97

7. Auto Code Generation

uni on {
etpu_if_uint8 _UNI'T;
struct {
#i f defi ned(MSB_BI TFI ELD_ORDER)
etpu_if_uint8 : 5;

etpu_if_uint8 _b3 : 1;

etpu_if_uint8 _b2 : 1;

etpu_if_uint8 bl : 1;
#elif defined(LSB _BI TFl ELD ORDER)

etpu_if_uint8 bl : 1;

etpu_if_uint8 _b2 : 1;

etpu_if_uint8 b3 : 1;

etpu_if_uint8 : 5;
#el se
#error Users of auto-struct nust define either
MSB_BI TFI ELD ORDER or LSB_BI TFlI ELD ORDER
#endi f
} _BF;
} _BF_UNIT_0018;

The host could read or write all three bits simultaneously through the construct
gl obal _data_ptr-> BF_UNIT_0018. UNIT

Individual bits are accessed via constructs like
gl obal _data_ptr->_BF_UNIT_0018. BF. bl

7.1.7 Example Code

Below is a short sample of code that initializes global memory section data mapping
structure pointers, and then accesses eTPU shared code memory via them.

/1l initialize data overlay pointers for global nmenory

et pu_i f _GLOBAL_DATA* GDM = (et pu_if_GLOBAL_DATA*) ETPU_PRAM BASE;

etpu_if_GLOBAL_DATA PSE* GDM PSE = (etpu_if_GLOBAL_DATA PSE*)

ETPU_PRAM_PSE_BASE;

/'l check the data overlay structs (auto-struct)

if (sizeof(etpu_if_GLOBAL_DATA) != etpu_if_GLOBAL_DATA_EXPECTED_ SI ZE)
return FAIL;

if (sizeof(etpu_if_GLOBAL_DATA_PSE) !=

et pu_i f _GLOBAL_DATA_PSE_EXPECTED_SI ZE)
return FAIL,;

/1 write and read sone gl obal data

GDM >g_s8 = 0x12;

GDM >g_s16 = 0x1234;

GDM _PSE- >g_s24 = 0x123456;

page 98, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.2

7.2.1

7.2.2

7.2.3

GDM >g_a2[1] [1] = 0x34;

if (CDM>g_sl1 s8 != (signed char)0x87)
Error Encount ered();

if (GDM>g_sl1 s16 != (signed short)0x8765)
Error Encount ered();

if (GDM_PSE->g_sl1l_s24 != Oxff876543)
Error Encount ered();

Auto-Defines File

The auto-defines header file contains all the compiler-generated information necessary for
the host to initialize & control the eTPU, and to place & find data. The contents of this file
is explained in detail in the ensuing sections.

Global Prepended Mnemonic

A global mnemonic is prepended to all generated text. The default global mnemonic is the
underscore character,‘_’. This can be overridden with the linker command line option -
GM=<text>" - see the linker reference manual for more information.

Auto Header File Name

The name of the auto-generated defines header file is the constructed as shown below.
This can be overridden using the linker option "-defines=<FileName>" - see the linker
reference manual for more details.

<Exect ut abl eFi | eNanme>_defi nes. h

Endian Support

With the announcement of the S32K39x parts, which are Arm-based, ETEC has been
updated to provide better auto-generated code support for little endian host processors.
This new support is enabled by specifying the -endian=<M ODE> option to the linker. But
before delving into the tools endian support, what is the issue? For word accesses from the
host, there is no difference whether the host processor is big endian (MPC) or little endian
(Arm). This includes reading/writing 24-bit data via the PSE memory window. For these

(C) 2008-2024 ASH WARE, Inc. compiler Reference Manual, page 99

7. Auto Code Generation

32-bit accesses, the byte addresses are on quad-word boundaries. However, issues arise
when 8 or 16-hit accesses are required as within a word the byte order is reversed. The
table below summarizes the differences.

Data Size and eTPU-relative Big Endian Byte Offset Little Endian Byte Offset

Offset (within a word) Within Word Within Word
8-bit, 0 (MSB) 0 3
8-bit, 1 1 2
8-bit, 2 2 1
8-bit, 3 (LSB) 3 0
16-bit, 0 0 2
16-bit, 2 2 0
24-bit, 1 1 0
32-hit, 0 0 0

In order to support these differences, when the MULTI endian mode is specified, location
(address / address offset) information in the auto-defines file as well as in files generated
via #pragma write (::ETPUlocation macros) output the data in a form that resolves to the
correct address depending upon whether the macro ETPU_HOST_BIG _ENDIAN or
ETPU_HOST_LITTLE_ENDIAN is defined. This is supported by the file
etpu_endian_api.h which is distributed in the tools installation Include directory.

Besides the location information, the auto-struct capability which outputs C struct
declarations that can be used to overlay and access eTPU global and channel frame
memory also supports multi-endian. 1n default mode a new little endian struct is generated,
while in MULTI mode the big and little endian struct declarations are controlled by the
ETPU_HOST_BIG_ENDIAN/ETPU_HOST_LITTLE _ENDIAN macros.

The last endian issue dealt with is code and initialized data. In general these are provided
in 32-bit words, and so there are no endian issues. However, options exist to output this
data in 8-bit format, in which case the order has to be massaged between big and little
endian. Thusiif the -data8 linker option is used, or if in #pragma writes

“ETPUcode, :ETPUengineinit, zETPUglobalimage, =ETPUglobalinit or :ETPUstaticinit is
used, the output supports both big and little endian, controlled by the
ETPU_HOST_BIG_ENDIAN/ETPU_HOST_LITTLE_ENDIAN macros.

page 100, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.2.4

7.2.5

One final note: 8 and 16-hit data array access from a little endian host processor requires
special care w/ regards to addressing. Take additional care when dealing with such
objects.

Text Generation

The purpose of the auto generated text is to produce a series of #defines that are used on
the host CPU side code to initialize and run the eTPU function. A series of the #defines
are generated that appear as follows.

#defi ne <Nanme> <Val ue>

The <name> is generated by concatenating the global mnemonic, the function or class
name (if applicable), the settings mnemonic, and any additional text that is available (such
as the variable name.) Additionally, each concatenation is separated by underscores, as
follows.

<d obal Mnenoni c><Setti ngMhenoni c>_><Functi onNane> <M sc>_

Note that when the class and the table name are identical then the table name is not
included. With regards to variables and their type information, the settings mnemonic is a
concatenation of address space and mnemonic.

Type Information

For every variable and tag type member, type information is provided. The possible type
values are

T bool

T sint8

T uint8

T sintl1l6

T uintl6

T sint24

T uint24

T sint32

T uint32

T sfract8
T ufract8
T sfractl6
T ufractl6
T sfract24
T ufract24

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 101

7. Auto Code Generation

T ptr

T array

T struct

T_union

For arrays, the element type is provided, as is done for struct and union members. The
base type for pointers is also provided. For both arrays and pointers, the element/base type
may be found through multiple dimensions or multiple levels of indirection.

#def i ne
#def i ne

#def i ne
#def i ne

#def i ne
#def i ne

#def i ne
#def i ne

GLOB VAR TYPE g s8
_GLOB VAR TYPE g_s16_

T uint8
T_sint16

_CHAN_MEMBER_TYPE_Def i nesTest _Stype_s16_ T_sint16
_CHAN_MEMBER_TYPE_Defi nesTest _Stype_s24_ T_sint24

_CPBA _TYPE_DefinesTest__al_

_CPBA TYPE_ARRAY DefinesTest _al_

_G.OB VAR TYPE g_s24 ptr_
_G.OB_VAR TYPE PTR g_s24 ptr_

7.2.6 Array Variables

T _array
T uint8

T ptr
T_sint24

Offsets to variables of array type are output in similar manner to basic type variables,
except that the settings mnemonic contains ARRAY (CPBA_ARRAY, ERBA_ARRAY
or GLOB_ARRAY). The element typeAdditionally, for each dimension of the array two
additional definitions are supplied — the number of elements in the dimension and the stride
size. For these <Misc> takes the form <var name>_DIM_<dimension #>_LENGTH and <var
name>_DIM_<dimension #>_STRIDE

For example,

int24 g_s24_array[10];

may yield

#define _GLOB_ARRAY g _s24 array_
#define _GLOB_ARRAY g s24 array_DIM 1 LENGTH 0x10
#define _GLOB_ARRAY g s24 array DIM 1 STRIDE 0x04

0x01

page 102, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

1.2.7

7.2.8

7.2.9

_Bool Type Variables

Besides the byte offset of the variable’ s location, _Bool types also list the bit offset within
the 8-bit unit of the variable with the mnemonic BOOLBITOFFSET:

#define _CPBA8 Test_ b4 _ 0x00
#defi ne _CPBA8_BOOLBI TOFFSET__bh4_ 0x05

Struct/Union Variables

Again, offsets to variables of struct/union type are output in a similar manner to other
variables. The aggregate type of the variable is encoded in the settings mnemonic.

struct S1 g_d obal Struct Var;
uni on Ul _ChanFranmeUnionVar; // in eTPU Function TESTIO

The above variable definitions would be exported in the defines file as something like:

#define _GLOB_STRUCT_g d obal Struct Var _ 0x10
#define _CPBA _UNI ON_TESTI O__ChanFr aneUni onVar _ 0x05

Individual members of these variables can then be located using the additional type
information provided, as described in section 6.2.8.

Tag Types (Structures, Unions, Enumerations)

When global (GLOB mnemonic), engine-relative (€TPU2 only, ENG mnemonic) or channel
frame (CHAN mnemonic) variables have a tag type, struct, union, or enum, information on
that type will be exported in the auto header file. Inthe case of structs & unions, this
information can be used to build up the exact location of each member. Size and alignment
information is also included. Two pieces of size data are provided — one is the size that the
sizeof () operator would return, which includes any padding in order to reach the array
stride size of the struct/union. The second is the raw size used by the structure, and does
not include padding. The alignment data indicates the offset, within a 32-bit word, where
the struct/union begins. A struct that consists of two 24-bit members would have an
alignment of 1, and a raw size of 7. From a host perspective, the number of 32-bit words
that must be allocated to hold an eTPU structure is ((<alignment> + <raw size> + 3) >> 2).
For example, given the following type definitions:

struct Sl
{ .
int Xx;
int vy;
b

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 103

7. Auto Code Generation

struct S3

{
struct S1 s1_1;
int Xx;
char a;

struct S1 s1_2;
b

If used for global variables, this would yield the following in the _defines file:

/1l defines for type struct S1

/'l size of a tag type

/1 (including padding as defined by sizeof operator)
/'l value (sizeof) = G.OB_TAG TYPE SIZE S1_
#define _GLOB_TAG TYPE_SIZE S1_ 0x08

/'l raw size (padding not included) of a tag type
/1l value (raw size) = G.OB_TAG TYPE RAW S| ZE S1
#define _GLOB_TAG TYPE_RAW SI ZE S1_ 0x07

/1 alignnment relative to a double even address
/1l of the tag type (address & 0x3)

/'l value = _GLOB_TAG TYPE_ALI GNMENT_S1

#define _GLOB_TAG TYPE_ALI GNMENT_S1_ 0x01

/'l offset of struct/union menbers

/1 fromvariable base | ocation

/'l the offset of bitfields is specified in bits,
/1l otherwise it is bytes

/'l address = SPRAM + [vari abl e SPRAM of f set]

11 + _GLOB_MEMBER_BYTEOFFSET_S1_x_
#define _GLOB_MEMBER BYTEOFFSET_S1 x_ 0x00
#define _GLOB_MEMBER BYTEOFFSET_S1 y_ 0x04

/1l defines for type struct S3

#define _GLOB_TAG TYPE_SI ZE S3_ 0x14
#define _GLOB_TAG TYPE_RAW SI ZE S3_ 0x14
#define _GLOB_TAG TYPE_ALI GNMENT_S3_ 0x00
#define _GLOB_MEMBER BYTEOFFSET_S3_s1_ 1 0x01
#define _GLOB_MEMBER BYTEOFFSET_S3 x_ 0x09
#define _GLOB_MEMBER BYTEOFFSET_S3 a_ 0x00
#define _GLOB_MEMBER BYTEOFFSET _S3_sl1_ 2 0x0D

Bitfield member offsets are specified in bits, and also have bit size information:

struct S3

{
struct S1 s1_1;
int m: 10;

page 104, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

int n: 10;
int o: 10; // nust go in next "unit”
int p: 1;
int g 1;
int : 4;
int r @ 1;
struct S1 sl 2;
b
Yields:
/1 defines for type struct S3
#defi ne _CHAN TAG TYPE_SI ZE S3_ 0x10
#defi ne _CHAN TAG TYPE_RAW S| ZE_S3_ OxOF

#defi ne _CHAN TAG TYPE_ALI GNMENT_S3_ 0x01

#defi ne _CHAN MEMBER BYTEOFFSET Test S3 sl 1 0x00
#defi ne _CHAN_MEMBER Bl TOFFSET_Test S3_m_ Ox4E
#defi ne _CHAN_MEMBER BI TSI ZE Test _S3_m_O0x0A

#defi ne _CHAN_MEMBER Bl TOFFSET_Test S3 _n_ 0x44
#defi ne _CHAN_MEMBER BI TSI ZE Test _S3 _n_ 0x0A

#defi ne _CHAN_MEMBER BI TOFFSET _Test S3_o_ Ox6E
#define _CHAN_MEMBER BI TSI ZE Test S3_o_ 0x0A

#defi ne _CHAN_MEMBER BI TOFFSET_Test _S3_p_ 0x6D
#define _CHAN_MEMBER BI TSI ZE Test _S3 _p_ 0x01

#defi ne _CHAN_MEMBER BI TOFFSET_Test S3_qg_ 0x6C
#define _CHAN_MEMBER BI TSI ZE Test _S3 _g_ 0x01

#defi ne _CHAN_MEMBER Bl TOFFSET _Test S3 r_ 0x67
#define _CHAN_MEMBER BI TSI ZE Test _S3 r_ 0x01
#define _CHAN _MEMBER BYTEOFFSET Test S3 sl 2 0x04

Enumeration information is exported using the settings mnemonic ENUM_LITERAL and
with a <Misc> portion that is the enum name and literal concatenated. For example:

enum ti nebase_t
{
tcrl_base,
tcr2_base

b

Yields:

/1 defines for type enumtinebase_t

/1 values of the literals of an enumtype

/1 value = _CHAN ENUM LI TERAL_FPM ti nebase_t_tcrl _base_
#define _CHAN ENUM LI TERAL_FPM ti nebase_t _tcrl_base_ 0x00

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 105

7. Auto Code Generation

#define _CHAN _ENUM LI TERAL_FPM ti nebase_t _tcr2_base_ 0x01

7.2.10 Global Mnemonic
The GlobalMnemonic is text that is prepended to #ifdef’ s and #define’ s in the auto header

file. It isintended to be used to avoid clashes with similar constructs in other files. The
default GlobalMnemonic is the underscore character, * .

7.2.11 Settings, Register Fields, and Mnemonic

Entry Table Base | ETPUECR.ET |ENTRY_TABLE _BASE _ADDR Byte
Address B Address
Entry Table Type | CXCR.ETCS |ENTRY_TABLE _TYPE 0==Sd
(standard/alternat 1==Alt
e)
Entry Table Pin | CXCR.ETPD |ENTRY_TABLE_PIN_DIR O=Input
Direction 1=Outpu
(input/Output) t
Function Number | CXCR.CFS FUNCTION_NUM None
8-bit Channel CXCR.CPBA |CPBA8 Bytes
Variable Offset]
CPBA_BOOLBITOFFSET Bits
16-bit Channel CXCR.CPBA |CPBA16 Bytes
Variable Offset
24-bit Channel CXCR.CPBA |CPBA24 Bytes
Variable Offset

page 106, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

32-hit Channel CXCR.CPBA |CPBA32 Bytes

Variable Offset

Array Channel CXCR.CPBA |CPBA_ARRAY Bytes

Variable Offset &

Length/Stride CPBA_TYPE_ARRAY <type>
DIM_<N> LENGTH Count
DIM_<N> STRIDE Bytes

Struct Channel CXCR.CPBA |CPBA_STRUCT Bytes

Variable Offset

Union Channel CXCR.CPBA |[CPBA_UNION Bytes

V ariable Offset

Struct/Union CHAN_MEMBER_TYPE <type>

Member Offsets
CHAN_MEMBER_BY T TEOFFSET Bytes

CHAN_MEMEBR_BITOFFSET Bits
CHAN_MEMBER BITSIZE Bits
CHAN_MEMBER_<name> DIM_<>

Tag Type Data CHAN_TAG TYPE_SIZE Bytes
CHAN_TAG TYPE_RAW_SIZE
CHAN_TAG TYPE_ALIGNMENT

Enum literal CHAN_ENUM_LITERAL
values
Variable Type CPBA_TYPE <type>

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 107

7. Auto Code Generation

Channel Frame CXCR.CPBA |FRAME_SIZE
Size
Initialized Frame |RAM FRAME_CONTENTS Bytes
Constants
8-hit Channel ECRX.ERBA | ERBAS Bytes
Variable Offset]
ERBA_BOOLBITOFFSET Bits
16-bit Channel ECRX.ERBA |ERBAI16 Bytes
V ariable Offset
24-bit Channel ECRX.ERBA |ERBA24 Bytes
V ariable Offset
32-hit Channel ECRX.ERBA |ERBA32 Bytes
Variable Offset
Array Channel ECRX.ERBA |ERBA_ARRAY Bytes
Variable Offset &
Length/Stride ERBA_TYPE _ARRAY <type>
DIM_<N> LENGTH Count
DIM_<N> STRIDE Bytes
Struct Channel ECRX.ERBA |ERBA_STRUCT Bytes
Variable Offset
Union Channel ECRX.ERBA |ERBA_UNION Bytes
Variable Offset
Struct/Union ENG_MEMBER_TYPE <type>
Member Offsets
ENG MEMBER_BY TEOFFSET Bytes

page 108, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

ENG MEMEBR_BITOFFSET Bits
ENG_MEMBER _BITSIZE Bits
ENG MEMBER <name> DIM <>
Tag Type Data ENG TAG TYPE SIZE Bytes
ENG TAG TYPE RAW_SIZE
ENG TAG TYPE ALIGNMENT
Enum literal ENG ENUM_LITERAL
values
Variable Type ERBA_TYPE <type>
8-bit Global RAM GLOB_VARS Bytes
Variable Offset]
GLOB VARS8 BOOL BIT OFFSET |Bits
16-bit Global RAM GLOB_VARI16 Bytes
V ariable Offset
24-bit Global RAM GLOB_VAR24 Bytes
V ariable Offset
32-bit Global RAM GLOB_VAR32 Bytes
V ariable Offset
Array Channel RAM GLOB_ARRAY Bytes
Variable Offset &
Length/Stride GLOB_TYPE ARRAY <type>
DIM_<N> LENGTH Count
DIM_<N> STRIDE Bytes

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 109

7. Auto Code Generation

Struct Channel GLOB_STRUCT

V ariable Offset

Union Channel RAM GLOB_UNION Bytes

V ariable Offset

Struct/Union GLOB_MEMBER_TYPE <type>

Member Offsets
GLOB_MEMBER_BY TEOFFSET Bytes
GLOB_MEMEBR_BITOFFSET Bits
GLOB_MEMBER BITSIZE Bits

GLOB_MEMBER_<name> DIM_<>

Tag Type Data GLOB_TAG_TYPE_SIZE Bytes
GLOB_TAG_TYPE_RAW_SIZE
GLOB_TAG_TYPE_ALIGNMENT

Enum literal GLOB_ENUM_LITERAL

values

Variable Type GLOB_VAR_TYPE <type>
Global Variable |RAM GLOBAL_VAR _SIZE Bytes
Size

Global Scratchpad | RAM GLOBAL_SCRATCHPAD_SIZE Bytes
Size (when global

scratchpad

programming

model is enabled)

Global Data Sze |RAM GLOBAL_DATA_SIZE Bytes

page 110, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

Global Data Init | RAM GLOBAL_INIT_DATA_ADDR Bytes
Address

Maximum Stack | RAM STACK_SIZE Bytes
Sze

Engine Variable |RAM ENGINE_ VAR _SIZE Bytes
Sze

Engine RAM ENGINE_SCRATCHPAD_SIZE Bytes
Scratchpad Size
(when engine
scratchpad
programming
model is used)

Engine Data Sze | RAM ENGINE_DATA_SIZE Bytes

Code Image (‘C'- | SCM SCM_CODE_MEM_ARRAY None
array)

MISC MISCCMPR | MISC_VALUE None

ValueError!
Bookmark not
defined.

Fill Value N/A FILL_VALUE None

Jump Table N/A <TableName>
Indices

Constant Lookup | SCM Address | CONSTANT_LOOKUP_ADDR_<Na | Bytes
Table Base me>
Address

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 111

7. Auto Code Generation

7.2.12

7.2.13

7.2.14

7.2.15

HSR Number CXHSRR.HSR

Function Mode® CXSCR.FM N/A

Bits

Include Race Keepout

In order to avoid the possibility of infinite recursive inclusion of header file, the following
text precedes all other #defines.

#i f ndef <d obal Mhenoni c>_<Fi |l eName>_ H
#defi ne <d obal Mhenoni c>_<Fi |l eName>_H

For the same reason, the following is found at the end of the file.
#endi f // <d obal Mhenmoni c>_<Fi |l eName>_H

NXP APl compatibility

NXP provides a set of API for interfacing to eTPU code. The auto-generated file is
included into the source code for that API.

ASH WARE Simulator Compatibility

All auto-header generated text is compatible with the eTPU simulator such that the header
file can be included into the simulator and the resulting #defines can be used as arguments
in the script command line. Additionally, ETEC provides supporting macros that when
combined with the auto-defines file, make simulator script writing a simpler task. The
simulator macro library can be found in the etec_sim_autodefs.h file found under the Sm
directory in the ETEC installation.

Support for Additional Languages

Currently the auto header capability is targeted at “C”. Please contact the factory should
you require support for additional languages such as Fortran, ADA, Java, etc.

page 112, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.2.16 SCMARRAY

7.2.17

7.3

The SCM_ARRAY is written to its own file <output file name>_scm.c. By default it is
output as an initialized array of 32-bit unsigned integers. The linker —data8 option causes it
to be output as an array of unsigned 8-bit data. When 8-bit data is specified, and the
endian mode MULTI is used in the linker, the data output is done in both big and little
endian format - which is used is controlled by whether the user defines the
ETPU_HOST_BIG_ENDIAN macro, or the ETPU_HOST_LITTLE_ENDIAN macro.

PWM Example

The following is generated from the PWM

/1 This file is auto-generated by ETEC
/1 1t contains information for host-CPU side driver code

#i fndef _PWM ETEC PWM H__
#define _PWM ETEC PWM H__

/'l Register ECR, field ETB, byte address, Each Engine
/1 ECR ETB = (__ENTRY_TABLE_BASE_ADDR) >>10
#define _ ENTRY_TABLE_BASE ADDR 0x2800

/1l Register CXCR, Field ETCS, channels using PWJ
/| CXCR.ETCS = __ PWM ENTRY_TABLE_ TYPE
#define _ PWM ENTRY_TABLE TYPE 1

...(etc)

#endif // __PWVM ETEC PWM H__

Auto-Code Files

The auto-code feature outputs host-side C code templates for each eTPU class (function)
in the build, allowing users to more quickly get their eTPU initialization and host APIs up
and running. The auto-code feature must be enabled with the ETEC linker option "-awac".
"AWAC" stands for ASH WARE auto-code, and the "awac" designator is a part of all file
names associated with the feature.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 113

7. Auto Code Generation

7.3.1 Key Files

The auto-generated AWAC files are as follows:

¢ For each eTPU function/class, a file "etpu_awac_<func/class name>.c " and
"etpu_awac_<func/class name>.h " are created. These are generated into the same
directory as the auto-struct file. The files define two key data structures that hold
instance and configuration data, and also define an initialization function. These files will
always require some customization, so it is anticipated when the user edits them they will
remove the underscore from the file name extension.

e For the entire set two additional template files are generated. These are named
etpu_awac_app_init.c_ and etpu_awac_app _init.h_. These files contain template data
structure instance definitions with initializers, one set for (instance and config) for each
eTPU functiorn/class. Theses files also define a function that can be called to initialize all
eTPU application instances. Frequently, of course, a system will contain multiple
instances of an eTPU application type. For this reason, and also that the auto-generated
data structures will almost surely require modification, these template files will need to
edited, and also renamed to eliminate the underscore. Note the renaming process also
helps eliminate the risk of overwriting edited files when the eTPU code is re-built.

The AWAC feature expects the eTPU build name to be "etpu_set" - other names can be
used but will require further editing of template files. Also, if the eTPU-C module is being
used, that build should be named "etpu_c_set".

Some of the AWAC support files are not generated, but instead reside under the ETEC
installation directory. The appropriate files should be copied from their install location to
the host project location, and then edited as needed. .hfiles are in the Include directory, .c
files are in the Lib directory. Below the files are listed and described.

e The etpu_awac_main.[c, h] files contain the eTPU module configuration data and
startup routines. These templates will need to be modified for the system and MCU -
timing information, register settings, etc.

e The etpu_awac_tilities.[c, h] files provide an API between the eTPU haost application
code and the eTPU hardware. These files will not require any modification.

e Thefile etpu_awac_auto_api.h consolidates and configures the auto-defines and auto-
struct code used by AWAC. It will need modification if a non-standard build name (not
"etpu_set") is used.

e Files etpu_struct.h and typedefs.h are standard files from NXP that support the eTPU.

page 114, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

7. Auto Code Generation

7.3.2

7.3.3

e The mpc5<xxx>_vars awac.h files - the one matching the MCU version needs to be
included in etpu_awac_main.c.

Editing Template Files

As noted in the previous section, a number of the AWAC files are template files that will
require editing by the user in order to compile and execute correctly. In most cases where
user intervention is required, #error pre-processor directives have been added to alert the
user. Modifications should be made at these points and then the #error directives removed.

System Simulation Support

In order to test and debug the eTPU module and application initialization code in simulation,
an additional file is provided that supports simulated host startup and calls the AWAC
eTPU initialization code. The file is called "main_awac_sim.c" and is located in the Lib
sub-directory in the tool install. See the AWAC demo for an example of how it works.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 115

page 116, Compiler Reference Manual

8. Initialized Data Files

8.1

8

Initialized Data Files

The initialized data files contains data structures that, in conjunction with the memcpy()
function, can be used to initialize your global and channel-frame memory.

Note that there may be “holes’ in the initialized data. Holes are areas where un-initialized
variables are located, or areas (due to the funny 24-bit nature of the eTPU) where there
are simply no variables located. Holes get initialized to zero. Holes may be interspersed
between valid initialized data.

The data itself is packaged in macros output into the <output file name>_idata.h file.
These macros take the form of MacroName(address_or_offset , data_value). Inthe
<output file name>_idata.c file the macros are used to create initialized arrays, ready for
use by host-side eTPU initialization code.

By default the data is packaged as 32-bit unsigned integers. The linker option —data8 can
be used to output the data as unsigned 8-bit instead.

Initialized Global Memory

The global memory data structure has the following form:
unsi gned int <d obal Mhenoni c>gl obal _nmem.init[] =

{
b

0x00A02433,

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 117

8. Initialized Data Files

8.2

The start address is the DATA RAM base plus the offset found in the auto-defines file.
The actual text in the _idata.c file is different because the array initialization is done using
the macraos from the matching _idata.h, as follows:

/1 dobal Menory Initialization Data Array
unsigned int _global _meminit[] =

{

#undef _ GLOBAL_MEM I NI T32

#define _ GLOBAL_MEM I NI T32(addr , val) val,
#include "Decl Test B idata.h"

#undef _ GLOBAL_MEM I NI T32

}s

Initialized Channel Memory

Each channel (and sometimes groups of channels) has a private copy of its own memory.
It is this private memory that allows (say) a channel running the PWM function to have its
own unigue Period and Pulse Width, even when many channels may be running the same
PWM function. The data structure has the following form, where name is the name of the
class (in ETEC mode) or the eTPU Function (in Legacy Mode.)

unsi gned int <d obal Mhenoni c><Nane> frame_init[] =

{

b
As with the initialized global data, the actual arrays in the _idata.c file are built up from
macros in the matching _idata.h file (eTPU Function “Test”):

/1 Test Channel Frame Initialization Data Array
unsigned int _Test frame_init[] =

{

#undef _ Test CHAN FRAME | NI T32

#define _ Test CHAN FRAME I NI T32(addr , val) val,
#include "Decl Test B idata.h"

#undef _ Test CHAN FRAME | NI T32

b

0x0022A317, ..,

page 118, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

8. Initialized Data Files

8.3

Using the Initialized Data Macros in the Simulator

The initialized data macros in the _idata.h file can be used in the eTPU Stand-Alone
simulator to simulate the host-side initialization of global data and channel frames. An
example is show below:

/1 load the global initialized data
#undef __GLOBAL_MEM | NI T32
#define __ GLOBAL_MEM I NI T32(address, val ue) \
*((ETPU_DATA_SPACE U32 *) address) = val ue;
#i ncl ude "Decl Test _B idata.h"
#undef __GLOBAL_MEM | NI T32

/1 load the “Test” channel frame for one channel

/1 in this exanple the channel frame base

/1 is hardcoded to 0x100

#undef _ Test CHAN FRAME | NI T32

#define __Test CHAN _FRAME_ I NI T32(of fset, value) \
* ((ETPU_DATA SPACE U32 *) \
0x100+of fset) = val ue;

#i ncl ude "Decl Test _B idata.h"

#undef _ Test CHAN FRAME | NI T32

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 119

page 120, Compiler Reference Manual

9. Global Error Handling

9

Global Error Handling

A variety of causes including alpha particles, coding errors, and silicon defects could cause
eTPU code to execute in un-intended ways. The key issues to consider are error detection
and error correction.

Undetected errors are the bane of electronic reliability because the probability of their
presence accumulates over time, code size, hours spent coding, etc. Therefore ETEC
places primary emphasis on error detection and has built in hooks for detection of many
Eerrors.

Error correction, on the other hand, is considered to be in the user’ s domain and ASH
WARE strongly recommends that each system designer carefully design their systems with
error correction strategies in place. Having said that, ETEC does support “default” error
correction mechanisms. |If these default mechanisms are not overridden, they will correct
a variety of detected error cases. The default error handling mechanism is disabled or
overridden by using the -ErrorLib- linker command line option.

ASH WARE recommends that users create specially-named error handlers for a variety of
possible error scenarios. These handlers are generally written in assembly, and have the
following names.

_Error_handl er _entry.
_Error_handl er _scm of f _weeds
_Error_handler _fill_weeds
_Error_handl er _unexpect ed_t hread

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 121

9. Global Error Handling

These error handlers should be used to correct the error conditions described later in this
section.

9.1 Global Error Data

If an error is detected, information helpful in diagnosing the source of the error is placed in
an automatically-generated global variable named as follows:

_d obal _error_data.

This 32-bit variable is used to encode error information as shown in the following table.

31 |30 29|28 |27|26|25|24|123(22|21(20|19(18| 17|16

EESB Spare

15 (14(13|12|11|10| 9| 8| 7|6 |5(4]3|2[1]O0

EEVS EECL EECN

EESB — Encoded Error Source Bits

Bit = 1 indicates that such an error has been detected
Bit = 0 indicates that such an error has not been detected.

Bit 31 indicates that _Error_handler_entry has executed.

Bit 30 indicates that _Error_handler_scm_off weeds has executed.

Bit 29 indicates that _Error_handler_fill_weeds has executed.

Bit 28 indicates that _Error_handler_unexpected thread has executed

Bit 27-22 set aside for user-defined errors (custom extension of error handler)

EEVS - Encoded Event States

Bit = 1 indicates that an event is active
Bit = O indicates that an event is not active

Bit 15 contains the LINK state
Bit 14 contains the Transition B state

page 122, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

9. Global Error Handling

9.2

Bit 13 contains the Transition A state
Bit 12 contains the Match B state

Bit 11 contains the Match A state

Bit 10 contains zero (future expansion)
Bit 9 contains zero (future expansion)

EECL — Encoded Error Conditionals

Bit 8 contains the sampled input pin state
Bit 7 contains the current output pin state
Bit 6 contains the flag 1 state, if available (eTPU2)
Bit 5 contains the flag O state, if available (eTPU2)

EECN - Encoded Error Channel Number

This is the active channel number of the last event handler. New incoming event handlers
overwrite this value such that if error handlers are executed multiple times, then the
number contains the last-executed time.

When an error the above error data is writtento _G obal _err or _dat a, all service
latches are cleared, and the thread exits. 1n general, for the error handler to be truly useful
for a user, it should be enhanced to issue the microcode global exception, which can trigger
the host global exception handler to execute if the interrupt has been enabled - see specific
microcontroller documentation for details. This interrupt handler can decode the error data
and take an appropriate actions, such as shutting down a channel or eTPU module. The
easiest way to do this is to start from the default handler source code and add the global
exception, bringing this new file into the build, and disabling the default via the -ErrorLib-
linker option.

Error Handling Library

The ASH WARE defined error handlers are defined in a library named

“ global_error_handler.lib" (for eTPUL) and " global error_handler_etpu2.lib” (for
eTPU2) which is provided as part of ETEC. The linker automatically includes one of these
two libraries based on whether the linker is building for eTPU1 or eTPU2.

The error handling library can be disabled from being included in the linking process via the
-ErrorLib- command line option.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 123

9. Global Error Handling

9.3

9.4

9.5

Invalid Entry Error Handling

Threads get executed based on pointers found in the entry table. The entry table supports
up to 32 functions but it is rare to actually use all 32 functions. The unused entries are
considered to be invalid and in normal operation would never get accessed.

It is an error to access an unused function in the entry table. When possible, unused
entries are filled with the following address.

_Error_handl er _entry.

It is not always possible to fill unused entries with this address because unused portions of
the entry table can be used to hold code. So this address is used where the entry table
contains neither eTPU functions nor eTPU code.

In the SCM OFF Weeds Error Handling

The address space of the eTPU is 64K, but NXP generally only fills a very small portion of
this code space with physical memory. For example, the very first MPC5554 version had
only 12K of code memory. So what happens if, due to an error, the thread of execution
should occur in the unused 52K of code space?

It is an error to execute from the unused portion of the SCM code memory and when this
happens the actual opcode that gets executed is specified by the SCMDATAOFFR
register. ETEC provides an SCMDATAOFFR register value (see the
SCM_OFF_OPCODE #define in the auto-defines header section) that will cause the
following error handler to execute.

_Error_handl er _scm of f _weeds
Note that this error handler will only execute if the #define SCM_OFF_OPCODE <value>

provided in the automatically-generated header file is used to program the
ETPUSCMOFFDATAR register.

In the FILL Weeds Error Handling

Say you have 18K of available code memory but use only 15K. The remaining 3K of code
memory is essentially spare capacity. So what happens if the thread of execution
somehow moves to this extra 3K of code memory?

page 124, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

9. Global Error Handling

9.6

It is an error to execute from this spare memory. ETEC defaults to filling this spare
memory with a jump to the error handler listed below. Note that a jump is used instead of
a call so that the user can possibly determine an address (based on the return address
register, RAR) of any possible originating return that might have caused this code to get
executed in the first place.

_Error_handler _fill_weeds

A related issue is the fill opcode specified on the command line. If afill-opcode value is
specified on the command line then this overrides the default fill opcode that ETEC would
have used to jump to this error handler. It is therefore an error to both specify a fill opcode
and to override this error hander, and in fact if a fill opcode is specified then ETEC will
neither provide, nor allow, this error handler to exist.

Unexpected Thread Error Handling

Say you have a function that does not support an incoming link event. If a link does occur
this is an error condition and should be made observable to the host software so that the
problem does not remain undetected. The 'Unexpected Thread' error handler can be used
both in ETEC mode and legacy mode 'C' as well to detect these types of unexpected
errors. Note that no overhead is incurred using the methods described below. The address
of the error handler is injected directly into the entry table.

In ETEC mode simply add the following to any unused entries.

<. L. >
5| X| X| X| input=X] X | X| low| enable | ::_Error_handl er_unexpected_t hread
<. L. >

In Legacy mode call the Error_handler_unexpected thread as a fragment from any
unused threads. For example, the following could be done if HSR is not used:

if(hsr==1)

{
/1 Call the error handler as if a fragnent
/1 The address will be injected
/1 directly into the entry table
/1 thereby incurring no overhead
_Error_handl er _unexpected_t hread();

}

The most typical place to reference this error thread would be in the final "else" catch-all
clause:

11

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 125

9. Global Error Handling

el se

{

}

In the assemble entry table place the unexpected thread error handler directly in the table
as follows.

hsr | Isr | transitionB | transitionA | pin | flagl | flag0 | load | matches |

11 X | X | X | input=0 | X | 0 | lTow | enable |
11 _Error_handl er _unexpected_t hread

_Error_handl er _unexpected_t hread();

9.7 Extending the Error Handler

It is possible to extend the custom error handler in assembly by adding assembly code that
uses 'user-defined' error bits to extend the error library. Care must be taken to use error
bits set aside for the user, and not those set aside for future extension.

Note that the existing error library is accessed by jumping to label
'_Error_handler_save _states. When entering this location the P_31 0 register contains
the error bits that the user wishes to set.

[l File: User Error Handl er . st a

/'l declare the external error handler data bit that will be
set
extern int32 _d obal _error_data;

_Error_handl er _user:

/1 Set user-defined error bit 2

/1 and leave it in p_31_ 24

ramp_31 0 = _dobal _error_data;;

seq goto _Error_handl er_save_states;;

alu p_31 .24 = p_31 24 | Ox1;; /Il Set user-defined
error 2

page 126, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

9. Global Error Handling

Accessing the Error Handler

It is possible to access the existing error handler library in both 'ETEC' as well as 'Legacy’
mode.

To access the factory-supplied error handlers directly in either mode, they are called suchly

/1 Link service requests are not supported

/1 Make this error observable by calling a factory-defined
error handl er

if (IsLinkServiceRequestEvent())

{
/'l Error Detected,
/1 the ETEC gl obal error handler in etpuc node
_Error_handl er_entry();

}

Note that the three factory-defined error handlers are defined in factory-provided header
file'ETpu_Lib" asfollows
_eTPU thread _Error_handl er_entry(_eTPU mat ches_enabl ed) ;
_eTPU_t hread

_Error_handl er _scm of f _weeds(_eTPU_nat ches_enabl ed) ;
_eTPU_t hread

_Error_handler _fill_weeds(_eTPU mat ches_enabl ed) ;

To access a user-defined error handler from 'C' that was written in assembly, the error
handler must be declared as a fragment as follows.

_eTPU thread _Error_handl er _user(_eTPU_mat ches_enabl ed) ;

In ETEC mode these factory-defined and user-defined error handlers can also be directly
injected into the event vector table as follows.

DEFI NE_ENTRY_TABLE(Test Cl ass, TestCl ass, standard,
i nput pi n, autocfsr)
{

/1 HSR LSR ML M2 PIN FO F1 vector

ETPU VECTOR1(1, x, x, x, 0, 0, Xx,
_Error_handl er _user),

<... SNIP ...>

ETPU VECTORL(5, x, X, X, X, X, X,
_Error_handl er _user),

ETPU VECTORL(6, X, X, X, X, X, X,
_Error_handler_entry),

ETPU VECTORL(7, X, X, X, X, X, X, MyThread),

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 127

9. Global Error Handling

9.9

ETPU VECTOR1(O, 1, 1, 1, x, O, x,
_Error_handl er _user),
<... SNIP ...>
ETPU VECTOR1(O, 1, 1, 0, x, 1, x,
_Error_handl er _user),

b

Creating a User-Defined Error Handler

A user defined error handler can be defined using a fragment. Use of a fragment is an
efficient method because a fragment reduces (and in this case eliminates) the call/return
overhead. From within the thread, simply call the fragment as follows.

/'l Declare the global error handler as a fragnent
/'l to elinmnate the call/return overhead
_eTPU fragment d obal _Error_Func()

{
int | _error = chan;
if (LinkServiceRequest == 1) | _error+=0x0100;
if (MatchALatch == 1) | _error+=0x0200;
if (MatchBLatch == 1) | _error+=0x0400;
if (TransitionALatch == 1) | _error+=0x0800;
if (TransitionBLatch == 1) | _error+=0x1000;
G obal _Error =1 _error
Cl ear Al | Lat ches();

}

/'l Legacy node function that accesses the user-defined
error handl er
if (IsLinkServiceRequestEvent())

{
/1l Test accessing
/1 a user error handler in etpuc node
G obal _Error_Func();

}

In ETEC mode, a user-defined global error handler is declared as a thread, then inserted
directly into the event vector table as follows.

/'l Get a pointer to the global error handl er data
extern int _d obal _error_data;

_eTPU _thread Myd obal Error Handl er (_eTPU_nat ches_enabl ed)

page 128, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

9. Global Error Handling

/] Set bit 22, this is user-defined error #2
_G obal _error_data | = (1<<22);
}

/1l Set one or nore invalid entries to point the the user-
defined error handl er
DEFI NE_ENTRY_TABLE(Test Cl ass, TestCl ass, standard,
i nput pi n, autocfsr)
{
11l HSR LSR ML M2 PIN FO F1 vector
<... SNIP ...>
ETPU_VECTORL(O, 1, 1, 1, x, 0, x,
Myd obal ErrorHandl er),
<... SNIP ...>
b
The other way to create a custom handler is to disable import of the default with the -
ErrorLib- linker option, but include in the link error handling code that declares the 3 key
labels: _Error_handler_entry, _Error_handler_scm_off_weeds, and
_Error_handler_fill_ weeds.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 129

page 130, Compiler Reference Manual

10. Command Line Options

10

Command Line Options

This section covers the command line options for both the compiler and the preprocessor.

10.1 Compiler Command Line Options

The compiler is called ETEC_cc.exe, and it has the following format:
ETEC cc. exe <options> <source file nane>

where options can be any of the following:

Display Help
This option overrides all
others and when it
exists no compilation is
actually done.

-h, ?or-?

Off

-h

Open Manual

Opens the electronic
version of this

Off

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 131

10. Command Line Options

Assembler Reference

Manual.
Open a Specific Manual | -man=<MANUAL> Off -man=ETPUCIM
Opens an electronic | \yhere MANUAL is one
version of the specified | ot the following:
manual. '

TOOLKIT: Toolkit
User Manual.

COMP: Compiler
Reference Manual

LINK: Linker
Reference Manual.

ASMFS:. eTPU
Assembler Reference
Manual - NXP
Syntax.

ASMAW: eTPU
Assembler Reference
Manual - ASH
WARE Syntax.

ETPUSIM: Stand-
Alone eTpu Simulator
Reference Manual.

MTDT: Common
reference manual
covering all
simulator/debugger
products EXCEPT the
eTPU Stand-Alone
simulator.

LICENSE: License
reference manual

page 132, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

10. Command Line Options

Display Version -version Off -version

Displays the tool name
and version number and
exits with a non-zero
exit code without
compilation.

Display Licensing Info -license Off -license

Outpuits the licensing
information for this tool.

Target Selection -target=<TARGET> ETPUL -target=ETPU2

Select the destination | \yhere TARGET can be:
processor for the _ _
compilation. - ETPU1: compile for

the baseline eTPU
processor.

- ETPU2 : compile for
the eTPU2 processor
version. (TBD)

Console Message -verb=<N> 5 -verb=9

Verbosity i
_ where N can be in the
Contral the verbosity of range of O (no console

the compiler message output) to 9 (verbose

OLIEPLL. message outpu).
Console Message -verbSuppress=<TY PE> | Off -
Suppression verbSuppress=SU
where TY PE can be: MMARY
Suppress console
type/class. Multiple version & copyright
types can be specified banner.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 133

10. Command Line Options

with multiple — - SUMMARY :the

verbSuppress options. success/failure
warning/error count
summary line

- WARNING : all
warning messages

- ERROR : all error

messages (does not
affect the tool exit

code)

- INFO : all
informational messages
will be supressed

Console Message Style -msgStyle=<STYLE> ETEC -msgStyle=MSDV
Controls the style of the | \yhere STYLE can be:
error/warning output
messages, primarily for |- ETEC : default ETEC
integration with IDEs | message style.

- GNU : output
messages in GNU-
style. This allows the
default error parsers of
tools such as Eclipse to
parse ETEC output and
allow users to click on
an error message and
go to the offending
source line.

- DIAB : output
messages in the style
used by Diab
(WindRiver) compilers.

- MSDV : output in
Microsoft Developer

page 134, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

10. Command Line Options

xample

Studio format so that
when using the
DevStudio IDE
errors/warnings can be
clicked on to bring
focus to the problem
source code line.

Specifies any
directories, after the
current one, to be

where PATH is atext
string representing either
arelative or absolute

Console Message Path -msgPath=<STY LE> ASIS -msgPath=ABS
Style where STY LE can be:

Controls how the path

and filename are - ASIS: output the

displayed on any filename as it is input

warning/error messages| On the command line

that contain filename (or found via #include

information. or search).

- ABS: output the
filename with its full
absolute path.

Console Message Limit -msgLimit=<CNT> 50 -msgLimit=20

Controls the number of

messages output

(warning or error),

before output goes

silent. Note that if the

first error occurs after

the message limit is

exceeded, that first

error is still output.
Source File Search Paths | -I=<PATH> None -1=.\Include

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 135

10. Command Line Options

searched for included
files. Multiple paths
can be specified and

directory path. The
entire option must be in

they are searched in the ggomt;sng ;Bch;asth
order of their
appearance inthe
command line.
Source File Search Path -IMode=<MODE> SOURCER | -
Mode EL IMode=CWDRE
. where MODE can be: L
Specifies any
directories, after the - SOURCEREL : search
current paths specified with -|
are relative to the source
file being compiled.
- CWDREL : search
paths specified with -1
are relative to the current
working directory.
Macro Definition -d=<MACRO> None -d=DBG BUILD
Supplies a macro where if MACRO is an
definitiontothe pré- | jenyifier than it is pre-
processing stage of | gefined to a value of 1,
compilation. otherwise it can be of the
form macro=definition,
where macro gets the
value specified in
‘ definition’ .
Output File -out=<FILENAME> None -out=file.obj
Overrides the default

behavior of generating
an object file with the

where FILENAME is
written with the
compilation output. If

page 136,

Compiler Reference Manual (C) 2008-2024 ASH WARE,

Inc.

10. Command Line Options

same base name as the
source file, but with the
.eao extension.

FILENAME does not
have an extension, .eao is
added automatically. The
entire option must be in
quotes if FILENAME

contains spaces.

Static Data Packing -packstatic=<OPTION> | PACKTIG |-
Q}':m;omo' ofthe | \yhere OPTION canbe: | ,ﬂaégaég PAST
packing/allocating static | = PACKTIGHT : packs
channel frame data. It | dataastightas
does not apply to global posable_; locations of
variables, which are sequentially declared
packed as if varlables_are not .

FASTACCESS were necessarily sequential.

applied to them. Additionally, accesses
to some data types
may not be coherent
with regards to
neighboring data, when
this setting is used.

- FASTACCESS: packs
data so as to provide
the fastest access
possible by allocating
space in optimal spots.

Uses more memory
but increases code
speed and removes
coherency conflicts.

Array Data Packing -packarray=<OPTION> | PACKTIG |-

) HT packarray=FAST

Controls how data in where OPTION can be: ACCESS

arrays is packed for arrays

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 137

10. Command Line Options

of 8 and 16-bit types. This
setting also affects the
corresponding pointer type
arithmetic (i.e. pointers
increment/decrement by
the same amount as the
corresponding array stride
size)

- PACKTIGHT :for 8
and 16-bit types, the
array stride size is the
same as the base size
(1 and 2 bytes
respectively).
FASTACCESS: the
stride size for 8 or 16
bit type arrays is
always 4 bytes,
resulting in optimal
load/store performance
but potentially
increased memory
usage.

Struct Data Packing

Control how members
are placed in a
structure.

-packstruct=<OPTION>

where OPTION can be:

- PACKTIGHT : packs
members as tight as
possible; offsets of
sequentially declared
members are not
necessarily sequential.

Additionally, accesses
to some members may
not be coherent with
regards to neighboring
data, when this setting
is used.

- FASTACCESS: packs
members so as to
provide the fastest

access possible by
locating data in optimal

PACKTIG
HT

packstruct=FAST
ACCESS

page 138, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

10. Command Line Options

spots. Uses more
memory but increases
code speed and
removes coherency
conflicts.

- LEGACY : packs
members similar to
PACKTIGHT, but
with slight differences
as it attempts to
exactly mimic legacy
tools structure packing
algorithms.

ANS| Mode -ans Off -ansi

Enforces ANSI
behavior with structure
& array packing.
Where ANSI-compliant
code is not generated a
warning is issued. Care
should be taken using
thisis it can reduce
code efficiency and
increase memory

usage.

Preprocessor Only -ppOnly Off -ppOnly
This option stops
compilation after the C
preprocessing stage. |If
an output file has been
specified via—out, the
results go to that,
otherwise the

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 139

10. Command Line Options

preprocessed source is
output on stdout.

Signed Char -signedchar Off -signedchar
When specified, “char”
variables are treated as
signed. The ETEC
default is to treat
“char” as unsigned.

Unsigned Char -unsignedchar On -unsignedchar
When specified, “char”
variables are treated as
unsigned. Thisisthe
ETEC default so this
option is superfluous.

Use Global Scratchpad -globalScratchpad Off -globalScratchpad
Model

When specified, code is
compiled using the
scratchpad
programming model
rather than the stack-
based programming
model. The scratchpad
is located in global
memory, and thus care
must be taken to avoid
conflicts on dual-eTPU
systems.

Use Engine Scratchpad -engineScratchpad Off -engineScratchpad
Model

page 140, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

10. Command Line Options

When specified, code is
compiled using the
scratchpad
programming model
rather than the stack-
based programming
model. The scratchpad
is located in engine-
relative address space.
This option is only
available on the
eTPU2

Enable Full Fract Precision | -fractFullPrec Off -fractFullPrec

Historically, some
multiplication with
signed fractional type
parameters truncate the
LSB bit. Using this
option generates code
that provides full
precision results. Note
the full precision code is
less efficient.

Enable Parameter Passing | -passParamByReg Off -
via Register in Scratchpad passParamByReg
Mode

When specified, the
scratchpad model is
enhanced to pass some
parameters by register
like the stack model.
This option has no
effect in stack mode.

(C) 2008-2024 ASH WARE, INCompiler Reference Manual, page 141

10. Command Line Options

Set Register to General - Off, all -

Purpose setRegGP=<REG] REG.. | registers are | setRegGP=TPR,T
This option isusedto | 1> assigned | RRTCR2
indicate that the their regular
specified special functions.
register(s) can instead
be allocated for general
use. The registers for
which this applies are
TPR, TRR, TCR1 and
TCR2. For example, in
a system that does not
use TCR2, itsuse as a
timebase can be
disabled and it can be
used by the compiler to
generate faster and
tighter code.

Error on Warning -strict Off -strict

Turn any warning into a
compilation error.

Note: this is the same
option as -warnkError
which has been
deprecated.

Warning Disable
Disable a specific
compilation warning via
its numerical identifier.
Applies to informational
messages as well.

- Off (all -warnDis=343
warnDis=<WARNID[,W | warnings
ARNID...]> enabled)

page 142, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

10. Command Line Options

10.2

Note that the source file name is not constrained to be the last command line argument, but
that is the standard practice. Also note that command line options are not case-sensitive,
however, there can be no spaces between the option, the ‘=" (if any) and the option data.
Option data that contains spaces must be enclosed in quotes (the whole option).

C Preprocessor Command Line Options

The C Preprocessor executable is called ETEC _cpp.exe, and it has the following format:
ETEC cpp. exe <options> <source file>

Where available options are listed & described below. Note that the source file name is
not constrained to follow the list of options. Also note that command line options are not
case-sensitive, however, there can be no spaces between the option, the ‘=" (if any) and
the option data. Option data that contains spaces must be enclosed in quotes (the whole
option).

Display Help -hor /? Off -h
This option overrides all
others and when it exists
no compilation is actually
done.
Macro Definition -d=<MACRO> None -d=DBG _BUILD
Suppliesamacro | \yhere if MACRO is an
definition for use during | jgentifier than it is pre-
Preprocessing. defined to a value of 1,
otherwise it can be of the
form macro=definition,
where macro gets the
value specified in
‘ definition’ .
Source File Search Paths -|I=<PATH> None -I=.\Include
Specifies any directories,
after the current one, to

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 143

10. Command Line Options

be searched for included
files. Multiple paths can
be specified and they are
searched in the order of
their appearance in the

where PATH is a text
string representing either
arelative or absolute
directory path. The
entire option must be in

multiple —verbSuppress

options.

- SUMMARY :the
success/failure

command line. quotes if the path
contains spaces.
Mode (Compatibility) -mode=<MODE> Off -mode=ETPUC
Tells the C preprocessor | v here MODE can be:
to run in the specified '
mode. - ETPUC : handle
existing code better.
Preprocessor Output File -out=<HLENAME> Off -out=etpu_pwm.i
Sends the preprocessed | \yhere FILENAME is
source to the specified |y ritten with the source
file, rather than placing it | ¢jo preprocessing
on stdout per the default. | gt
Console Message Verbosity | -verb=<N> 5 -verb=9
Control the verbosity of |\ here N can be in the
the compiler message | range of 0 (no console
outpLt. output) to 9 (verbose
message output).
Console Message -verbSuppress=<TY PE> | Off -verbSuppress=
Suppression SUMMARY
where TY PE can be:
Suppress console .
messages by their - BANNER : the ETEC
type/class. Multiple types| Version & copyright
can be specified with banner.

page 144, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

10. Command Line Options

warning/error count
summary line
- WARNING : all
warning messages
- ERROR : all error

messages (does not
affect the tool exit

code)

- INFO : dll
informational messages

Console Message Style -msgStyle=<STYLE> ETEC -msgStyle= MSDV
Contrals the Style of the where STYLE can be:
error/warning output

- ETEC : default ETEC

messages, primarily for
integration with IDEs message style.

- GNU : output
messages in GNU-
style. This allows the
default error parsers of
tools such as Eclipse to
parse ETEC output
and allow users to click
on an error message
and go to the offending
source line.

- DIAB : output
messages in the style
used by Diab
(WindRiver) compilers.

- MSDV : output in
Microsoft Developer
Studio format so that
when using the
DevStudio IDE

(C) 2008-2024 ASH WARE, INCompiler Reference Manual, page 145

10. Command Line Options

errors/warnings can be
clicked on to bring
focus to the problem
source code line.

Console Message Path Style | -msgPath=<STY LE> ASIS -msgPath=ABS
Contr_ols how the path where STY LE can be:
and filename are
warning/error messages filename asiit is input
that contain filename on the command line
information. (or found via #include
or search).
- ABS: output the
filename with its full
absolute path.
Console Message Limit -msgLimit=<CNT> 50 -msgLimit=20
Controls the number of
messages output
(warning or error), before
output goes silent. Note
that if the first error
occurs after the message
limit is exceeded, that
first error is still output.
Display Version -version Off -version
Displays the tool name
and version number and
exits with a non-zero exit
code without compilation.
Display Licensing Info -license Off -license

page 146, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

10. Command Line Options

Outputs the licensing

via its numerical
identifier. Appliesto
informational messages
aswell.

information for this tool.

Error on Warning -warnkrror Off -warnkrror
Turn any warning into a
preprocessing error.

Warning Disable -warnDis=<WARNID> | Off (all |-warnDis=343
Disable a specific warnings
preprocessing warning enabled)

10.3 Console Message Verbosity (-Verb)

A value of zero causes all error and warning messages to be suppressed. The only

feedback from the tool suite is the exit code which is zero on success and non-zero on

error.

A value of one causes only the number of errors and warnings to be printed to the screen.
The actual error and warning messages are suppressed.

CC Success (3 Warnings) EntryTable.c -> EntryTabl e. eao
Asm Success EntryTable.sta -> EntryTabl e. eao

Li nk Success EntryTable, Shift,...

A value of three:

[NOTE: the console utility will buffer up the first line, “Assembling file Shift.sta” ...

only prints it out on detection of one or more errors.]

CC Success EntryTable.c -> EntryTabl e. eao
Assenbling file Shift.sta ...
War ni ng: bl ah bl ah bl ah
War ni ng: bl ah bl ah bl ah

-> EntryTabl e. gxs

,and

(C) 2008-2024 ASH WARE, INCompiler Reference Manual, page 147

10. Command Line Options

War ni ng: bl ah bl ah bl ah
Asm Success (3 warnings) Shift.sta -> Shift.eao
Linking file Shift.eao ...
Linking file Pwmeao ...
Linking file Test2.eao
War ni ng: bl ah bl ah bl ah
War ni ng: bl ah bl ah bl ah
Li nk Success EntryTable, Shift,... -> EntryTabl e. gxs

A value of five, which is the defauilt.

Ver si on ..asdf f asf
Assenbling file Shift.sta ...

Opt ons ...
Build stats ...

Success! 0 errors, 13 warnings.

A value of greater than five prints out more information in a way that is specific to each
tool in the suite.

10.4 Version (-Version)

This command line option displays the tool name and version number and exits with a non-
zero exit code without doing anything other than generating this message (no compile, no
link, etc.) A non-zero (failing) exit code is returned in case the user has accidentally
injected this command line argument into a make. The output is guaranteed to appear as
follows so that a user can develop a parsing tool to determine the version of the tool being
used a particular build.

<Tool Name> Ver si on <Maj or RevNun®. <M nor RevNun® Build <Buil dLetter>

Where ToolName is the name of the tool being used and is either “ETEC Compiler”,
“ETEC Assembler” or “ETEC Linker.” MajorRevNum is the tool’s major revision
number. MinorRevNum is the tools minor revision number, and Build Letter is the build
number of the tool. The following is an example using the ETEC Linker.

C.\Mdt\ Test sHi gh\ ETEC | i nker. exe —Versi on
The following output is generated using an early prototype linker.
ETEC Li nker Version 0.27 Build C

page 148, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

11. Limitations

11

Limitations

Generally, the latest support details can be found at http://www.ashware.com. The sections
below do outline some limitations that are expected to never change.

11.1 Restrictions to the ISO/IEC 9899 C Definition

No floating point (float or double types) support.
The ETEC system does not provide any portions of the C standard library.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 149

page 150, Compiler Reference Manual

12. Supported Features

12

Supported Features

The following 'C' language features are supported by the ETEC compiler.

12.1 General C Language Support

The current ETEC version has some limitations. The list below details the portions of the
C language that are as yet unsupported.

e Function pointers
e Structure initializers
e Designators

e Variable-length arrays

_Accum type not supported; subset of _Fract capability supported

12.2 eTPUProgramming Model Support
Fully supported.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 151

12. Supported Features

12.3

1231

12.3.2

Compatibility Mode Support

This section refers to constructs and syntax specific to existing code.

Entry Table Support

The if-else block entry table model is fully supported.

#pragma support

Itemsin[] are optional. Only one of theitemsina{ } is allowed.
#pragma ETPU_function

Syntax:
#pragma ETPU function <function nanme>
[, {standard | alternate}]
[, {etpd_input | etpd_output}]
[@ <function nunber>];
<function name> must match and precede a function in the source code of the same name,
with a void return type and whose parameters represent the eTPU function’s channel
variables.

The standard / alternate setting controls the entry table type for the function (standard is
default).

The entry table pin direction auto-defines macro generation is controlled by the etpd_input /
etpd_output item. |f not specified, nothing is generated into the auto-defines file (default of

input).

<function number> is processed and passed to the linker. Function numbers are
automatically assigned at link time if a static number was not specified.

It is assumed the function called out has an appropriate format of if/else blocks to defined
the entry table, and compilation will fail if not, or if they do not match the standard or
alternate setting.

No other legacy #pragma options are supported at this time.

page 152, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

13. Appendix A : Pragma Support

13

Appendix A : Pragma Support

This section covers the #pragmas supported by the ETEC compiler. Note that these are
generally also supported by the ETEC assembler. There are two classes of #pragmas -
one class are "code" pragmas. The code pragmas affect how code is generated and
optimized AND their location within the code is important. The second class is everything
else. Currently, the following are the supported code pragmas:

e atomic_begin

atomic_end

optimization_boundary_all

optimization_disable_start

optimization_disable_end
e wctl_loop_iterations

The code pragmas syntactically work like C statements, and thus they must be placed
within the source code like a C statement. The examples below show an incorrect
placement and a valid code pragma placement.

it ()

{

}

#pragma optim zation_boundary_all // will fail

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 153

13. Appendix A : Pragma Support

131

el se

{
}

While the below would work:

ifo(...)
{
}

el se

{

#pragma optim zati on_boundary_all // ok

Verify Version

A #pragma to verify that the proper version of the ETEC Compiler is being used to
generate a particular piece of source code is available.

#pragme verify_version <comparator>, "<version string>",
"<error nessage>"

When such a #pragma is processed by the compiler, a comparison is performed using the
specified <comparator> operation, of the ETEC Comypiler’ s version and the specified
"<version string>". The supported comparators are:

CGE — greater-than-equal
Gl — greater-than

EQ — equal
LE — | ess-t han-equal
LT — l ess-than

The specified version string must have the format of "<major version number>.<minor
version number (2 digits)><build letter (letter A-Z)>". The last token of the #pragma
verify _version is a user-supplied error message that will be output should the comparison
fail.

For example, if the compiler were to encounter the following in the source code

#pragma verify version GE, "1.20C", "this build requires
ETEC version 1.20C or newer"

The ETEC Compiler will perform the test <ETEC Compiler version> >="1.20C", and if the
result is false an error occurs and the supplied message is output as part of the error. With
this particular example, below are some failing & passing cases that explain how the
comparison is done

/'l (equal to specified "1.20C")

page 154, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

13. Appendix A : Pragma Support

13.2

13.3

ETEC Conpi l er version = 1.20C => true

/1 (major version is |less than that specified)
ETEC Conpil er version = 0.50.G => fal se

/1 (mnor version 21 greater than that specified)
ETEC Conpil er version = 1.21A => true

/1 (build letter greater than that specified)
ETEC Conpil er version = 1. 20E => true

Disabling Optimization in Chunks of Code

If it is desired to disable optimization on a section of code, the pragmas
#pragma optim zati on_di sabl e_start

and
#pragma optim zati on_di sabl e_end

can be used to do so. All optimizations are disabled within the specified region, so this
feature should be used with care.

Disabling Optimizations by Type

The ETEC optimizer operates by applying a series of optimizations to the code, thereby

reducing code size, improving worst case thread length, reducing the number of RAM

accesses, etc. Although these optimizations are generally disabled en-masse from the

command line using -opt-, it is also possible (but hopefully never) required to individually

disable specific optimizations within a source code file using the following option.
#pragma di sabl e_optim zati on <Nume

This disables optimization number, <num>, in entire translation unit(s) in which the source
code or header file is found.

The optimization numbers are not documented and must be obtained directly from ASH
WARE. Note that the purpose of disabling specific optimizations is to work-around
optimizer bugs in conjunction with ASH WARE support personnel.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 155

13. Appendix A : Pragma Support

13.4 Atomicity Control

An atomic region can be specified by the enclosing pragmas

#pragma at om c_begin
/1l code to be atom c
1. ..

#pragma at om c_end

The contents of an atomic region must compile into a single opcode or an error results.
This atomic opcode is guaranteed to be kept together throughout the optimization process.

13.5 Optimization Boundary (Synchronization) Control

The pragma
#pragma optim zati on_boundary_al |

prevents any opcodes or sub-instructions from moving across the #pragma point in the
source code. Generally this should not be used as it will result in degraded performance,
but if a case arises wherein optimization produces unwanted behavior, it can be a useful
construct.

13.6 Thread Length Verification (WCTL)

The verify_wctl pragma are used for the following:

e Nothread referenced from a Class or eTPU Function (including both member
threads and global threads) exceed a specified number of steps or RAM accesses.

e A specific thread does not exceed a specified number of steps or ram accesses.

e For classes with multiple entry tables, the worst-case thread of any entry table can
be specified (currently only available in ETEC mode.)

e A global ‘C function or member ‘C’ function does not exceed a specified number
of steps or ram accesses.

The syntax is as follows:

#pragma verify wetl <eTPUFuncti on> <MaxSt eps>
steps <MaxRans> rans

page 156, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

13. Appendix A : Pragma Support

#pragma verify_wctl <eTPUFunction>::<Thread> <MaxSteps>
steps <MaxRans> rans

#pragma verify wetl <Cl ass> <MaxSt eps> st eps
<MaxRanms> rans
#pragma verify wetl <Class>::<Thread> <MaxSteps> steps
<MaxRanms> rans
#pragma verify wetl <Cl ass>:: <Tabl e> <Max St eps> st eps
<MaxRanms> rans
#pragma verify wetl <Cl ass>:: <CFunc> <Max St eps> st eps
<MaxRanms> rans

#pragma verify_wctl <d obal CFunc> <MaxSt eps> steps
<MaxRanms> r amns

Note that global threads must be scoped with a class that referencesit. In other words,
say there is a common global thread referenced from several different classes entry tables.
The following syntax would be required where the class name is the name of one class
that references the global thread.

#pragma verify wetl <Cl ass>::<d obal Thread> <Max St eps>
steps <MaxRans> rans

Some called functions (‘C’ functions or member functions) may have routes that return to
the caller but also may end the thread. In such causes the verify _wctl acts on the longer
of these two.

The WCTL analyses assumes that called functions are well-behaved in terms of call-stack
hierarchy. For instance, if Func() calls FuncB() and FuncB() calls FuncC(), areturnin
FuncA () will go to the location in FuncB() where the call occurred. Additionally, a return
within FuncB() will then return to Func() where that call occurred. In order for this to
occur, the rar register must be handled correctly, which is guaranteed in ETEC compiled
code, as long as inline assembly does not modify the RAR register. It is also guaranteed in
assembly as long as RAR save-restore operations are employed in a function's prologue
and epilogue.

The WCTL calculations remain valid even when a thread ends in a called function.

The following are examples uses of verify wctl:

/1 Verify WCTL of a global function
#pragma verify wctl nc_sqrt 82 steps 0 rams

/'l Verify WCTL of a specific thread within a cl ass
#pragma verify_ wetl UART:: SendOneBi t 25 steps 7 rans

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 157

13. Appendix A : Pragma Support

13.7

13.8

13.9

/'l Verify WCTL of the longest thread within an entire class
#pragma verify_wetl UART 30 steps 9 rans

Forcing the WCTL

In some cases a thread, eTPU function, or an eTPU class may not be able to be analyzed.
This can occur when multiple loop are encountered or when the program flow is too
convuluted for a static analyses. In these cases, the maximum WCTL can be forced using
the following #pragma.

#pragma force_wctl <Name> <max_steps> steps <max_rans> rans

An example of this is the square root function in the standard library used in NXP set 4.
This has two loops where the maximum number of times through each of the loops is inter-
dependent, and this complicated loop limit relationship is well, not supported ETEC's worst
case thread length analyses. The following #pragma is used to establish this limit

#pragnma force_wtl nt_sqrt 82 steps 0 rans

Excluding a thread from WCTL

A thread can be excluded from the WCTL calculation of a function. This is normally used
for initialization or error handling threads that in normal operation would not contribute to
the Worst Case Latency (WCL) calculation. The format is as follows:

#pragma excl ude_wct| <eTPU Functi on>:: <Excl udedl nit Thr ead>
For example the following excludes a UART's initialization thread from the worst case.
#pragma exclude_wct! UART::init

Loop Iteration Count

Loops in eTPU code are generally not a good programming practice because the eTPU is
an event/response machine in which long threads (such as those caused by loops) can
prevent the quick response time to meet many applications’ timing requirements.

However, loops are occasionally required, and are therefore supported by the optimizer.

But there is no way to analyze the worst case thread length for threads that contain loops,
and therefore loops prevent analyses unless loop bounding iteration tags are added.

page 158, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

13. Appendix A : Pragma Support

13.10

13.11

#pragma wetl _| oop_iterations <max_| oop_count >
<Some Loop>

It is critical that this pragma be placed right before the loop construct, so that the
connection is properly found - here is a simple example:

#pragma wct! _loop_iterations 10
whi |l e (del ayCount < threshold) { del ayCount ++; }

Code Size Verification

The code size verification pragma, verify _code_size, allows the user to verify at build time
that their code meets size requirements. Code size verification is done on a function scope
basis. The pragma has the syntax options

#pragma verify_code_size <Function> <MaxSize> bhytes

#pragma verify_code_size <Function> <MaxSize> words

#pragma verify_code_size <Cl ass>::<Function> <MaxSize> bytes

#pragma verify_code_size <Class>::<Function> <MaxSize> words

The maximum allowable size for a given function can be specified in bytes or words
(opcodes, 4 bytes each). If the actual size of the function exceeds MaxSize, the linker
iSsues an error.

This pragma is available in both the Assembler and Compiler.

Memory Size (Usage) Verification

The memory usage verification pragma, verify_memory_size, allows the user to verify at
build time that their memory usage meets size requirements. Memory usage is verified on
amemory section basis. The pre-defined (default) memory sections are named &
described below:

GLOBAL_VAR - user-decl ared gl obal vari abl es

GLOBAL_SCRATCHPAD | ocal variables allocated

out of global nmenory (scratchpad)

GLOBAL_ALL - all global nmenmory usage

ENG NE_VAR - user-decl ared vari abl es
in engine-relative nenory space
(eTPU2 only)

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 159

13. Appendix A : Pragma Support

13.12

ENG NE_SCRATCHPAD - | ocal variables allocated
out of engine-relative nmenory
(engi ne scratchpad, eTPU2 only)

ENG NE_ALL - all engine-relative nenory usage
(eTPU2 only)

STACK - maxi mum st ack size

User-defined memory sections can also be verified. Currently only channel frames are
supported — these are verified by specifying the appropriate eTPU class or function name.

The pragma has the following syntax options

#pragma verify_menory_size <menmory section> <MaxSize> bytes

#pragma verify _menory_size <nmenory section> <MaxSize> words

#pragma verify _menory_size <eTPU class/function> <MaxSize> bytes
#pragma verify_menory_size <eTPU class/function> <MaxSize> words
The maximum allowable size for a given memory section (or channel frame) can be
specified in bytes or words (4 bytes/word). If the actual size of the memory section
exceeds MaxSize, the linker issues an error.

This pragma is available in both the Assembler and Compiler.

Same Channel Frame Base Address

When multiple channels use the same channel frame base address, there is no need to re-
load channel variables when the channel is changed. In certain cases this can result in
improvements in code speed and size. The following tells the compiler that the CPBA
register value will be the same for all channel changes of within the specified function.

#pragma sane_channel _franme_base <etpu_function>

The etpu_function argument is the name of an eTPU function, C function, or eTPU class.

An example where this is useful is in the NXP set 1 SPI function, which controls multiple
channels that all share the same channel frame base address. The SPI function can
compile tighter when the ETEC tools know about this, which can be done by adding:

#pragma sanme_channel _frane_base SPI

page 160, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

13. Appendix A : Pragma Support

13.13 Auto-defines Export

Two #pragmas allow export of macros in the eTPU compilation environment, or user-
defined text, into the auto-defines file. The export macro pragma has the following syntax:

#pragma export _aut odef nmacro "<out put_nmacro_nane>",
<out put _macr o_val ue>

The following lines in eTPU source:

#define TEST_INIT_HSR 7

#define TEST_STR "xyz"

#pragma export _autodef macro "ETPU TEST I N T_HSR",
TEST_I NI T_HSR

#pragma export _autodef _nacro "TEST_STR', TEST_STR

Results in the following in the auto-defines file:

/'l exported autodef macros from user "#pragma
export _aut odef _macro" conmands

#define ETPU_TEST_INIT_HSR 7

#define TEST_STR "xyz"

The standard header file "ETpu_Std.h" has a few "helper macros" available that can
potentially make the eTPU source easier to read. Using the macros like:

#define TEST_ODD_PARITY_FM 1

#pragma export _aut odef _macro

EXPORT_AUTODEF_MACRQ(TEST_ODD_PARI TY_FM

#pragma export _aut odef _macro
EXPORT_AUTODEF_MACRO_PRE("ETPU_ ", TEST_ODD_PARI TY_FM

Results in:

/1 exported autodef macros from user "#pragm
export _aut odef _macro" conmands

#define TEST_ODD PARITY_FM 1

#defi ne ETPU_TEST_ODD PARI TY_FM 1

There is also a pragma to export any user-defined text. Note that this text must be
parseable by whatever compiler processes the auto-defines file when compiling host code,
or it will break the compilation. The export text #pragma has this syntax:

#pragma export_autodef text "<user_defined _text>"

The text must use C escape sequences when necessary, and can even include newlines for
the output. For example:

#pragma export _aut odef _text "#define EXPORT_AUTODEF VAL 1"

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 161

13. Appendix A : Pragma Support

#pragma export _aut odef text "#define EXPORT_AUTODEF_STR
\"abc\""

#pragma export _aut odef _text "#define
EXPORT_AUTODEF_FUNC_MACRO(ARGL, ARG2) \\\n ARGl

Y ields the following in the auto-defines file:

/'l exported autodef text from user "#pragna
export _aut odef text" commands

#defi ne EXPORT_AUTODEF_VAL 1

#defi ne EXPORT_AUTODEF_STR "abc"

#defi ne EXPORT_AUTODEF_FUNC_MACRO(ARGL, ARG2) \
ARGl = ARG2;

ARG2; "

13.14 Private Channel Frame Variables

When using the eTPU-C programming model, channel frame variables can be kept
"private”, that is, their information is not exported in the auto-defines file, by declaring them
via the "static" technique and using the private channel frame pragma (#pragma
private_static_channel_frame). The default behavior (no pragma) is to have all channel
frame variables in an eTPU-C function be public. See the example below.

#pragma ETPU function PWM alternate;
#pragma private_static_channel _frame

void PWMint24 Flag, // all paraneters always exported to
aut o- defi nes
i nt24 Peri od,
int24 ActiveTine,
i nt 24 Coherent _Peri od,
i nt 24 Coherent _ActiveTine)
{
static int24 LastFrane; // not exported to auto-
defi nes because of pragna above
static int24 NextEdge;

/1l

A matching pragma to switch back to the default public model is:

#pragma public_static_channel _frane

page 162, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

13. Appendix A : Pragma Support

13.15 Explicit Locating

Global symbols can be located at explicit addresses via #pragma.
#pragma | ocate_synbol <Synmbol Name> <Address>

The pragma must occur in the source before and definition or declaration of the symbol.
The address can be anywhere in SDM - thus explicitly located variables in eTPU code can
be located outside the default low memory global address range of 0x0 - 0x400, and all
accesses will be made using the architecture's indirect addressing mode. 1t is the main
purpose of this capability to allow data (particularly large data buffers) to be placed at the
end of memory, thereby leaving the low memory available for regular global variables or
scratchpad. The address can be specified in octal, decimal or hexadecimal, and it must be
a single constant (no expressions allowed). Some examples:

#pragma | ocate_synbol g_el _array 0x601

int24 g el _array[16];

#pragma | ocate_synbol g_el _struct2 0x700
struct GS g_el _struct2;

or

/'l header file extern declaration

#pragma | ocate_synmbol gl 0x400

extern int8 gl;

#pragma | ocate_synbol g2 0x406

extern intl6 g2;

The address specified must have the proper alignment (address modulo 4) given the symboal
type. Given the global scope, 8 hit variables have an alignment of O bytes, 16 bit variables
have an alignment of 2 bytes, 24 bit align at an offset of 1 byte, and 32 bit variables of
course align on the word boundary (0). Aggregate types will depend upon the exact
contents and packing. A compilation error is thrown if the alignment is wrong.

Expilicitly located symbols can overlay each other, but when detected, a warning is issued
by the linker.

Regular global symbols/variables are treated as a block and will try to be located in the
lowest memory address possible (ideally, starting at 0). Explicitly located symbols in low
memory can push this off. Any global scratchpad is also treated as a contiguous block and
will also try to be located in the lowest memory slot possible, after regular global variables
are located. It is recommended that explicitly located globals not be placed into low
memory as it can lead to holes, and possible cause regular globals and scratchpad to run
out of memory.

The defines file has macros for the addresses for explicitly located symbols, but they are
not counted as part of the global data size macros UNLESS they (some) are placed in low

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 163

13. Appendix A : Pragma Support

memory before regular global symbols. Note also that the macros for recommended
channel frame and stack addresses do not account for explicitly located symbols, so take
care. They are also listed in the .map file, but again not as part of the regular global data
section. Last, explicitly located variables do not appear in the auto-struct outpuit.

13.16 ByteCraft #pragma write Support

Essentially all #pragma write syntax for generating host API files is supported in ETEC.
See the Pragma Write Manual for all the details.

page 164, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

14. Appendix B : Data Packing Details

14.1

14

Appendix B : Data Packing

Detalls

This appendix provide further detail on the non-default data packing modes
(FASTACCESS), and more details on how ANS| mode affects packing. Again, note that
these algorithms are not set in stone and code that uses them (and more specifically host
code) should use the auto-defines data for working with data in the SDM.

Channel Frame FASTACCESS Mode

In FASTACCESS mode channel variables are allocated at address locations where they
can be most efficiently accessed & operated on. Like TIGHT mode, larger objects are
packed first. Note that 1-byte parameters can also occupy the low byte of the 3 LSByte

area.

Given a set of channel frame variables:

int x, y; [/ 24-bit vars
char c1, c2, c3,
/|l 16-bit vars
struct SonmeStruct sonestruct;

short a, b, c;

c5,

c7;

/1 sizeof (SomeStruct) == 8
The packing would look like:
SDM Channel Frame M SByt 3 LSBytes

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 165

14. Appendix B : Data Packing Details

Address Offset e

0 cl X

4 c2 y

8 somestruct

12

16 c3 unused a

20 c4 unused b

24 c5 unused c

28 c6 unused c7

14.2 Structure FASTACCESS Mode

The FASTACCESS struct packing algorithm is again similar to FASTACCESS channel
frame pack mode. A few examples are shown below:

struct TwoChar Struct
{
char x; // offset O
char y; // offset 3
Y /] sizeof() ==

struct Intl1l6_8Struct

{
intl6 twobytes; // offset 2

int8 onebyte; // offset O
Y /] sizeof() ==

struct Intl16_8 8Struct

page 166, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

14. Appendix B : Data Packing Details

14.3

intl6 twobytes; // offset 2
int8 onebyte_1; // offset O
int8 onebyte_2; // offset 4
}; /1l sizeof() ==5

Otherwise, see the FASTACCESS mode packing example in section 12.1.

Structure PACKTIGHT with ANSI Mode Enabled

The ANSI pack modes have similar rules to the non-ANS! versions, except that each
struct member is considered in order for packing, and must have an offset greater than its
predecessor. Note that member order can have significant impact on how tightly the data

packs.

The set of channel frame variables:
int x, y; [/l 24-bit vars
char c1, c2, c3, c4, c5, c6;
short a, b, c; // 16-bit vars
struct SonmeStruct sonestruct; // sizeof(SomeStruct) ==

Would get packed like:

Struct Offset M SByt 3 LSBytes
e
0 (-1 actually since unused X

the base struct
addressis considered
to start at x)

4 (3) unused y

8 (7) cl c2 c3 cd
12 (11) c5 c6 a

16 (15) b c

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 167

14. Appendix B : Data Packing Details

20 (19) somestruct

24 (23)

14.4 Structure FASTACCESS with ANSI Mode Enabled

This mode is similar to FASTACCESS packing, but with guaranteed ascending order of the
member offsets. Note that member order can have significant impact on how tightly the

data packs.

The set of channel frame variables:

int x, y; [/l 24-bit vars
char c¢1, c¢2, c3, c4, c5, c6, c7;
short a, b, c; // 16-bit vars

struct SomeStruct sonestruct; // sizeof (SomeStruct) == 8

Would get packed like:

Struct Offset MSByte 3 LSBytes

0 (-1 actually since unused X

the base struct

addressis

considered to start at

X)

4(3) unused y

8(7) cl unused c2

12 (11) c3 unused c4

16 (15) c5 unused c6

20 (19) c7 unused

24 (23) unused

page 168, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

14. Appendix B : Data Packing Details

28 (27) unused c
32 (31) somestruct
36 (35)

14.5 Array FASTACCESS Mode

With array FASTACCESS mode the array stride size is always a multiple of 4. This also
means that when using this mode, incrementing a pointer to char changes the address by 4
bytes rather than 1! Thus care must be taken when using this mode, however, it can
generate significantly more efficient code when array access is required. Arrays of
elements with a size of 1 byte are aligned on modulo 4 addresses. Elements of size 2 bytes

are aligned at modulo 4 plus 2.
Some example declarations and the ensuing memory allocations are shown below:
char a[6]; // although only burns 6 bytes, sizeof() == 24
int b[3];
struct FiveByteStruct
{
char f1;
int f2;
char f3;
}ocl2];
int24 x;
int8 vy;
intl6e z;
The resulting memory allocation map would look like:
SDM Channel Frame M SByte 3 LSBytes
Address Offset
0 a[0] b[O]
4 a[1] b[1]
8 al2] b[2]

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 169

14. Appendix B : Data Packing Details

12 a[3] X

16 al4] unused
20 a[5] unused
24 c[0].f1 c[0].f2
28 c[0] .f3 unused
32 c[1].f1 c[1].f2
36 c[1] .f3 unused

page 170, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

15. Appendix C: eTPU Annotated Object File Format

15

Appendix C : eTPU Annotated
Object File Format

The eTPU Annotated Assembly format (.EAO) file format is an open format developed
for the purpose of providing an object file format that a compiler or assembler outputs and
that is an input to a linker or optimizer. This format is based on the existing and well
documented GNU file format output by the GNU compiler when the —S (retain assembly
file) is specified (COFF output only). A few distinguishing features of this format are listed
below.

Text format that is human readable (no special visualization tool is required)
Not re-inventing the wheel, the existing GNU format is the baseline.

Where required, additional tags are invented (e.g. valid p_31 24 values on a dispatch
operation)

All required debugging information is included such as originating source file names, line
numbers, data, scoping, etc.

Format Exanmple
file ;,fi ' € . Name of the source code file from
“ FileName” frain. ¢ which all proceeding .line (line

number) tags refer. Relative
pathing relative to CWD is
employed.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 171

15. Appendix C: eTPU Annotated Object File Format

line line 8 Source code line nurrber from

<LineNun> which proceeding opcodes are
generated. Nunmbering goes from
1toN.

.dispatch 'ijgsga;Ch Indicates valid p_31_24 dispatch

values. Tag precedes the single
dispatch instruction that it
describes. Arange isindicated
using the <SartVal>-<EndVal>.
Ranges are separated by commas

.opten <opt #>

Optimzation Enable

.optdis <opt Optimization Disable

#>

.region <type> <type> isthe region type

“ RegionNamg” (coherency, ramsyncpoint,
intsyncpoint, atomic,
chanchange). RegionName
should match at region start and
end.

.regionend

“ RegionNamg”

.version Version of assenbler or conpiler

<major>, that generated the .eao file.

<minor>,

<build>

.producer { cc
| asm}

.def <name>

Begins debugging information for
a symbol name. The definition

page 172, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

15. Appendix C: eTPU Annotated Object File Format

extends until the .endef directive
is encountered.

.def .bb Begins a new block.

.def .bf Begins a function block.

.def .eb Ends a block.

.def .ef Ends a function block.

.def .eos Ends a struct, union, or enum
definition. The menbers of such
are listed between the initial
object .def/.endef and the .def
.€0S.

.endef Ends a symbol definition begun
with a .def directive.

.global Makes symbol with symbolName

<symbolName visible for linking (extern).

>

.scl <class #> Sets the storage-class value for a
symbol. It can only be used
inside a .def/.endef pair.

Size <size #> Sets the storage size of a symbol.
The nunbersisin bytes, except if
the synmbol represents a bitfield,
in which caseitisin buts. It can
only be used inside a .def/.endef
pair.

tag Used to name and link to

<structName> structure/union/enumdefinitions.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 173

15. Appendix C: eTPU Annotated Object File Format

It can only be used inside a .def/
.endef pair.

type <type #> Provides the type attribute for a
symbol. It can only be used
inside a .def/.endef pair.

val Sets the address, offset, or value

<address> of a symbol. It can only be used

inside a .def/.endef pair.

.etpufunction
<functionNam
e>

Marks a symbol as a channel
frame variable and associates
with the proper eTPU function. It
can only be used inside a .def/
.endef pair.

.defentry Used to begin the definition of a
single entry in an entry table.

.ettype Type of entry table

{ standard |

alternate }

.etpin{ input | Optional entry table pin direction

output } conditional. Used by auto-header
for setting the CxCr. ETPD —
Entry Table Pin Direction

.etpuclass Optional name of the eTpuClass

<name> to which thisentry is associated.

.ettable Optional name of the entry table.

<name> Note that in some applications a

class may have multiple entry
tables.

page 174, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

15. Appendix C: eTPU Annotated Object File Format

.etlabel Code label name that is the
<name> destination of thislabel. [If itis
not mangled, the label must exist
within the class or nmust be

global]

Index <N> Index of this entry, valid range is
Oto 31

.val <Value> Value of this entry where the

Preload Parameter (PP) and
Match Enable (ME) have been
encoded, but the Microcode

Address has not.
.etcfsr Optional entry table channel
<Value>5 function select value. This

handles the (hopefully rare) case
when the user specifies a specific
CFSRvalue for a function

.endentry Ends the entry definition.
anit<val>,... For initializing global and
,<val> channel variables

Storage class values have the following meaning:

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 175

15. Appendix C: eTPU Annotated Object File Format

Value Storage Class
0 No storage class
1 Automatic variable
2 External symbol
3 Static (internal linkage)
4 Register variable
5 External definition
6 Label
7 Undefined label
8 Member of a structure
9 Function argument (parameter)
10 Structure tag
11 Member of a union
12 Union tag
13 Type definition
14 Uninitialized static
15 Enunmeration tag

page 176, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

15. Appendix C: eTPU Annotated Object File Format

16 Member of an enumeration

17 Register parameter

18 Bit field

19 Tentative definition

20 Static .label symbol

21 External .label symbol

100 Beginning or end of a block
101 Beginning or end of a function
102 End of structure (or union, enumeration)
103 Filename

104 Used only by utility programs

Type attributes have the following meaning:

Value Type Attribute
0 Void type
1 Signed character
2 Character
3 Short integer

(C) 2008-2024 ASH WARE, INCompiler Reference Manual, page 177

15. Appendix C: eTPU Annotated Object File Format

4 Integer

5 Long integer

6 Floating point

7 Double word

8 Structure

9 Union

10 Enumeration

11 Long double precision
12 Unsigned character
13 Unsigned short integer
14 Unsigned integer

15 Unsigned long integer

15.1 Code Labels

Code labels have the following form
. codel abel <nanme> .type <N> .codel abel end;

Where <name> is the mangled name of the code label, <N> is the code label type where a
type of O indicates a natural label, and a type of 1 indicates a compiler contrived type. An
example of a contrived type is the labels generated by an if-else “C” construct.

The following is an example of a code label that is generated by the assembler.
.codel abel _Add_AWS13E Main_; .type O; .endcodel abel;

page 178, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

15. Appendix C: eTPU Annotated Object File Format

15.2 Entries

Each entry table entry must have the following form. The .index directive indicates which
of the 32-entries for this table is being defined. All 32 entries must be defined.
.defentry; .ettype standard; .etpin input; .etpuclass Add;

.ettabl e AW6B2D NAMELESS ENTRY_TABLE; . etl abel Dangli ngEl se; .index O;
.val 0x4000; .line 70; .etcfsr 5; .endentry;

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 179

page 180, Compiler Reference Manual

16. Appendix D : Error, Warning and Information Messages

16.1

16

Appendix D : Error, Warning and
Information Messages

The ETEC toal suite provides a lot of feedback with regards to compilation errors,
warnings and informational messages. The tables below list the messages that can be
issued by the toals.

Compiler Error Messages

M essage Explanation
I dentifier

001 Currently unsupported feature; planned to be supported in the
future.

002 Factory error — should never occur, but if it does report error to
the factory.

100 Invalid command line option encountered.

110 Could not open specified source file.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 181

16. Appendix D : Error, Warning and Information Messages

M essage Explanation
I dentifier

120 Overflow of the C preprocessor buffer (may be passing too
many long —d options, or to many long —I paths).

121 The C Preprocessor could not be run (is installation correct?).

122 The C Preprocessor could not be run (is installation correct?).

123 Preprocessing error occurred; message will provide further
details.

200 Syntax error.

210 Invalid declaration.

220 Multiple default labels found in a switch statement.

221 A break statement found outside any enclosing switch or
iteration statement.

222 A continue statement found outside any enclosing iteration
statement.

230 Invalid if-else statement found.

231 Invalid switch statement found.

232 Case expression invalid (note that case expressions must be
constant expressions).

240 For loop test expression is invalid.

241 For loop initialization expression is invalid.

page 182, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

16. Appendix D : Error, Warning and Information Messages

M essage Explanation
I dentifier

242

For loop iteration expression is invalid.

245

While loop expression is invalid (do-while included).

250

Invalid function scope.

251

Invalid function definition.

252

Scoping error (mismatch) detected.

260

Duplicate label found.

270

No return for non-void function.

271

Return type does not match the function definition return type.

16.2 Compiler Warning Messages

M essage Explanation
I dentifier

001

Currently unsupported feature (that can be ignored).

100

Empty source file sent through compiler — no tokens found.

101

A bad command line option found that can be ignored.

110

An unrecognized #pragma encountered.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 183

16. Appendix D : Error, Warning and Information Messages

M essage Explanation
I dentifier

111 An invalid optimization D was specified with —optEn or —
optDis; it is ignored.

120 C preprocessing warning message.

200 An identifier longer than 255 characters found and truncated to
255 significant characters.

210 Warn about non-ANSI/ISO compliant generated code (-ansi
mode only)

300 An incomplete global array definition encountered; it is assumed

to have only one element.

310 An inner scope identifier name is masking the same name from
an outer scope.

320 An array string initializer is too large to fit in the array; it is
truncated.

Multiple of the same type qualifiers detected.

No function return type is specified; defaulting to int return type.

330
340
350 A declared local variable encountered that is not ever used.
400

Signed and unsigned values are being compared and thus may
yield unexpected results (comparison is unsigned).

401 Value to be assigned is not of the same type; an implicit
conversion is done.

410 Shift by a negative constant is ignored.

page 184, Compiler Reference Manual (€) 2008-2024 ASH WARE, Inc.

16. Appendix D : Error, Warning and Information Messages

M essage Explanation

I dentifier

411 Shift by a zero constant is ignored.

420 Constant conversion results in truncation.
421 Constant conversion to fact was saturated.
422 Constant truncated to fit in bitfield.

(C) 2008-2024 ASH WARE, InC compiler Reference Manual, page 185

	1 Introduction
	2 Supported Targets
	3 References
	4 Keywords and Abbreviations
	5 eTPU Programming Model
	5.1 Legacy Mode
	5.1.1 Accessing Channel Variables From Outside eTPU Function Scope
	5.1.2 Legacy Mode Issues

	5.2 Enhanced ETEC Mode (eTPU Class)
	5.2.1 eTPU Class Example
	5.2.2 Threads
	5.2.2.1 Enabling/Disabling Matches in the Thread
	5.2.2.2 Controlling the Preload Parameter Bit (PP)

	5.2.3 Entry Tables
	5.2.4 Member Functions (Methods)
	5.2.4.1 Member Function Fragments

	5.2.5 Channel Variables
	5.2.5.1 Hiding Channel Variables (Public/Private)
	5.2.5.2 Initial Values
	5.2.5.3 Access Oustide Class Scope

	5.2.6 Channel Groups
	5.2.7 Extension Syntax Details

	5.3 eTPU Types
	5.4 Pointers
	5.5 eTPU Data Packing
	5.5.1 Global Variables
	5.5.2 Static Variables in Callable C-Functions
	5.5.3 Explicitly Locating Global Variables
	5.5.4 eTPU2 Engine Relative Address Space
	5.5.5 eTPU Channel Frame Variables
	5.5.6 Channel Frame PACKTIGHT Mode
	5.5.7 Local/Stack Variables
	5.5.8 Structures & Unions
	5.5.9 Structure PACKTIGHT Mode
	5.5.10 Structure Bit Fields
	5.5.11 Arrays
	5.5.12 Array PACKTIGHT Mode
	5.5.13 ANSI Mode

	5.6 eTPU Hardware Access
	5.6.1 Channel Hardware Access
	5.6.2 Baseline eTPU Channel Hardware Programming Model
	5.6.3 eTPU+ Extensions to the Channel Hardware Programming Model
	5.6.4 eTPU2 Extensions to the Channel Hardware Programming Model
	5.6.5 Register Access
	5.6.6 Using Special Registers for General Purpose
	5.6.7 ALU Condition Code Access
	5.6.8 Built-in / Intrinsic Functions
	5.6.8.1 Compatibility Functions
	5.6.8.2 ETEC Coherency & Synchronization Control
	5.6.8.3 TR18037 Fixed-point Library Support
	5.6.8.4 ALU/MDU Intrinsics
	5.6.8.4.1 Rotate Right Support
	5.6.8.4.2 Absolute Value Support
	5.6.8.4.3 Shift Register Support
	5.6.8.4.4 Shift By 2(N+1) Support
	5.6.8.4.5 Set/Clear Bit Support
	5.6.8.4.6 Exchange Bit Support
	5.6.8.4.7 MAC/MDU Support

	5.7 Code Fragments
	5.7.1 _eTPU_thread Calls

	5.8 State Switch Constructs
	5.8.1 State Enumeration
	5.8.2 State Variable
	5.8.3 State Switch
	5.8.4 Additional Notes

	5.9 eTPU Constant Tables
	5.10 ETEC Local Variable Model & Calling Conventions
	5.10.1 Stack-based Model
	5.10.2 Calling Convention
	5.10.3 Scratchpad-based Model
	5.10.4 Calling Convention

	5.11 In-Line Assembly
	5.11.1 Calling the Error Handler from User Code

	5.12 ETEC Standard Header Files

	6 C Preprocessing
	7 Auto Code Generation
	7.1 Auto-Struct File
	7.1.1 24-bit vs. Non-24-bit Accesses
	7.1.2 Naming Conventions
	7.1.3 eTPU Data in Auto-Structs
	7.1.4 eTPU Structures/Unions
	7.1.5 Arrays in Auto-Structs
	7.1.6 Bit-field and _Bool Variables
	7.1.7 Example Code

	7.2 Auto-Defines File
	7.2.1 Global Prepended Mnemonic
	7.2.2 Auto Header File Name
	7.2.3 Endian Support
	7.2.4 Text Generation
	7.2.5 Type Information
	7.2.6 Array Variables
	7.2.7 _Bool Type Variables
	7.2.8 Struct/Union Variables
	7.2.9 Tag Types (Structures, Unions, Enumerations)
	7.2.10 Global Mnemonic
	7.2.11 Settings, Register Fields, and Mnemonic
	7.2.12 Include Race Keepout
	7.2.13 NXP API compatibility
	7.2.14 ASH WARE Simulator Compatibility
	7.2.15 Support for Additional Languages
	7.2.16 SCM ARRAY
	7.2.17 PWM Example

	7.3 Auto-Code Files
	7.3.1 Key Files
	7.3.2 Editing Template Files
	7.3.3 System Simulation Support

	8 Initialized Data Files
	8.1 Initialized Global Memory
	8.2 Initialized Channel Memory
	8.3 Using the Initialized Data Macros in the Simulator

	9 Global Error Handling
	9.1 Global Error Data
	9.2 Error Handling Library
	9.3 Invalid Entry Error Handling
	9.4 In the SCM OFF Weeds Error Handling
	9.5 In the FILL Weeds Error Handling
	9.6 Unexpected Thread Error Handling
	9.7 Extending the Error Handler
	9.8 Accessing the Error Handler
	9.9 Creating a User-Defined Error Handler

	10 Command Line Options
	10.1 Compiler Command Line Options
	10.2 C Preprocessor Command Line Options
	10.3 Console Message Verbosity (-Verb)
	10.4 Version (-Version)

	11 Limitations
	11.1 Restrictions to the ISO/IEC 9899 C Definition

	12 Supported Features
	12.1 General C Language Support
	12.2 eTPU Programming Model Support
	12.3 Compatibility Mode Support
	12.3.1 Entry Table Support
	12.3.2 #pragma support

	13 Appendix A : Pragma Support
	13.1 Verify Version
	13.2 Disabling Optimization in Chunks of Code
	13.3 Disabling Optimizations by Type
	13.4 Atomicity Control
	13.5 Optimization Boundary (Synchronization) Control
	13.6 Thread Length Verification (WCTL)
	13.7 Forcing the WCTL
	13.8 Excluding a thread from WCTL
	13.9 Loop Iteration Count
	13.10 Code Size Verification
	13.11 Memory Size (Usage) Verification
	13.12 Same Channel Frame Base Address
	13.13 Auto-defines Export
	13.14 Private Channel Frame Variables
	13.15 Explicit Locating
	13.16 ByteCraft #pragma write Support

	14 Appendix B : Data Packing Details
	14.1 Channel Frame FASTACCESS Mode
	14.2 Structure FASTACCESS Mode
	14.3 Structure PACKTIGHT with ANSI Mode Enabled
	14.4 Structure FASTACCESS with ANSI Mode Enabled
	14.5 Array FASTACCESS Mode

	15 Appendix C : eTPU Annotated Object File Format
	15.1 Code Labels
	15.2 Entries

	16 Appendix D : Error, Warning and Information Messages
	16.1 Compiler Error Messages
	16.2 Compiler Warning Messages

