eTPU DevTool IDE

Reference Manual

by

John Diener and Andy Klumpp

ASH WARE, Inc.

Version 2.75 A aﬂ
6/8/2024

(C) 2012-2024 ASH WARE, Inc. ASH WARE Inc.

page 2, eTPU DevTool IDE

eTPU DevTool IDE

Table of Contents

Foreword 11
Part 1 Overview 13

1.1 On-Line Help CoNteNtS .ot 15
Part 2 Demo Descriptions 17
Part 3 Software Upgrades 23

3.1 Handling MUltiple VEerSIONS . ..covuiiiciic et 25

3.2 Using Non-Installed ETEC VErSIONScc.iiiiiiiiiieiiienee e ev e e 26
Part 4 IDE and Editors 29

4.1 IDE OPUIONS ettt 29

4.2 Panel Layout OptioNS ..o 29
Part5 The Project 31

oI A o T IS 1 1 Yo 32

5.2 The ProjeCt Files it e e 32

5.3 The Pre-Build Windows' Console "BAT Fileccooiiiiiiiiii e, 33
Part 6 Integrated Build 35

6.1 INternal BUild ... 35

HOST Target BUild ...c.eooeeeiieee e 37

6.2 EXternal BUild ... 37

6.3 Disabled BUildcoouiiiiiii e 39
Part 7 Source Code Files 41

7.1 Source Code SearCh RUIES ..o 41

eTPU DevTool IDE, page 3

eTPU DevTool IDE

Part 8

8.1
8.2
8.3
8.4

8.5

8.6

Script Commands Files 45
The Primary Script Command FileSccoiiiiiiiiiie e 46
ISR Script Commands FileScc.iiiiiiiii e 47
The "ETEC _CPP.EXE" PrePrOCESSON .uvvuiiteiteiiieiieeiaeee et ee e ee e eteenesiaeannas 49
Enhanced Scripting Capabilitiesccoiiiiiiiii 49
Enumeration DeClarationsccoociiiiieiieiieneeie e 50
SCIIPE VAriADIES .o 50
EXPresSion StAtEMENTS .ioiiiiiiiiicii et 52
SeleCtion StALEM ENTS ..oiiiiiiiiec et 53
Loop and JumMpP SEALEMENTS ..oceiiiiiiiiierieeee e 53
File Format and FEatUresooouiiiiiii e e 54
MUIPIE-TArget SCIIPLS ueiiiiieiiii ittt be e es 55
Script Directives, Define, Ifdef, INnCludecociiiiiii e 56
Script Enumerated Dat@ TYPES ..ooiiiiiiiiiiiee ittt et 57
SCript INteger Data TYPES .ooueieiiieiiie ittt e st e e e e e e s 57
Referencing Memory in SCript Files ... 58
Assignments in Script Commands Files - DEPRECATEDccccceiiiiiiieenieene 58
Operators and expressions in Script Commands Filesccccccoiiieniniinnnenn. 60
Syntax for global access of eTPU Function Variablesccccocoiiiiiiniinnininen. 60
Syntax for eTPU Channel Hardw are ACCESS ...cooiiiiiiiiiiiieeiee e 61
Syntax for eTPUALU REQISTEr ACCESS ..uuiiiiiiiiiieiiee ettt e 63
String within astring supports formatted symbolic information 64
Comments in Script Commands FlesS ..o 65
Decimal, Hexadecimal, and Floating Point Notation in Script Files 65
SEFNG NOTATION eeiiiiiiie ettt e e e e st e et e e sbeesabeeaneeeas 65
SCrPt COMMEANTS .eniiiiiii e 66
LI J LYo TSP P R TSRRPPP 67
TIMING SCHPt COMMANGS......coviieiiiie ettt 67
Verify TIming Script COMMANGS..........cooiiiiiiieiiie et 69
Clock Control Script COMMANGS..........cocueeiiriiriiee et 70
Thread Script COMMANASeiiiieiiiee ittt 70
MCU CONFIGUIALTON ..ttt 72
eTPU System Configuration Commands.............cooeeiieienieenieeeseeesiee e 72
eTPU Timing Configuration COmMMANGSccueerieiiieieniee e 73
eTPU Host Service Request Register Script Commands............cccoecveerieeeninenn. 74
eTPU Channel Address Script Commandscceeereeerieeniieeeneeeniee e 74
eTPU Channel Function Select Register Commands.............cccevvvverieenieesninens 75
eTPU Event Vector Entry Condition (Standard/Alternate) Commands.............. 75
eTPU Channel Function Mode Script Command

eTPU Channel Priority Register Commands..........
eTPU Shared Subsystem Script Commands

page 4, eTPU DevTool IDE

eTPU DevTool IDE

€TPU STAC BuS SCript COMMANGS........covirieeriiiniienieeniee et siee e 77
€TPU Link SCript COMMANG........coiuiiiieiiiieiee ettt 78
€TPU Interrupt SCript COMMENGS........c.eiuirieiiieree ettt 79
eTPU Interrupt Association Script Commands...........ccceerverieeieenienieeneesee e 80

Variable, Memory, and Register Modification and Verificationccccccee... 81
Memory Read Script COMMANGS..........coiviiiiriiiiirierie e 81
Memory Modify Script COMMEANGScceeruiriiriiiieree e 82
Memory Verify Script COmMMANS.........cceiiiriiiiirierie e 82
Register Write Script COMMANAS.........cooveiiiiriiiiiiieree e 83
Register Verify Script CoOmMmMaNSccovuirieiiiriinie e 84
Symbol Write SCript COMMANGS........ccvereiriieriee ettt 84
Verify Symbol Value Script Commands...........cceiurrieiiineenienieee e 85
eTPU Engine Data Script COMMANGS..........oooviiiireeriieieenie et 87
eTPU Channel Data Script COmMMEaNGS...........covereeriereenieeieeee e 88
eTPU Global Data Write/Verify Commands.cccovereerienienieenieneeneesee e 90

Pin and Node Modification and Verificationccccovieneniiieiicicneesee e 91

Pin Window Verification Commands

.File Script Commands...........cccceeveivinireneinieneeenn
.CSV Data IMport/EXPOrt.........cccceivirveieineenieeens
System Script Commandsccccoceeveeiinneiiiennen

Trace Script Commands
Math Script Commands
Simulation Configuration

8.7 Automatic and Pre-Defined Define Directivescoccovvveiineiiieiiiennnnnnn. 118

8.8 Listing of Script Enumerated Data TYPESc.ovvvviiiiriiiiiiiiciiieiieeeeeeenn 121
Script FILE_ TYPEEnum erated Data TYPE ..ococeeiveeiieeiiee et 122
Script VERIFY_FILES Enumerated Data TYPE ..ccocveeiieeiieeiiiee e 122
Script FILE_OPTIONS Enumerated Data TYPE ...cceeerveeiieeiiiee e 122
Trace Options Enumerated Data TYPES ..oooeveieieiiiieiie et 123
Code Coverage Listing Options Enumerated Data TYPeccccecveeirieerieeiiineens 124
Base Time Options Enumerated Data TYPE ...coooviiiiiiiiiieiieeieeree e 124
Build Script TARGET_TYPEEnumerated Data TYPEe ...ccccoveeveiinieeiiieeie e 125
Build Script TARGET_SUB_TYPEEnumerated Data Typeccccevvveiiieineeennnnn. 125
Build Script ADDR_SPACE Enumerated Data TYPecccoceeiiiiiiiieiiieee e 126
Build Script READ_WRITEEnumerated Data TYPecccovvveeeieiiniieiiieeiie e 127
Assignment Operation Enumerated Data TYPEeooooveveieniiiienieeniee e 127

eTPU DevTool IDE, page 5

eTPU DevTool IDE

Part 9

9.1
9.2
9.3
9.4
9.5
9.6

Part 10

10.1
10.2

10.3
10.4
10.5
10.6
10.7

10.8
10.9
10.10
10.11

Part 11

11.1
11.2
11.3

eTPURegister Enumerated Data TYPES ...coovrieiieiiiiieeiieie e 128

Pin and Node Enumerated TYPE ...cocoviiiiiiieiiiie et 129

Script CSV_CONTROL Enumeated Data TYPEe ..ccceeoverieeienieiienierie e 129
Test Vector Files 131
[N oo L= @o T 4 o1 4 =1 o o [0 133
Group COMMANT 1.oeviiiiiiii et 135
State COMMEANT ...oeviiiiieii e e e e e e ees 135
Frequency COMMAaNdciiiiee e e e e e eans 135
Wave COMMEANA ... e e e e e e e e een 136
Engine Example, @TPU ... 136
Functional Verification 141
Data FIOW VerifiCationcociiiiiiiiiii e 142
Pin Transition Behavior Verificationccooooiiiiiiiiinic 143

Deprecated Pin Transition Behavior Verificationccccoceiiiiniiiinnciienne 148
Pin Transition Verification Examplecccoooiiiiiiiiicie e 149
Code Coverage ANAlYSIS ... 150
Regression Testing (AUtOMALtiON)co.uiieiiiiiiii e 154
Testing with a Specific Compiler Versionccoovviiiiiiniiiniciineiee 155
Command Line OPtiONS ..o e eens 156

Using the —d (define) Option and Escape Characterscccccevveiieicncennens 162

Warning Suppresion Command Line OptioNsSccccceiiiiiinniie e 162

Preventing Multiple Rebuilds by Forcing '"No Build'cccoiiiiiiiiiiiiiiiiee, 167
File Location ConSiderationsocouiiiuiiiiiiiiie e 167
TeSt TErMINATION . ouiii e e 168
Cumulative Logged Regression TeStNGc.ovvvieviieiiei e ecneeieeineaes 169
Regression Test EXampPle ... 170
Action Tags 171
Print ACTION TaQ wvuiiiiiiiieiie ettt et 172
Timer ACtion COMMANAS ..uiiuiiiiii e 173
Write Value ACLION TaQ ooviiniiiiei e e 174

page 6, eTPU DevTool IDE

eTPU DevTool IDE

Part 12
12.1

Part 13

Part 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12

14.13

Part 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Part 16

External Circuitry
[0 T oS 2 01 01 = 1 o o 175
Workshops
The Waveform Window
Running the Simulationcoooiiiii e 188
The Vertical Cursors and SNapping ...cocoveeiiiiiiii e 189
Executing to @ Precise TiMe ..o 189
Enabling/Disabling Automatic Scrolling ... CRITICAL!cccooveiviennne. 190
Choosing Signals to DiSPlayccuuveeiiiiiiiiiie e 190
Viewing a Variable asa Waveformccocooviiiiiiiiiiie e, 192
Resizing Waveforms Height and Widthccoooiiiiiii i, 193
Resizing a Waveform's Amplitude Manuallyccooooiiiiiiiiiiiiineeennn, 195
Resizing a Waveform's Amplitude Automaticallyc...ccoovviiiiiiiiennnnn. 195
Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc.)cccccovevvennnnnn. 196
Viewing eTPU Thread Activity Endcoooviiiiiiiii e, 197
Controlling the View of Time ... Manuallycccooooiiiiiiii, 198
Displaying Behavior Verification Dataccccceiiiiiiiieiiieiieeiee e 199
Controlling the View of Time ... Automaticallyccooveiiiiiiiinnnnnn. 200
Operational Status Windows
SoUrce Code WINAOWS .. c.uuiiiiiiie et eens 201
Script Commands WINGAOWceeiiiiiiie e e e e e 204
WatCh WINAOWS ..o e e 205
eTPU Channel Frame WiNndOW ..o 207
Memory DUMP WINAOWouniiiiiice e 208
Local Variable WiNdOWSooeuiiiiii e 211
Breakpoint WIiNAOWiiiiiiii et 212
Dialog Boxes

eTPU DevTool IDE, page 7

175

eTPU DevTool IDE

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13

Part 17

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

Part 18

18.1
18.2
18.3
18.4
18.5

GOto Time Dialog BOX .uueeviiiiiiieiiiei e 215
GOoto ANgle Dialog BOX ..ccuuiiiiiiiiieiiiei e 216
Workshop Options Dialog BOXcvuuiiieiiiiiiieec e 217
Occupy WOorkshop Dialog BOXccuueiiieiiiiiiiiieiiieee e e e eine s 218
Message Options DIialog BOXcc.uvviiiiiiiiiiiiiiiiie e 219
Source Code Search Dialog BOXc.ccovviiiiiiiiiiiiiiic e 219
Waveform Window Options Dialog BOXcccoviiiiiiiiiiiiiiii e, 221
Waveform Signal Options Dialog BOXcovvvviiiiiiiiiiiiceee e 221
Channel Group Dialog BOXoooeeiiiiiiiiiiei e 227
Trace Options Dialog BOX ...c.uuiiiiiiiiiiiiiiiei e 227
License OptioNsS Dialog BOXccuuiiiiiiiiiiiiiiici e e e 228
Memory TOO!l Dialog BOX ...uiiuiiiiiicie e 229
The '"AbouUt’ DIalog BOX ..oevuiiiiiiiiieiie e e 230
Menus 231
FIIES IMEBNU e e e eans 231
BUITA MENU . e 232
Bt MEBNU oottt e 233
SEEP MENU oo 234
RUN MENU .o ee e 236
BreakpointS MENUccuiiiii e 237
VIBW IMEBINU ...ttt e e e 238
OPLIONS MENU ..ttt ettt e e e eees 238
HEIPD MENU et 239
Supported Targets and Available

Products 241
eTPU/CPU System SimuUlatorcouviiiiiiiieieee e 241
MC33816 Stand-Alone Simulatorcooiiiiiiiiii e 241
eTPU2 Stand-Alone Simulatoroooiiiiiiiii e 242
eTPU Stand-Alone SiMUIAtOrooouuiiiiiiii e 242
eTPU2 Simulation ENgine Targetccoovvieiiiiiiieeii e 242

page 8, eTPU DevTool IDE

eTPU DevTool IDE

18.6

Part 19

19.1
19.2
19.3

eTPU Simulation Engine Targetcoooovieiiiiiiiiiic e 243
Building the Target Environment 245
The Build SCript File ... 261
Custom Build Script File Pathingcoooiviiiiiiii e 262
Build Script COmMmMaNdSoiiiiiiiei e 264

eTPU DevTool IDE, page 9

page 10, eTPU DevTool IDE

eTPU DevTool IDE

eTPU DevTool IDE, page 11

page 12, eTPU DevTool IDE

1. Overview

1

Overview

This introductory section provides a high level overview of some of the key aspects of the
eTPU Development Tool. More detalil is provided in the remainder of this manual.

Source Code Files

Source code files are built using a compiler or an assembler and the resulting executable
image is loaded into the target/core code space. When executing code, it is actually the
executable image that gets executed. Source level debugging information cross references
the source code files' line numbers and variables with the underlying executable image
thereby supporting key debugging capabilities such as breakpoints, single stepping,
viewing/modifying variables in watch windows, etc. Source code files can be edited directly
within the IDE. Once edited, the source code is considered 'dirty* and will be rebuilt prior
to resuming execution. The process of rebuilding and loading of the executable image is
done automatically and largely transparently to the user.

Script Commands Files

Script commands files have several purposes. The primary script file used to automate
things like loading code, initialization, and functional verification. ISR script files can be
associated with specific interrupts and execute only when that interrupt is activated.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 13

1. Overview

Test Vector Files

Test vector files provide the user with one means of exercising input and 1/0 pins with
complex test patterns. While a script commands file functionally represents the CPU or
Host-MCU interface, a test vector file represents the external interface. And whereas a
script commands file provides a broad range of functions, the test vector file provides the
narrow but powerful capahility of driving nodes to "high" or "low" states.

Concurrently Developing Code for Multiple Targets/Cores

Code for multiple targets/cores can be developed, and debugged, concurrently.

Interactions between and among multiple targets/cores are modeled precisely and
accurately. All the normal debugging techniques such as single stepping, setting
breakpoints, stepping into functions, etc., are available for each target/core. The IDE
supports instantaneous target/core switching such that it is possible in the system simulator,
for example, to run to a CPU breakpoint, and then switch to a eTPU or MC33816 core and
single step it. All the while, all targets/cores are kept fully synchronized.

The NXP eTPU

Of special interest are the Enhanced Time Processor Unit (eTPU) from NXP. For this
wishing to develop their own eTPU Code, it is highly recommended that you obtain the
book "eTPU Programming Made Easy" from AMT Publishing. Do not be misled by the
title. This book is essential for beginners and experts alike. The eTPU training seminars
are also highly recommended.

Miscellaneous Capabilities

The eTPU Development Tool has a number of additional features not yet mentioned.
These include project sessions, source code files, functional verification, external logic
simulation, multiple workshops, a rich set of dialog boxes, a menu system, and an IDE with
hot keys, a toolbar, and target status indicators.

page 14, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

1. Overview

1.1 On-Line Help Contents

The following help topics are available.

Overview

Software Deployment, Upgrades, and Technical Support
Supported Targets and Available Products

Project Sessions

Source Code Files

Script Commands Files

Script Commands Groups

Test Vector Files

Functional V erification

External Logic Smulation

Workshops
Operational Status Windows

Dialog Boxes
Menus

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 15

page 16, eTPU DevTool IDE

2. Demo Descriptions

2

Demo Descriptions

Note that Y ouTube videos covering several of these demos as well as feature tutorial
demos are available on our website at www.ashware.com/product videos.htm.

The following eTPU demos install by default with eTPU Development Tool. Several of
these demos will also build using the ETEC compiler/linker toolset run from the command

line.

NXP Set 1 - UART Demo
e Use of the NXP's Set12 UART function..

o Use of header file, 'etec_to_etpuc_uart _conv.h' to convert between the
automatically generated 'MyCode_defines.h' and the standard NXP API interface

file.

NXP Set 2 - Engine Demo - AN4907 (NEW)
o Use of the NXP's latest Set2, Cam, Crank, Fuel, Spark, Knock functions.

e Note that this is the NEW SET2 function, often referred as 'AN4907'.

NXP Set 2 - Engine Demo (OL D)

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 17

http://www.ashware.com/product_videos.htm

2. Demo Descriptions

e Use of the NXP's Set2, Cam, Crank, Fuel, Spark, Knock functions.

e Note that this is the original SET2 function, a more recent version is available.

NXP Set 3- ASDC Demo
e Usedf the NXP's Set3 ASDC, PWMF, and PWMMDC functions.

e Use of the identical auto-generated headers that NXP uses for it's host-side API

NXP Set 4 - ASAC Demo

e Useof the NXP's Set12 ASAC, PWMF, and PWMMA C functions.

e Use of ASH WARE's auto-defines file, 'MyCode_defines.h'.

SD32 Evaluation Board Demo

e A basic S32DS eTPU project that runs on an MPC5777C Evaluation Board
(EVB.)

e Configured to use a PEmicro Multilink Universal JTAG debugger

e TWO projects: one is built for the eTPU-AB module, the other is built for the
eTPU-C module.

e ETPU Engine A, Channel 1: continuous "SOS' QOM output with dot time unit of
0.333s

e ETPU Engine C, Channel 2: 10Hz active low PWM output at 50% duty
Data Types Demo

e A variety of data types and data scopes commonly used in the eTPU.

e Run-time initialization of data using the ETEC-generated initialization file,
‘DataTypes _idata.h'.

page 18, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

2. Demo Descriptions

Auto-Defines Demo

Use of file the ETEC Compiler auto-generated file, 'MyCode_defines.h', to write
& verify eTPU settings such as channel settings, variables, etc.

Auto-Struct Demo

Each channel's variables are accessed using an automatically-generated structure.
The structure is automatically generated by the ETEC Compiler

Use of a generic CPU to build and simulate generic host-side code.

CPU code build is controlled by DevTool ('internal’ build'.)

Templates Demo

A variety of templates (empty code) which and are excellent starting point when
developing new eTPU functions.

Legacy and ETEC mode functions.

Standard and Alternate entry tables.

Worst Case L atency Demo

An (optional) 'System Configuration’ file sets the system parameters such as clock
frequency, processor family, which functions run on which channels, channel
priority, etc.

The maximum allowed worst case latency (WCL) for each channel is specified in
the System Configuration file

Build fails if WCL requirements are not met.

Analysis file shows resulting system behaviors such as WCL and WCTL for each
channel.

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 19

2. Demo Descriptions

Stepper Motor System Simulator Demo

System simulator demo (both CPU and dual-eTPU are simulated)
NXP's host-side API on a simulated CPU.

The ASH WARE <>_defines file used in the host-side API.
NXP's Set 1 Stepper Motor (SM) function.

CPU code is built by calling an external batch file (‘external’ build.)

UART ETEC Mode System Simulator Demo

System simulator demo (both eTPU are simulated and a 'Generic CPU' that
generically simulates your host-side code are simulated.)

Use of the superior ETEC mode style of programming.
Conversion of NXP's UART function to ETEC mode.
NXP's host-side API used on a simulated CPU.

The Auto-generated header files similar to those used in the NXP standard
functions.

The ASH WARE generated '<>_idata.h' file for initializing DATA memory.

The ASH WARE generated '<>_scm.h' file for initializing CODE memory.

Byte Craft ETPU_C

External Build using a Console Build Batch file (.BAT)
Building code using the Byte Craft compiler

Using a channel's output pin in the entry table.

Dual-eTPU STAC BusDemo

page 20, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

2. Demo Descriptions

e Simulating both eTPU Engines (64 channels total)
e TCRI/TCR2 export/import using the STAC bus.

eTPU/GTM, Four-Injectors, Two-Banks Demo

¢ A demo is available at the following link. www.ashware.con/product videos.htm

e Co-simulation of the eTPU and the GTM.

¢ Banked injection, four injectors in organized into two banks. Each bank controlled by
an GTM core.

e eTPU responding to an input 'CAM' signal to generate four injection pulses at the
GTM's 'START1'-START4 pins.

o GTM responding to four START events to generate injection pulses on four
injectors.

e eTPU channel output pins are drive to the GTM 'start’ pins thereby generating
precisely-timed injection pulses.

o Script command variables used to programmatically control and verify injection firing
timing via the CAM signal.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 21

http://www.ashware.com/product_videos.htm

page 22, eTPU DevTool IDE

3. Software Upgrades

3

Software Upgrades

World Wide Web Software Deployment

All ASH WARE software is now deployed directly from the World Wide Web. Thisis
done using the following procedure.

Download and install a demo version of the desired software product. All
software products are available at a demonstration level.

Purchase the software product(s) either from ASH WARE or one of our
distributors.

E-mail to ASH WARE the license file, named "AshWareComputerK ey.ack",
found in the installation directory.

Wait until you receive an e-mail notification that the information from your
license file has been added to the installation utility.

Download and re-install again. The software product(s) you purchased are
now fully functional. All other software products are still available at a
demonstration level.

World Wide Web Software Upgrades

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 23

3. Software Upgrades

All versions since 2.1 can be upgraded directly through the World Wide Web. The
following procedure is required when performing this upgrade. Note that versions prior to
2.1 cannot be upgraded via the World Wide Web.

- Upon receiving natification from ASH WARE that a new version of the
eTPU Development Todl is available, download and re-install.

After the initial software upgrade, ASH WARE no longer requires a new software key.

Network Floating Licenses

Version 4.30 and above support a floating license capability. A central License Server has
a pool of one or more licenses. Client computers request floating licenses from the License
Server. The License Server issues licenses until its pool of licenses has been depleted.
When a client computer no longer needs a license it becomes available for the License
Server to distribute to a different client.

When a client requests a license it normally exits if no license is available. However, it
may choose instead to wait a certain user-defined amount of time for a license to become
available. If alicense does become available the software is able to operate. If, after the
user-specified amount of time is exceeded, no license becomes available then the software
exits. This is especially useful in automated testing where the test would otherwise fail if
no floating license were available. The amount of time to wait for a floating license to
become available is specified by the -NetworkRetry parameter passed on the command
line. See the Command Line Parameters section for specifying this parameter.

Dongle Licensing

A dongle is a physical device that attaches to a USB port on your computer. With a dongle
license you can run the software in a fully-functional mode as long as the dongle is
connected to your computer. 1f you unplug the dongle, then the software will run only in a
demo-limited mode.

A dongle effectively replaces the license file in that you can move the software and dongle
to a different computer and it will run in fully-functional mode without any interaction with
ASH WARE. Thisis particularly valuable in (say) aerospace in which the software must
be functional for many decades. Since the software can be moved between computers
with no interaction with ASH WARE, this constitutes a stable long-term development and
maintenance scenario.

page 24, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

3. Software Upgrades

Hearing about Software Releases

In order to be notified about ASH WARE's software releases, be sure to provide your e-
mail address to ASH WARE. This will ensure that you are automatically alerted to
production and beta software releases. Otherwise you will have to periodically check the
ASH WARE Web site to find out about new software releases. Note that your e-mail
address and other contact information will never be released outside of ASH WARE.
Further, ASH WARE will only add you to our e-mail list if you specifically request us to do
0.

The eTPU Development Tool automatically displays an informational message when your
software subscription is close to expiration. Note that the software license has no
expiration so it is legal to use the eTPU Development Tool beyond the software
subscription expiration date. The software subscription entitles you to free technical
support and Web-based software upgrades.

Technical Support Contact Information

With the purchase of this product comes a one-year software subscription and free
technical support. This technical support is available through Email, the World Wide Web,
and telephone. Contact information is listed below.

- (503) 533-0271 (phone)
- www.ashware.com
- sSupport@ashware.com

3.1 Handling Multiple Versions

Each software version is installed (by default) into a unique installation directory by
concatenating the program name with the version, as follows:

c:\Program Files (x86)\ASH WARE\ eTPU2p DevTool |IDE V1_01C
c:\Program Files (x86)\ ASH WARE\ eTPU Conpi | er V2_30C

Note that this differs from the way earlier ASH WARE Simulators and Debuggers were
installed.

Note that the default installation directory can be overridden during the installation.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 25

3. Software Upgrades

3.2

Although it is great to be able to have multiple software versions installed at once, this can
lead to problems when trying to run regression tests and the version changes. How can the
regression test 'find' the latest version? To solve this problem, during installation an
environment variable is updated to reflect the last-installed version, as follows.
DEV_TOOL_ETPU BI N="C:\ Program Fil es (x86)\ ASH WARE\ eTPU2p DevTool | DE

V1i_01C\"
ETEC BI N="C:\ Program Fil es (x86)\ ASH WARE\ eTPU Conpi |l er V2_30C\"

Automated regression tests can find the software version using the following Console
.BAT command sequence. Note that this is from the AutoStruct DevTool IDE Demo.

set DEV_TOOL_ETPU_EXE=%DEV_TOOL_ETPU_BI N%A ETpuDevTool . exe

echo Running "eTPU | DE Auto-Struct Demp" Test ...

YDEV_TOOL_ETPU_EXE% - p=Aut oSt ruct Deno. Ful | Sysl deProj - AutoBuild -AutoRun
if 9YERRORLEVEL% NEQ O (goto errors)

goto end

.errors
@CHRO H** %k ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok Kk ok Rk k kK ok ok kK ok ok kK k kK

echo Yl KES, WE GOT ERRORS!!

echo R R R I I I R Rk O

exit /b 1

:end

Note that the ETEC compiler has a similar mechanism for finding the
compiler/assembler/linker, etc., executables in their (uniquely named by version) installation
directory. See below for an example.

set CC=YETEC_BI N9 \ ETEC cc. exe"

%UCC% - ver si on
%CC% Aut oStruct. c

Using Non-Installed ETEC Versions

Certain customers may desire to deploy the ETEC Compiler Toolset on multiple users
compuiters (often in conjunction with the network license capability) and in this type of
situation it can be onerous to install ETEC on every computer. The following describes the
process for accessing ETEC from the eTPU Development Tool when ETEC has not
actually been installed.

1. Copy the ETEC directory on to the users machine at the same location on every
machine. For example, to c\Tools\eTPU Compiler V2_31B\.

page 26, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

3. Software Upgrades

2. Set the System Environment V ariable as shown below. The Variable Name's format
must follow this pattern:

COMPILER_ASH_<VersionHigh><V ersionLow><BuildL etter>.

File Buld Edit Step Run Breakpointz View Options Help

dd NAMMSERZ S 2k 20k HEEN =N

Project | Settings |
A IDE Options Name | Local Overide Value | Global Value [
! - & zzz_ 1ETpuSim.Mt d ETEC Tools Directory MN/A System Version 2.21B =
E|]EI_ Target eTPU_A Executable/output dirsctory : Default

; 5 verifyv231B. ETpuCommand Obiject (ntermediate) file directory obj'
{]7| Vector File: <Mot Specified> State machine auto-gensrated code di... .
. -4 Build Folder

CC: MyCode c

. L.gf Link MyCode.eff
E| E Reference Folder
= Testhat

Version 1.31F
Development

3. That's it except you might need to reboot the computer before the environment variable
takes effect. Open the settings window and then click on a target as shown below, In
the options for the ETEC compilers you will now see the ETEC version as an option but
with the word 'System’ prepended as shown below.

ASH WARE MC33816 DevTool IDE V2_30B : DEMO - C:\Mtdt)TestsHigh\DevTool\CustomETecDeployment\Proj_V2_20B.ETpuldeP
File Build Edit Step FRun Breakpoints View Options Help

Hd NIAMSESS 2k IOk HEER B

Project = | Settings I

. IDE Opticne MName | Local Ovenide Value | Global Value I_
%, zzz_1ETpuSim MtDtBuild ETEC Tools Directory N/A Version 2.30C
E| F Target eTPU_a Bxecutable/output directory . Default

E Cbject (intermediate) file directony obj* Wersion 2.42)
State machine auto-generated code directory . :"—':5'3?0” % 424
Wersion 2.
\ersion 2.
System Version 2.31B

} ﬁ Link: MyCode elf Version 2318
E| A= Referance Folder Wersion 2.214

L= Testbat / ‘ersion 2.304
version 2.304
System Version 2.20B
Wersion 1.31F
Development

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 27

page 28, eTPU DevTool IDE

4. |DE and Editors

4.1

4.2

A

IDE and Editors

This section covers some of the basic features of the eTPU Development Tool and editor
windows.

IDE Options

The IDE Options are accessed through the Project window - right-click on the "IDE
Options" tree node to open the settings. Settings allow control over how the editor handles
tabs and spaces, the font type and size, and several global simulation options.

Panel Layout Options

The eTPU Development Tool window framework is highly configurable. By default there
are 5 panels - three side-by-side above a horizontal divider, and two side-by-side below.
All dividers can be adjusted as needed. Right-clicking in the tab area of these panels gives
users the options of dividing the panel vertically or horizontally into sub-panels - this can be
done to any depth desired. Right-clicking in the tab area of a child panel provides the
option of closing the panel. The default 5 panels cannot be closed.

In addition to the panel layout controls, individual windows (non-editor windows only) can
be “floated". This is accomplished by right-clicking on the desired window and selecting
"Float This Tab". Doing so moves the tab into its own modeless dialog, which can be

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 29

4. |DE and Editors

minimized or moved wherever desired. This is a particularly powerful feature for users
with multiple displays. Tabs that have been floated can be re-docked with right-clicking on
the window and selecting "Dock This Tab".

page 30, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

5. The Project

The Project

The project is the glue that holds the eTPU Development Tool together.

Project |
g |IDE Options
L4y zzz_18im32_1ETpuSim MDtBuild
B E Target: Host
) 5 AutoStruct_host Cpu32Command

Controls settings such as the font, auto-
code-completion, use of spaces in lieu of ‘
tabs, etc.

The ‘Primary Script File’ is the
‘Main Banana’. It does everything

from configuring and writing [~ StertupSeript Cpu32Command ;ﬁpgiﬁugﬁ;&t tis usedito
memary to paying for your kids’ | B-gf AutoStructeot initialize all registers that need to be
college education. ! -G maine written prior to beginning a simulation
¢ isrlibc
& AutoStruct_hostc
& ETpuLibc
E The ‘Active Target/Core’ is i -G elpu_uiilc A batch file can be used for ‘External
highlighted yellow MKHoet bat Builds’. Normally, builds are controlled ‘
=) arget eTPU_A internally, so no batch file is used

H 5 AuwtoStruct ETpuCommand
E\Eﬂor files are used to drive input j> J'L Vector File: <Not Specified>
pins { 518 Build Folder %No ‘Batch’ file in this build folder Thiﬂ
i & ETEC_CC: AutoStructe an Internal’ build controlled by DevTool.
[-@F Link: AutoStruct elf
=-#% Reference Folder
CPIace files here for easy access. j? ReadMe td

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 31

5. The Project

5.1

5.2

lde Settings

To modify the IDE settings, right-click on the 'IDE Options project node and select
'Settings. The following will appear. From this settings window an number of settings can
be modified such as the user of tabs (or spaces) the font, enabling of auto-completions, and
various other options.

Settings |
MName | Local Ovemde Value | Global Value |
Editar's Use of Tabs NsA Use spaces in place of tabs
Spaces per Tab NAA 4
Fortt for Editor, OQutput, Sim View Windows NAA Courier New, Regular, 10
Auto-Complete Enable NAA Enable code/script auto-complete
View code coverage in source code files NsA Show Coverage
List the "Build’ Optians in the Output Window NsA Dont list Build Options
List the "Build Time' in the Output Window NAA Dant list the Build Time
On Reset, Intialize Global Varables per "Ef file <lse Global Value: Ma, dont inttialize
On Reset, Initialize Data Memory <lJse Global Value> Set to Zero
On Reset, Intialize ALU Registers (e TPLU Only) <lze Global Value: Setto Zero
On Reset, Inttialize TCR1 and TCR2 Counters (TP Onby) <|Ise Global Value: Set to Zemo

The Project Files
The project settings are saved in two files; the 'Project File' and he 'Environment File'.

The 'Project File' contains the key settings that are generally put under a versioning system
suchas CVS. It contains key filenames such as the primary script filename, source code
filenames (if the build is controlled by the eTPU Development Tool) build options such as
the memory model, etc.

The 'Environment file' contains settings that are generally specific to the user such as
window sizes and positions, the font, etc. Most users will NOT keep this file in a
versioning systems such as CVS. The environment file has the same name as the project
file except that the user-name is appended to the base file name and has a different file
suffix.

page 32, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

5. The Project

5.3

The Pre-Build Windows' Console "'.BAT' File

A pre-build Windows' console ".BAT' file can be specified from within the project window
by right-clicking on the Build Folder (pointed to in the picture seen below by the green
arrow) and selecting 'Settings. The Settings windows then becomes visible and the *.BAT'
file can be entered as seen by the blue arrow. Text which is echoed from the ".Bat' file is
displayed in DevTool's Output Window as shown by the lower red arrow. Note that the
".BAT file can return a pass by exiting with a'0' exit code thereby allowing the build to
proceed. However in the example shown below, the ".BAT" file's exit code is'-1' thereby
preventing the build or make from proceeding.

—

Project |
— : Name | Local Overide Value
. IDE Opt
‘f 1;_:_‘;233im MiDtBuild .'a- PreBuildbat Pre build console " BAT file options Specify file name

: ; Pre build console ".Bat’ file nam PreBuild bat
1 Target eTPU_A PreBuid bat |

; 5 TestETpuCommand echo off
-J7L Example.Vector setlocal
5 Build Folder

~& CC: SetupMatch.c echo IMPORALNT!
T = d Link: MyCode.elf echo Include the /g option
H L} i L]
&-¥& Reference Folder ;cl:oDsi :haifakprompt,bv.w:i: : s;all the .bat file!!!
: e e e JE20 O .
[Testbat 4 it
-6 MyCode_defines.h rem slesp 1
Requirements. bt BORO FE R R R R R R AR R R AR AR AR AR R AR AR AR R AR AR AR
PreBuild.bat echo YIKES, WE GOT ERRORS!!
i,y e ok v e e ok e e e e e ol ol ol o o ol o o e o e o ol e ol e e ol o o o o o e e e e e e e e
exit /b -1
end
5tarting Build 211 on 2017-Jan-09 at 14:42:15 ... ;I

Running Pre-Build .EAT File 'PreBuild.bat
C:\Mtdt\TestsHigh\DevIlool\PreBuildBat>echo off

IMPORANT!

Include the /q option

2o that a prompt won't stall the .bat filel!!!

Could Not Find C:\Mtdt\TestsHigh\DevTool%\PreBuildBat\Del

T

YIKES, WE GOT ERRORS!!

e T T T T T EREEER R R

Build Step Failed!

PRE_BAT ERRCR [101] file "PreBuild.bat" line 1: exitted with a non-zero exit code
Note: The Pre-Build .BAT file is specified in the project's 'Build Folder' under 'Settings'
Errors in Build All!

-
0| 3

Reference Manual (C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 33

page 34, eTPU DevTool IDE

6. Integrated Build

6

Integrated Build

The Development Tool supports an internal and an external integrated build.

6.1 Internal Build

An'Internal Build' is controlled by the eTPU Development Tool. A target is set to perform
an 'Internal Build' within the Project by right-clicking the target's on the target node.

ASH WARE MC33816 DevTool IDE VO_B2F - C:A\Documents an

File Buid PEdit 5Step Run EBreapoints Vew Options Hel
dd MEMNMIERS 20 I
Project Saitings | D
& IDE Cptiens Hame
& zzz_ TM=33816. MICHBuild Fasembler
= '|?-: 5 - Make
Iilexg | B
= W BuillRA| Eudd using 'Buid Folder' A |
Build using Consobe Bat
d D it il
= B Refere
Red 2 Settings
(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 35

Reference Manual

6. Integrated Build

The source code files to be compiled or assembled are added to the target's 'Build Folder'
as shown below.

Progact

& IDE Optiens
& zzz_1Mc33876.MDtBuild
=18 Target Chi_Coral
8 DcbcConverterDemaoTest Spdd16Command
Jl Examplevector

- w pET===

i Add Exsting L4
A Create New L4 l'll State Madhine
@ Li 5| setngs & MC3I6 AssenblyFie
= & Reference Foider
ReadMe.bd

The executable image filename is set in the target's 'Link’ node, as shown below.

Project

& |DE Options
& zrrz 1Mc33816 MIDIBuild
= 18 Target Chi_Cored
5 DcDcConverterDemo Test Spd8 16Command
Il Examplevecior
= W Euild Folder
AWE16_ASM: DeDeComverterDemo.dh
ALUSY_ASM: Directinjechon.df

Lenk: DeDeComverterDemo.elf
= I Reference Folder Make
ReadMe bd Buid

[B2] Buid using Buid Folder
Build using Consols Bat

Rsgistars - Do not build
r0: 0000 Chengefie w
rl: 0000 Rename
73 0000 oy -
r3: 0000 o
page 36, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

6. Integrated Build

6.1.1

6.2

Host Target Build

The "generic" host target available in System DevTool now supports internal builds of C
code. Startup code and a few basic libraries are automatically linked. The user code must
contain an entry point function called "user_main" that has a return type of "int" and takes
no parameters.

Users can enable interrupt handling from other targets (e.g. eTPU) during system
simulation by taking the following steps:

- run "isrLibInit()" at the start of the entry function, and call "isrEnableAlll nterrupts()” to
enable interrupt handling. Then use "isrConnect" to set up handlers for the expected
(eTPU) interrupts of the application. See isrLib.hin the "Include” directory under the
DevTool installation directory.

- from the script environment of the host target, run the "enable_target_interrupts()" script
command for each target from which to enable interrupts.

The host target code can also access the scripting environment through a provided API.
See "scriptLib.h" in the "Include” directory for more details on what is available. The
"at_time", "wait_time" and "read_time" calls can be particularly useful for synchronizing
with .

External Build

Normally, a software build is done using an 'Internal Build." However, there are occasions
when it is preferable to call an external batch file (.BAT) to perform the build process. For
instance, this is the way to build software using the Byte Craft ETPU_C compiler.

To specify an external build, right-click on the project's Target node and select 'Build using
Console Bat.'

One significant issue is retrieving the exit code from the batch file. The batch file must be
terminated using the following console batch command
exit <ID>

The 'ID' indicates to the eTPU Development Todl if there was an error or not. 1f the build
was successful then the | D should be zero, otherwise the 1D should be non-zero.

One common mistake is to terminate just the batch command using the /b option.
exit /b <ID> DO NOT DO THIS!'!!

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 37

6. Integrated Build

So this can be a problem because if the batch file is also used as a part of a regression test
suite then the /b might be needed to prevent the console window from closing. To address
this conundrum, the eTPU Development Tool passes the console batch file the following
parameter.

EXI T_CMD_PROCESSOR

This can be used to differentiate between a eTPU Development Tool external build and a
regression test suite, as follows.

set EXIT_CNVD=%
if not defined EXIT_CMD goto do_exit_batch
if %&XI T_CVD% EQU EXI T_CVMD PROCESSOR exit -1

:do_exit_batch
exit /b -1
> end

It is also a good idea to delete the executable image file before doing the build. This
prevents a stale executable image file from being deleted and improves the eTPU
Development Toal's ability to detect external build errors.

del Hi Lo. cod
UETPUC EXE% HiLo.c +l +e +g n=..\..\DenmbsMoc55xx\Lib

Here is a complete listing of a build batch file that can be used in the eTPU Development
Tool's external build and as part of a separate regression test.

echo off
set | ocal

i f exist %UETPUC _EXE% got o DoneCheckBC_EXE
echo .

echo
rrrnd

echo !'!'! Set the environment variable, ETPUC EXE, to the
eTPU C Conpiler's location !!
echo !l Such as:

I
echo !!! SET ETPUC _EXE="c:\program fil es\byte
craft\etpuc\etpu_c.exe" I

echo
rrrnd

page 38, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

6. Integrated Build

: DoneCheckBC_EXE

if not exist HiLo.cod goto no_pre_delete
del Hi Lo.cod
:no_pre_del ete

YETPUC EXE% HiLo.c +l +e +qg n=..\..\DenmosMpc55xx\Lib
if O9ERRORLEVEL% NEQ O (goto errors)

echo COWPI LATI ON PASSES
goto end

rerrors
type HiLo.err

echo LR R R SRR SRR EEREEEREEEEEEEREEEEREEEEREEEREEREEEREEREE SR

echo YI KES, WE GOT ERRORS! !

echo LR R R SRR SRR EEREEEREEEEEEEREEEEREEEEREEEREEREEEREEREE SR

set EXIT_CVD=%
if not defined EXIT_CVMD goto do_exit_batch
if 9%EXIT CMD% EQU EXIT_CVMD PROCESSOR exit -1

:do_exit_batch
exit /b -1
:end

6.3 Disabled Build

It is often desirable to disable a build such that the eTPU Development Tool does not
rebuild the executable image file. This is particularly helpful when two cores share a code
memory such that a single executable code image file is used by both cores.

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 39

6. Integrated Build

Preject | | . \Divsctinjection’
#. IDE Options ‘;=='7==
& zzz_AMc33816 MIDBuild . F Te
= {8 Target Chi_Corel * ASH
5 Prirnary Script Commands File: <Mot Specified> % Gt
Il Vector File: <Mot Specified= * of 1
= I Build Folder Lt * gene
= M SMC_SPDE16: Directinjection Spd318SmXm| I —
= SPDE1E_ASM: Directingection 8 mSource)

5 AWE16_ASM: DeDicCo o #Fincly
I &P Link: ChiCede alf pare
5 Primary Script Commands File: Meke ¢
Fl Vector File: <Nt Specified= Buid -
= W Build Folder Build using "Build Folder’ r
, &P Link: ChICede alf Buld using G e r
= {8 Target Ch2_Corel (build¥s3bled 1
5 Primary Script CommahdsXgile: il k-‘ r
Il Vector File: <Met Speciheds Fo Sattngs "
= B Build Eolder \ y ;- £ :
& Link Directinjection.eif ‘ .ﬂ-':i:';"i .

page 401 eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc.

Reference Manual

7. Source Code Files

v

Source Code Files

Source code files is built using code build tools. For the eTPU the ASH WARE ETEC
compiler or the Byte Craft compiler is used to build the code.

These executable files are loaded into the target/core's memory space. The eTPU
Development Tool also loads the associated source code files and displays them in source
code windows, highlighting the line associated with the instruction being executed. Several
hot keys allow the user to set breakpoints, execute to a specific line of code, or execute
until a point in time.

Source code files can be edited directly within the IDE. Once edited, the source code is
considered 'dirty" and will be rebuilt prior to resuming execution. The process of rebuilding
and loading of the executable image is done automatically and largely transparently to the
user.

Editing of source code files outside the IDE is also supported. When file is saved by the
external editor, eTPU Development Tool automatically recognizes that the file is 'dirty" and
will both reload the file and rebuild the code prior to resuming execution.

7.1 Source Code Search Rules

Source code files may be contained in multiple directories. In order to provide source-level
debugging, the eTPU Development Tool must be able to locate these files. Source code
search rules provide the mechanism for these files to be located.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 41

7. Source Code Files

The search rules are as shown below. These rules are performed in the order listed. If
multiple files with the same name are located in different directories the first encountered
instance of that file, per the search rules, will be used.

- Search relative to the directory where the main build file, such as A.OUT is
located.

- Search relative to the directories established for the specific target associated
with the source code.

- Search relative to the global directories established for all targets.

In the search rules listed above the phrase "search relative to the directory . . ." is used.
What does this mean? It means that if the file is specified as "..\Dir1\Dir2\FileName.xyz",
start at the base directory and go up one, then look down in directory "Dir2" and search in
this directory for the file, "FileName.xyz".

Note that the search rules apply only to source code files in which an exact path is not
available. If an exact path is available, the source code file will be searched only at that
exact path. If an exact path is provided and the file is not located at that exact path, the
search will fail.

The Source Code Search Options dialog box allows the user to specify the global
directories search list as well as the search lists associated with each individual target.

Absolute and Relative Paths
The eTPU Development Tool accepts both absolute and relative paths.
An absolute path is one in which the file can be precisely located based solely that path.
The following is an absolute path.
C: \ Conpi | er\ Li bar y\

A relative path is one in which the resolution of the full path requires a starting point. The
following is an example of a relative path.

..\ Control Laws\

Relative paths are internally converted to absolute paths using the main build file as the
starting point. As an example, suppose the main build file named A.OUT is located at the
following location.

C:\ Mai nBui | d\ TopLevel \ A. out
Now assume that in the search rules the following relative path has been established.
..\ Cont r ol Laws\

page 42, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

7. Source Code Files

Now assume that file Spark.C is referenced from the build file A.OUT. Where would the
eTPU Development Tool search for this file? The following location would be searched
first because this is where the main build file, A.OUT, is located.

C.\ Mai nBui | d\ TopLevel \

If file Spark.C were not located at the above location, then the following location would be
searched. This location is established by using the location of the main build file as the
starting location for the ..\ControlLaws\ relative path.

C:\ Mai nBui | d\ Cont r ol Laws\

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 43

page 44, eTPU DevTool IDE

8. Script Commands Files

8

Script Commands Files

Overview

Script commands files provide a number of important capabilities. Script commands files
provide a mechanism whereby actions available within the GUI can be automated. In the
eTPU Simulator, Script commands can be used in place of the host CPU.

Each script commands file is arranged as a sequential array of commands, i.e., the eTPU
Development Tool executes the script commands in sequential order. This allows the
eTPU Development Tool to know when to execute the commands. Timing commands
cause the eTPU Development Tool to cease executing commands until a particular point in
time. At that point in time, the eTPU Development Tool begins executing subsequent
script commands until it reaches the next timing script command. Timing commands are
not allowed in startup script files.

The following script help topics are found later in this section.
- Script Commands File Format
- Script Command Groups

- Multiple Target Scripts
- Automatic and Predefined #define Directives
- Predefined Enumerated Data Types

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 45

8. Script Commands Files
- Enhanced Scripting capabilities (variables, loops, etc)
Types of Script Commands Files
The different types of script commands files are as follows.
- The Primary Script Commands Files
- ISR Script Commands Files
It is best to just have a single primary script command associated with just one target/core.
Alternatively, in a multi-target/core simulation, each target/core can have it's own primary
script commands file. 1SR script commands files are associated with interrupts. Although
each interrupt may have only a single associated ISR script commands file, it is important
to note that each script commands file may be associated with multiple interrupts. The
eTPU Development Tool can have only a single active MtDt build batch file.
Similarities to the C Programming Language
The script commands files are intended to be a subset of the "C" programming language.
In fact, with very little modification these files will compile under C.
8.1 The Primary Script Command Files

The eTPU Development Tool automatically executes a primary script commands file if one
isopen. A new or alternate script commands file must be opened before it is available to
the eTPU Development Tool for execution. The script command file can be changed
within the project window. Right click on the script commands file node and select
'Change Script Commands File. The eTPU Development Tool displays the open or active
script commands file in the target's configuration window. Only one primary script
commands file may be active at one time. Help is available for this window when it is
active and can be accessed by depressing the <F1> function key.

page 46, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.2 ISR Script Commands Files

Currently, the ability to associate a script commands file with an interrupt is limited to the
eTPU and simulation target.

Script commands files can be associated with interrupts. When the interrupt associated
with a particular eTPU channel becomes asserted the ISR script commands file associated
with that channel gets executed.

In the eTPU, ISR script commands files can be associated with channel and data interrupts
as well as with the global exceptions.

There are some differences between the primary script commands file and ISR script
commands files. Some important considerations are listed below.

ISR script commands files are associated with channels using the load isr,
and similar script commands.

The primary script commands file begins execution after a eTPU
Development Tool reset whereas ISR script commands files execute when
the associated interrupt becomes both asserted and enabled.

The primary script commands file is preempted by the ISR script commands
files.

ISR script commands files are not preempted, even by other | SR script
commands files and even if the (discouraged) use of timing commands with
these ISR script commands files is adapted.

Only a single primary script commands file can be active at any given time.
Each interrupt source can have only a single 1SR script commands file
associated with it.

Within the eTPU's interrupt service routine the ISR script commands file
should clear the interrupt. This is accomplished using the clear_chan_intr(X),
the clear_this intr(), or similar script command. Failure to clear the interrupt
request causes an infinite loop.

A single ISR script commands file can be associated with multiple interrupt
sources such as eTPU channels. To make the I SR script commands file
portable across multiple channels be sure to use the clear_this_intr() or similar
script command.

Do not use the clear_this_intr() script command in the primary script
commands file because the primary script commands file does not have an
eTPU channel context.

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page a7

8. Script Commands Files

- Use of timing commands within an I SR script commands file is discouraged.
This would be analogous to putting delays in a CPU’s ISR routine. Such a
delay would have a detrimental effect on CPU latency and in the case of the
eTPU Simulator would be considered somewhat poor form.

- eTPU channels need not have an association with an ISR script commands
file.

There is an automatic define that can be used to determine which channel the script
command is associated with. This script command appears as follows.

#define _ASH_WARE_<TargetName> ISR_ X

Where TargetName is the name of the target (generally TpuSim, eTPU_A, or eTPU_B),
and X is the number of the channel associated with the executing script. The following
shows a couple examples of its use.

#i fdef _ASH WARE _TPUSI M | SR_

print("this is an I SR script running on a target TPUSIM');

#el se

print("this is not an I SR running on TPUSI M");

#endi f

write_ par_ran(_ASH WARE_TPUSI M | SR , 2, 0x41);
write par_ran(_ASH WARE _TPUSIM I SR , 3, 8);
clear _this_cisr();

Critical Change in Version 3.70 and L ater!
Beginning with MtDt Version 3.70, support for the NXP and ST Microelectronics eTPU2
forced a change in the eTPU engine naming convention that affects the ISR auto #define.
NXP originally referred to the two eTPU engines as eTPU1 and eTPU2. Unfortunately,

this naming convention clashes with the name of the new eTPU derivative, ‘eTPU2." The
original eTPU is referred to as ‘eTPU’ and the new eTPU2 is referred to as ‘eTPU2!

Automatically-defined #defines within | SR script commands running on eTPU ‘Engine A’
and ‘Engine B’ are now as follows.
Is:

#define _ASH WARE_ETPU_A | SR_ <ChanNun»
#define _ASH WARE_ETPU B _| SR_ <ChanNun»

Was:
#define _ASH WARE _ETPUL | SR_ <ChanNune

page 48, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

#define _ASH WARE_ETPU2_I| SR_ <ChanNump

8.3 The"ETEC_cpp.exe" Preprocessor

The ETEC C Pre-Processor (ETEC_cpp.exe) provides enhanced preprocessing
capabilities that significantly increase the power of the scripting language. 1n most cases
this capability is transparent to the user, though one side affect is that the preprocessing
stage is case sensitive.

One application of the preprocessor is to support initialization of global variables in the
eTPU. This is done as follows. The Byte Craft compiler supports a macro capability that
results in a series of macros as shown below for global variable initialization.

__etpu_gl obalinit32(0x0000,0x70123456)

__etpu_gl obalinit32(0x0004, 0x71ABCDEF)
__etpu_gl obalinit32(0x0008, 0x72000000)

The example above was output into the auto-generated header files by the following Byte
Craft command:

#pragma write h, (::ETPUgl obalinit32);
Using the following macro expansion, it is possible change the above macros into a form
supported by ASH WARE.

#define __etpu_globalinit32(address, value) \
write_global data32(address, val ue);

8.4 Enhanced Scripting Capabilities

The ASH WARE scripting syntax has always been based upon the C language, and
enhanced scripting continues that tradition. In some cases it may be possible to share the
same code between the scripting environment and host code. Enhanced scripting support
includes

- ability to declare enumerated types and use enumeration literals in place of constants in
expressions

- variables (called "script variables") can be declared, assigned to, used in expressions and
used as inputs to script commands in places wherein previously a numeric constant was
required.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 49

8. Script Commands Files

8.4.1

8.4.2

- most C statements are supported: if-else, switch, for loops, while and do-while loops, and
goto/labels.

More information on each of the above is found in the ensuing sections. A script file is
treated like the contents of a C function from a scoping perspective, with the exception that
variables defined in the outermost scope are treated as “global” and can thus be seen from
ISR scripts. Inner scopes can be created with pairs of '{" and '} tokens.

Enumeration Declarations

C Enumeration declarations are supported in the scripting language. The enumeration
literals may be used in place of constants in expressions or as numerical arguments to
script commands. Enumeration literals are treated as S32 type - signed 32-hit integers.
Below is an example of supported syntax.

enum | 2C_SLAVE_MODE
{
| 2C_SLAVE_MODE_FI ND_|I DLE,
| 2C_SLAVE_MODE_| DLE,
| 2C_SLAVE_MODE_START_SDA LOW
| 2C_SLAVE_MODE_WRI TE_HEADER,
| 2C_SLAVE_MODE_WRI TE_BYTE,
| 2C_SLAVE_MODE_WRI TE_BYTE_CHECK_STOP,
| 2C_SLAVE_MODE_READ BYTE,
| 2C_SLAVE_MODE_READ_FI ND_STOP,
| 2C_SLAVE_MODE_ACK_QUT,
| 2C_SLAVE_MODE_ACK_I N,
| 2C_SLAVE_MODE_ACK_COWPLETE = | 2C_SLAVE_MODE_ACK_I N +
1,
| 2C_SLAVE_MODE_| GNORE = -1,
s
If the script file has been parsed, when hovering the mouse over an enumeration literal its
value will be displayed in the tooltip. Currently declaration of script variables of
enumerated type is not supported.

Script Variables

Use of script variables in the scripting environment allows for true closed-loop feedback
control, allowing scripts to do essentially anything a host CPU or MCU would do. Script
variables follow C scoping rules with a few small exceptions, (1) you cannot re-use the

page 50, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

same name in an inner scope, hiding the outer scope variable, and (2) variables defined at
the outermost scope of the first target's primary script file are treated as "global" and can
be referenced in ISR script files. Three basic variable types are supported - S32 (32-bit

signed int), U32 (32-bit unsigned int), and F64 (64-bit floating point). Declaration lists and

initializers are supported.
S32 a;
S32 b =-33, ¢, d = 0;
U32 e = Oxfebc, f = ENUM LI TERAL;
F64 g = 1.25e9, h = 0.0, i = Ox11;
Multi-dimensional arrays of the basic types are supported, including initializers.
S32 x[20];

us2 y[10][3] ={ {1,2,3}, {4,5}, {6} };
F64 z[41[4]1[2] ={ { {1.11, 2.22, } } };

Array element access is supported, but not incomplete de-referencing as pointers are not
supported in the scripting environment.

x[5] = (S32)(y[c][d] * z[3][2][1]); // valid
y[3] = read_dimlength("z", 1); // error, y not fully de-
referenced

Script variables lifetime ends when their scope ends. Note that C99-style late declarations

are allowed.

{
/'l code. .
S32 nyVar;
nmyVar = read_chan_data_u24(5, 0x11);
if (myVar == 0x34)
{

/1 do sonething..

}
/'l code. .

}

nyVar += 10; // ERROR

Script variable values can be viewed in the tooltip by hovering the mouse over the variable
name, or all in-scope script variables can be viewed in the Script Variable window. Script
variables can additionally be configured as discrete nodes to be viewed in the Waveform
window.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 51

8. Script Commands Files

8.4.3

Expression Statements

All C operators are supported except the following:
- array and pointer operators (unary *, unary &, [], ->, "." struct member de-reference)
- expression comma operator

From an implicit type conversion precedence standpoint, type precedence is S32 -> U32 ->
F64. Note that for historical reasons constant expressions are computed in U32.
while (1)
{
F64 rpm
F64 tooth_peri od;
U32 t oot h_per_sync;
tooth_period = read_chan_data_u24(CRANK_CHAN,
FS_ETPU_CRANK_OFFSET_LAST_TOOTH_PERI OD) ;
tooth_per_sync = read_chan_data_u8 (CRANK_CHAN,
FS_ETPU_CRANK_OFFSET_TEETH PER _SYNC);
rpom= (1.0 / (tooth_period * tooth_per_sync /
TCR1_FREQ HZ)) * 60;
/1 done if RPM has gone above 2000
if (rpm> 2000. 0)
br eak;
wait_time(l);
}
Explicit typecasts are supported.

write _chan_data_u24(PWM CHAN, PERI OD_OFFSET, (U24)(1333.33
* SOVE_SCALAR)) ;

write_chan_data_u24(CRANK_CHAN, W NDOW RATI O OFFSET,

(UFRACT24) 0. 45) ;

Along with the 3 basic script types, the S32 and U32 base types have several supported
sub-types available just for cast:

S32 subtypes (result of all these casts are stored as an S32)

o S24

e SI16

e B

e SFRACT24
e SFRACTI16
e SFRACTS

page 52, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.4.4

8.4.5

U32 subtypes (result of all these casts are stored as an U32)

o U24

e Ul6

e U8

e UFRACT24
e UFRACTI16
e UFRACTS8

Selection Statements

The C if-else syntax is fully supported by the eTPU Development Tool script
parser/interpreter.

i f (<expression>)
c_stat enent

[el se
c_statenent]

Where c_statement can be any single C statement or script command (but not declaration),
or it can be a compound statement enclosed by scope '{' '}' tokens.
The C switch statement is also available in the script environment, along with the
associated case and default statements. The syntax for these statements is:
swi tch (<expression>)
c_stat enment

case <constant expr essi on>:

defaul t:

The only difference with the C spec is that case constant expressions with floating point
are allowed.

Loop and Jump Statements

All types of C looping are supported by the enhanced scripting environment. For loops:

for ([expression];[expression];[expression])
c_stat enent

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 53

8. Script Commands Files

8.5

Where c_statement can be any single C statement or script command (but not declaration),
or it can be a compound statement enclosed by scope '{" '}’ tokens. Each of the
[expression] terms in the for statement are optional. At the current time variable
declarations are not allowed in the first term.

While and do-while loops:

whi | e (<expression>)
c_stat ement

and

do
c_stat enent
whil e (<expression>) ;

In all of theses loop types the 'break’ and ‘continue’ statements are fully supported.
C labels and the goto statement are supported by the scripting environment.

| abel :
/'l code. ..
goto | abel;

Since the script is like the contents of a C function, any label in the script is accessible to a
goto statement.

File Format and Features

The script commands file must be ASCII text. It may be generated using any editor or
word processor (such as WordPerfect or Microsoft Word) that supports an ASCII file
storage and retrieval capability.
The following is a list of script command features.

- Multiple-target scripts

- Directives

- Enumerated data types
- Integer data types

- Referenced memory

- Assignment operators

- Operators and expressions

page 54, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

- Comments
- Numeric Notation

- String notation
Script Commands For mat

The command is case sensitive (though this is currently not enforced) and, in general, has
the following format:

command([datal,][data2,][data3]);

The contents within the parenthesis, datal, data2, and data3, are command parameters.
The actual number of such data parameters varies with each particular command. Data
parameters may be integers, floating point numbers, or strings. Integers are specified using
either hexadecimal or decimal notation. Foating point parameters are specified using
floating point notation, and strings are specified using string notation. Hexadecimal and
decimal are fully interchangeable.

8.5.1 Multiple-Target Scripts

In a multiple target environment it is generally best to have just a single script file in the first
target/core found in the project.

Script commands executed in this target/core affect specifically that core. For example, the
following script command will affect just this first target/core.

write_chan_hsrr(TEST_CHAN, 7);

So how can scripts control other targets/cores besides the (default) one with which the
script file is associated? For a script to operate on a specific target/core the target name is
prepended to the script as follows.

<Tar get Nane>. <Scri pt Command>
The specific target for which a script command will run is specified as shown above.

eTPU B.wite_chan_hsrr (LAST_CHAN, 1);

wait_tinme(10);

verify_gl obal _dat a32(SLAVE_SI GNATURE_ADDR,
DATA_TRANSFER_| NTR_SI GNATURE) ;

eTPU B.verify_data_intr(LAST_CHAN, 1);

eTPU A verify_ data_intr(LAST_CHAN, O0);

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 55

8. Script Commands Files

8.5.2

In this example, a host service request is applied to target eTPU_B. Ten microseconds
later script commands verify that the host service request generated a data interrupt on
eTPU_A but not eTPU_B.

Script Directives, Define, Ifdef, Include

The #define directive

Script commands files may contain the C-style define directive. The define directive starts
with the pound character "#" followed by the word "define” followed by an identifier and
optional replacement text. When the identifier is encountered subsequently in the script
file, the identifier text is replaced by the replacement text. The following example shows
the define directive in use.

#define THI'S CHANNEL 8
#define THIS FUNC 4
set_chan_func(TH S_CHANNEL, THI S_FUNC):

Since the define directive uses a straight text replacement, more complicated replacements
are also possible as follows.

#define THI S _SETUP 8,4
set _chan_func(TH S_SETUP) ;

There are a number of automatic and predefined define directive as described in the like-
named section.

The #include <FileName.h> directive

Allows inclusion of multiple files within a single script file. Note that included files do not
support things like script breakpoints, script stepping, etc.

#i ncl ude " Angl eMode. h"
In this example, file AngleMode.h is included into the script commands file that included it.

The #ifdef, #ifndef, #else, #endif directives

These directives support conditional parsing of the text between the directives.

[| ========== That is all she wote!!
#i fdef _ASH WARE_AUTO RUN _
exit();
print else
("Al'l tests are done!!");
#endi f // _ASH WARE_AUTO_RUN_

page 56, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

The above directive is commonly found at the very end of a script commands file that is
part of an automated test suite. It allows behavior dependent on the test conditions. Note
that _ASH_WARE_AUTO_RUN_ is automatically defined when the eTPU
Development Toal is launched in such a way that it runs without user input. In this case,
upon reaching the end of the script file the eTPU Development Tooal is closed when it is
part of an automated test suite and otherwise a message is issued to the user.

8.5.3 Script Enumerated Data Types

Many defined functions have arguments that require specific enumerated data as
arguments. Internally enumerated data types are defined for many script commands and
the tighter checking and version independence provided by enumerated data types make
them an important aspect of script files.

In general, the enumerated data types are defined for each specific target or script file
application. The following is an example of an internally defined enumeration.

enum TARGET_TYPE {

ETPU_SI M

1
Note that in C++ it would be possible to pass an integer as the first argument and at worst
awarning would be generated. In fact, in C++, even the warning could be avoided by
casting the integer as the proper enumerated data type. This is not possible in a script file
because of tighter checking and because casting is not supported.

8.5.4 ScriptInteger Data Types

In order to maximize load-time checking, script command files support a large number of
integer data types. This allows "constant overflow" warnings to be identified at load-time
rather than at run-time. In addition, since the scripting language supports a variety of
CPUs with different fundamental data sizes, the script command data types are designed to
be target independent. This allows use of the same script files on any target without the
possibility of data type errors related to different data sizes.

The following is a list of the supported data types along with the minimum and maximum
value.

- UlvaldrangeisOtol

- U2 validrangeis0to 3

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 57

8. Script Commands Files

8.5.5

8.5.6

- U3validrangeisOto7

- W4validrangeis0to 15

- UsA valid rangeis O to 16

- UsB valid range is0to 31

- U8 valid range is 0 to OxFF

- U16 valid range is O to OxFFFF

- U32 valid range is 0 to OxFFFFFFFF

- Ue4 valid range is 0 to OxFFFFFFFFFFFFFFFF

Referencing Memory in Script Files

Memory can be directly accessed by referencing an address. Two parameters must be
available for this construct: an address and a memory access size. |n addition, there is an
implied address space, which for most targets is supervisor data. For some targets the
address space may be explicitly overridden.

(U8*) ADDRESS // References an 8-bit memory location
(U16*) ADDRESS // References a 16-bit memory location
(U32*) ADDRESS /I References a 32-bit memory location
(Ue4*) ADDRESS // References a 64-bit memory location
(U128 *) ADDRESS /I References a 128-bit memory location

The following are examples of referenced memory constructs. Note that these examples
do not form complete script commands and therefore in this form would cause load errors.
*((U8 *) 0x20 /1 Refers to an 8-bit byte at addr 0x20

*((U24 *) 0x17) /! Refers to a 24-bit word at addr 0x17
*((U32 *) 0x40 /1 Refers to a 32-bit word at addr 0x40

Assignments in Script Commands Files - DEPRECATED

Note: it is now paossible to declare and manipulate variables in script commands. Therefore
use of variables such as the following should now be used instead of those listed farther
down in this section.

S32 val ;
val = read_nmem u32(ETPU_DATA SPACE, 0x200) ;
val | = ((1<<12) | (1<<28));

page 58, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

write_gl obal _data32(0x200, val);

DEPRECATED

Assignments can be used to modify the value of referenced memory, a practice commonly
referred to as "bit wiggling." Using this it is possible to set, clear, and toggle specific groups
of bits at referenced memory. The following is a list of supported assignment operators.

- = Assignment

- == Arithmetic addition and subtraction

- == %= Arithmetic multiply, divide, and remainder
- <<=, >>= Bitwise shift right and shift left

- &= R Bitwise "and," "or," and "exclusive or"

- <<=, >>= Bitwise "shift left" and "shift right"

The following examples perform assignments on memory.

/1 Wites a 44 decimal to the 8 bit byte at address 17
*((U8 *) 0x17) = 44;

/1 Wites a OXAABBCC to the 24 bit word at address 0x31
*((U24 *) 0x31) = O0xAABBCC,

/1l Sets bits 31 and 15 of the 32-bit word at addr 0x200
*((U32 *) 0x200) |= 0x10001000;

/1l Increnments by one the 16-bit word at address 0x3300
*((U16 *) 0x3300) += 1;

Using an optional memory space qualifier, memory from a specific address space can be
modified. See the Build Script ADDR_SPACE Enumerated Data Type section for a
listing of the various available address spaces.

/1 Sets the eTPU I/ O pins for channel 15 and channel 3
*((ETPU_PI NS_SPACE U32 *) 0x0) |= ((1<<15) + (1<<3));
/1 Injects a new opcode into the eTPU s code space

*((ETPU_CODE_SPACE U32 *) 0x20) = 0x12345678;

NOTE: Because the use of the ADDR_SPACE Enunerated Data Type as in the above
expressions is not legal C syntax, the use of such in a script commands file disables
the code reference capability. It isrecommended that the

write_global_data[8/16/24/32] () and write_global_bits[8/16/24/32] () script
commands be used instead whenever possible.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 59

8. Script Commands Files

8.5.7

8.5.8

Operators and expressions in Script Commands Files

Operators can be used to create simple expressions in script commands files. Note that
these simple expressions must be fully resolved at load time. The precedence and ordering
is the same as in the C language. The following is a list of the supported operators.

-+ - Arithmetic addition and subtraction

- *1,% Arithmetic multiply, divide and remainder

- &, N~ Bitwise AND, OR, and EXCLUSIVE OR
- >> Bitwise shift left and shift right

The following example makes use of simple expressions to specify the channel base.

#def i ne PARAMETER_RAM 0x100

#def i ne BYTES_PER CHAN 16

#defi ne SPARK _CHAN _ADDR PARAMETER_RAM + BYTES PER CHAN * 5
/'l Wite a 77 (hex) byte to address 150 (hex)

*((U8 *) SPARK _CHAN ADDR) = 0x22+0x55;

The normal C precedence rules can be overridden using brackets as follows.

write chan_func(1l, 3+4*2); /1l Set chan 1 to function 11
write chan_func(1l, (3+4)*2); // Set chan 1 to function 14

Syntax for global access of eTPU Function Variables

Although eTPU channel variables reside in statically allocated memory, scope-wise within
eTPU-C they are treated more like local variables. The syntax covered in this section
allows developers to. access channel variables at any time, for debug or verification
purposes, not just when within function scope.

The following syntax supports global reference of channel variables by symbolic name.
The syntax has the form @<channel # / name>.<function var name>. Either araw
channel number can be used, or the name assigned to the channel in the Vector file works
to reference channel variables on a channel.

@WVB. Dut yCycl e

@. Period

verify_val ("@Ww. DutyCycle", "==", "3500");

/1 @\SH@rint_to_trace("PPWA channel 3 high tine = Ox%\n",
@. Hi ghTi me) ;

This syntax can be used with the symbolic script commands such as verify_val();, in the
Watch window, as well as in the @A SH@print_to_trace(); action command.

page 60, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.5.9

Syntax for eTPU Channel Hardware Access

eTPU-C provides a built-in type called chan_struct that allows access to such channel-
specific settings as IPAC, OPAC, PDCM, TBS, etc. This symbolic access to channel
settings has now been exposed in the eTPU Simulator. Typically, a chan_struct variable is
defined in a standard header file (etpuc.h), e.g.

chan_struct channel;
This variable channel can then be used to access channel settings in the watch window, or
script command such as print_to_trace() and verify_val(), with the syntax:

channel . OPACA

channel . PDCM

In addition to any chan_struct variables explicitly defined in the code, the Smulator always
predefines a variable called ASHchannel of type chan_struct. Thus this special access is
available even when the predefined headers are not used. This is shown in the watch
window, below.

:L‘:::Tpu 1: Watches M= E3
ASHchannel .TDLA O 8 Bx8 [register TDLAJ
ASHchannel .MRLA 0 8 8«8 [register MRLA]
ASHchannel .TDLE O 8 Bx8 [register TDLE]
AZHchannel .MATCHA 0 480 Bx198 [register HATCHA]
AZHchannel .CAPTURER 0| 280 BxcE [register CAPTUREE]
ter| 0] 2198 Bxd2 [reqister TCR1]
al
T []

When a chan_struct variable is accessed as described above, e.g.,

print_to_trace("\"Current channel PDCMis %\",
ASHchannel . PDCM') ;

the value accessed is always from the current channel, as indicated by the chan register.
There are times where it is useful to access channel fields for other than the active
channel. The following script commands could be used to help test thread handling when
both TDLA and a link service request (LSR) are set:

write_val ("ASHchannel . TDLA", "1");
write_val ("ASHchannel . LSR", "1");

As written above, they only apply to the current channel, or whatever the chan register is
currently set to if no thread is active. Similar to channel variables, the channel relative
syntax can be applied to chan_struct type variables -

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 61

8. Script Commands Files

@<channel number / channel vector name>;. Setting TDLA and LSR on channel 5, which
for example we assume is named "P_IN" in the vector file, the script should be something
like as follows:

write val (" @. ASHchannel . TDLA", "1");
write val ("@_I N. ASHchannel . LSR", "1");

Note that when writing channel settings, great care must be taken. For example, setting
TDLB without setting TDLA may result in undefined behavior. Not all channel fields
described in the chan_struct type definition are supported, and several additional ones have
been added - the supported list is as follows:

| PACA
| PACB
LSR

MRLA
MRLB

MTD
OPACA
OPACB
PDCM
TBSA
TBSB
FLAGD
FLAGL
FMD

FML

PRSS

PSS
FMD_CHAN
FML_CHAN
PRSS_CHAN
PSS_CHAN
PSTI
PSTO
TDLA
TDLB
MATCHA
MATCHB
CAPTUREA
CAPTUREB

Note that the fields FMO, FM 1, PRSS and PSS refer to time-slot-transition (TST)sampled
values and thus only apply to the current channel and thread (TST). PSSiis also re-sampled

page 62, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

when the chan register is written. To access the per-channel values for these fields, use
the corresponding <>_CHAN field names. Note that PRSS CHAN and PSS CHAN
reference the last sampled values for a specified channel.

8.5.10 Syntax for eTPU ALU Register Access

eTPU-C register types are now supported in symbolic processing in script commands such
as print_to_trace(), verify_val(), write_val(), etc., and also in the watch window as shown
below.

AN cTpul: Watches | =10] x|
| 0] uwez 8192 [register TCR1]

erta Ul ue0 0190 [register ERTA]
chan_base 0l 768 0x300 [register CHAM_BASE]
AZHchannel .CAFTUREER ﬂ LBD Bx190 [register CAPTUREB]

Al | 2
In order for this to work, the registers must be exposed in a header file.

In standard the eTPU-C headers (etpuc.h) several register variables are exposed by
default as follows:

regi ster _chan chan;

regi ster_erta erta,;
register_ertb ertb;

register _tcrl tcri;
register_tcr2 tcr2;
register_tpr tpr;
register_trr trr;

regi ster _chan_base chan_base;

Others can be defined per the eTPU-C syntax, for example:

regi ster _di ob di ob;
regi ster_nmach mach ;
register_pl5 0 p15_0; // lower 16 bits of p register

See the standard eTPU-C headers for details on the syntax of the register types. Once
defined, such variables can be referenced in the watch window or symboalic script
commands just like other variables.

print_to _trace("\"Current channel is %\"", "chan");
Note that write-only registers like link do not provide meaningful data.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 63

8. Script Commands Files

In addition, the ALU and MDU condition codes are exposed to the symboalic script

commands via the CC symbol:

struct {
unsigned int V: 1; // ALU overflow condition code
unsigned int N: 1; // ALU negative condition code
unsigned int C: 1; // ALU carry condition code
unsigned int Z: 1; // ALU zero condition code
unsigned int W : 1; // NMDU overflow condition code
unsigned int MN: 1; // MU negative condition code
unsigned int MC: 1; // MDU carry condition code
unsigned int M : 1; // MDU zero condition code
unsigned int MB : 1; // NMDU busy fl ag
unsigned int SMLCK : 1; // semaphore | ocked fl ag

} CGC

This allows for script access such as the examples below:
print_to trace("CC.N = %", CC.N);

verify_val ("CC. N', "==", "1");
verify_val ("CC z", "==", "0");
verify_val ("CC. SM.CK", "==", "0");
print_to trace("CC. Mz = %d", CC. MZ);
verify_val ("CC.MN', "==", "0");
verify_val ("CC M", "==", "1");

8.5.11 String within a string supports formatted symbolic information

The "string within a string” formatted supports generation of formatted symbolic
information by certain script commands. The format is a"C" string with a second
embedded C string. The embedded sting must use the backslash escape character to begin
and end the embedded string. Two example uses of this are shown below.

write_chan_hsrr (TEST1_CHAN, 5);
wait _tinme(0.12);

/1 Send the results to the trace w ndow
print_to_trace("\"TEST RESULTS (trace):\n"
" A=%\ n"

" B=%l\ n"
" C=vd\",A B, C);

/'l Same as above ... but to the screen
print ("\"TEST RESULTS (screen):\n"
" A=%d\ n"

" B=%\ n"

page 64, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

C=%\", A B,C);

8.5.12 Comments in Script Commands Files

Legacy "C" and the new "C++" style comments are supported, as follows.
/1 This is a comment.
set _tdl (3);

/* This is a |legacy Cstyle coment.

This is also a comment .

This is the end of the nmultiple-line conmrent. */
set _tdl(/* nore coment */ 3);

8.5.13 Decimal, Hexadecimal, and Floating Point Notation in Script Files

Decimal and Hexadecimal notation are interchangeable.

357 /1 Decinmal Notation
0x200 /| Hexadeci nal Notation

In certain cases floating point notation is also supported.
3. 3e5 /1 Floating Point

8.5.14 String Notation

The following is the accepted string notation.
" STRI NG'
The characters between the first quote and the second quote are interpreted as a string.
"File.dat"
This denotes a string with eight characters and termination character as follows, 'F, 'i', 'I',
Iel’ I'l, Idl’ lal, Itl, I\OI'
Concatenation
It is often desirable to concatenate stings. The following example illustrates a case in
which this is particularly useful.

#define TEST_ DIR "..\\TestDataFiles\\"
read_behavior _file (TEST_DIR "Test. bv");
vector (TEST_DI R "Exanpl e");

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 65

8. Script Commands Files

8.6

C-Style Escape Sequences

In the C language, special characters are specified within a string using the backslash
character, '\'. For instance, a new-line character is specified with the backslash character
followed by the letter "n", or \n". The character following the backslash character is
treated as a special character. The following special characters are supported.

\\ Ref erences a backsl ash character
"..\\File.dat"

Planned Obsolescence of Single Back slash within Strings

In previous versions of this software a C-style escape sequence was not supported and a
single backslash character was treated as a just that, a single backslash character. In
anticipation of future software versions supporting enhanced C-style escape sequences, the
single backslash character within a string now causes a warning. ASH WARE
recommends using a double-backslash to ensure compatibility with future versions of this
software.

/1 The follow ng string causes a warning.
"..\File.dat"

Script Commands

Listed below are the available script command functional groups. Clicking on the desired
command functional group will access the command listing for that group.

All Target Types Script Commands

Clock contral script commands
Timing script commands

Verify traversal time commands
Modify memory script commands

V erify memory script commands
Regqister write script commands
Reqister verification script commands
Symbol value write script commands
Symbol value verification script commands
System script commands

File script commands

Trace script commands

Code coverage script commands

eTPU Script Commands

page 66, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

Channel function select register script commands

Channel priority register script commands

Host service request register script commands

Interrupt association script commands

External boolean logic script commands

Pin control and verification script commands

Pin transition behavior script commands

Clear Worst Case Thread |ndices Commands

System configuration commands

Timing configuration commands

STAC Bus commands

Global Data Commands

Channel data commands

Channel base address commands

Engine data commands
Channel function mode (FM) commands

Channel event vector entry commands
I nterrupt script commands

Shared Subsystem Script Commands

Link Injection Script Command

Build Script Commands

8.6.1 Timing

Build script commands

Script commands in this group provide capabilities such as the ability to set the system
frequency, control when (other) script commands execute, clear the worst case threads
(used following the init threads,) and to find worst case information for a time region.

8.6.1.1 Timing Script Commands

wait_time(T);

No script commands are executed until the simulation’s current time plus the T
microseconds.

wait_time(33.5); [// (assume current tine=50 m croseconds)

set _link(5);
wait_time(100.0);
set _link(2);

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 67

8. Script Commands Files

In this example at 83.5 microseconds (from the start of the simulation) channel 5's Link
Service Latch (LSL) will be set. No script commands are executed for an additional 100
microseconds. At 183.5 microseconds (from the start of the simulation) channel 2's LSL
will be set.at _code_t ag(TagStri ng);

at _time(T);
When this command is reached, no subsequent commands are executed until T

microseconds from the simulation’ s start time. At that time the script commands following
the at_time statement are executed.

The eTPU Development Tool's enhanced scripting provides a script command to read the
current time in microseconds into a script variable.

F64 tinme_us;

time_us = read_time();
See the Enhanced Scripting Capabilities section for more information on the use of
variables within the scripting environment.

at _code_tag_ex(TagString, Tineout, TineoutAction);

These commands prevent subsequent commands from executing until the target hits the
source code that contains the string, <TagString>. Note that all source code files are
searched and that the string should be unique so that it is found at just one location (for
otherwise the command will fail).

at _code_tag("$$MyTest 1$$") ;

verify val ("fail Flag", "==", "0");
In the example above, the target executes until it gets to the point in the source code that
contains the text, $MyTest1$$ and then verifies that the variable named failFlag is equal
to zero. It isimportant to note that the variable could be local to the function that contains
the tag string such that it may be only briefly in scope. The only scoping requirement is
that the variable is valid right when the target is paused to examine this variable.

The extended version of the command, at_code_tag_ex(), also supports a timeout (in
microseconds) such that if the tagged source code is not traversed in the amount time
specified by Timeout, then the action specified by TimeoutA ction will occur. Supported
actions are FAIL_ON_TIMEOUT, FAIL_ON_TAG, and ALWAY SPASS.
FAIL_ON_TIMEOUT causes a verification failure (and subsequent test suite failure) if
the tagged code is not traversed in the specified time. FAIL_ON_TAG is just the opposite
and is used when the tagged code is NOT expected to be traversed. ALWAYS PASS
allows the script command execution to proceed on the first of either the tagged code being
traversed or on the timeout, and no verification error is generated in either case.

at _code_tag_ex("$$MyTest 2$$", 4.5, FAIL_ON_TI MEQUT);

page 68, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

In example above, the target executes until the point in the source code is traversed that
contains the text, $$MyTest2$$. If in 4.5 microseconds the tagged code has NOT yet
been traversed than a verification failure results. Script command execution continues on
the first of the tagged text being traversed (the expected case) or the timeout (the failing
case.)

8.6.1.2 Verify Timing Script Commands

The verify timing script command verifies that timing requirements are met. The format is
as follows.

verify timer_clks("TimngTag", M nSysCl ks, MaxSysCl ks);
The "ActionTag" parameter is a string that must match a similarly-named timing time-
window within your code. The MinSysClk and MaxSysClk parameters describe the
allowable minimum and maximum number of system clocks (inclusive) that execution of
the code is allowed to take in order for the verification test to pass. If the code takes less
time than the minimum or more time than the maximum to execute then a verification error
OCCUI'S.

If the code has been traversed multiple times than the verification command verifies the
last full traversal.

The following is an example of a region of code marked for timing. See the Timer Action
Commands section for more information on naming timing regions.

int MyFunc(int x)

{
int vy; /1l @ASH@ i nmer _start("Test A");
y = X + 25;
returny /1 @ASH@ i mer _stop("Test A");
}

In the following example, the last full traversal of the above code is verified to have taken
between 10 and 20 system clocks. A verification error occurs if the code has never been
fully traversed, if the last traversal took 9 or fewer system clocks, or if the last traversal
took 21 or more system clocks.

verify timer_clks("Test A", 10, 20);

Note that on the eTPU there are two system clocks per instruction cycle, so the following
#define can improve the test’ s readability.

#define CYCLES *2 // A cycle is two clocks on the eTPU
verify timer_clks("Test A", 5 CYCLES, 10 CYCLES);

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 69

8. Script Commands Files

8.6.1.3

8.6.1.4

Related | nformation

Naming timing regions in source code
Verifying traversal times a script command file
View named timing regions timing using the Watch Window

Clock Control Script Commands

The script commands described in this section provide control over the clock and frequency
settings.

The set_cpu_frequency(); script command has been deprecated. Instead, use the
set_clk_period() script command described in this section. A warning message is
generated when this command is used. This message can be disabled from the M essage
Options dialog box.

set _cl k_peri od(fenmt oSecondPer Cl kTi ck) ;

The script command listed above sets the target’s clock period in femto-seconds per clock
tick. Note that one femto second is 1e-15 of a second or one hillionth of a micro-second.
A simple conversion is to invert the desired MHz and multiply by a billion.

/] 1e9/16.778 = 59601860 fento-seconds
set _cl k_period(59601860) ;

In this example the CPU clock frequency is set to 59,601,860 femto-seconds, which is
16.778 MHz.

Thread Script Commands

The eTPU Development Tool stores worst-case latency information for each channel.
This is very useful for optimizing system performance. But in some applications the
initialization code, which generally does not contribute to worst case latency, experiences
the worst case thread length. In this case, it is best to ignore the initialization threads when
considering the worst case thread length for a function. This command provides for
ignoring the initialization threads.

/1 Initialize the channels.

write_chan_hsrr (RCV_15_A, ETPU ARINC RX INIT);

write_chan_hsrr (RCV_15 B, ETPU ARINC RX INIT);

page 70, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

/1 WAit for initialization to conplete,

/1l then reset the worst case thread indices.

wait_time(100);

cl ear _worst _case_t hreads();
In this example the channels are issued a host service request, then after 100 microseconds
(presumably sufficient time to initialize) the threads indices are reset.

Another script command can be used to verify that a particular meets performance
requirements.

verify wctl (<thread nanme>, <max steps>, <nmax RAM
accesses>);

If the thread is part of an ETEC class, the name should be specified in Class:: ThreadName
form. This script command will through a script verification error if the worst case steps
for the specified thread exceeds the number provided, or worst case RAM accesses
exceeds the number passed in the script command.

To output WCTL data to afile, in an easy-to-read format, the following command can be
used:

write wetl (<output file name>, <channel or function
nunber >, <channel for function node>, <grouping on or off>,
<out put style>);

So, for example, if the following is placed at the end of the Hello World demo script file:

wite wetl ("pwmwectl.txt", PWM CHAN, WCTL_TYPE_CHANNEL,
WCTL_GROUP_ON, WCTL_OUTPUT_PRETTY) ;

The following text gets output to the pwm_wctl.txt file when the simulation is executed:

[----- THREAD - - - - - | -- STEPS -| RAMs
| Addr Cov Cht | W Tot | WC | WC Tine
0 0858 1/1 1 9 9 5 180 nS Init
1 087C 1/4 133 11 1463 5 220 nS
Handl eFal | i ngEdge
2 08AC 0/ 27 0 - 0 - --- Unused

Note that cl ear _wor st _case_t hreads() clears the thread data collection that is
output by wri te_wct | () or verifed withverify_wct! ().

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 71

8. Script Commands Files

8.6.2

8.6.2.1

MCU Configuration

These include a host of MCU-specific configuration script commands such as setting the
entry table base address (ETBA) in the eTPU or setting the DC load in the MC339816.

eTPU System Configuration Commands
wite entry_table _base_addr(Addr);

This command writes the Event V ector Table's address. It writes a value into the
ETPUECR register's ETB field that corresponds to address Addr.

#define MY_ENTRY_TABLE_BASE_ADDR 0x800
wite_entry_table_base_addr(MY_ENTRY_TABLE_BASE_ADDR) ;

In the above example the event vector table is placed at address 0x800.
write_engine_rel ative_base_addr (Addr);

This (eTPU2 ONLY'!) command writes the Engine Relative Base Address. It writes a
value into the ETPUECR register's ERBA field that corresponds to address Addr.

#def i ne MY_ENG NE_ADDR 0xA00
write_engine_rel ative_base_addr (MY_ENG NE_ADDR) ;

In the above example the engine relative space is placed (allocated) at address OxA 00.
write schedul er_priority_passing _di sabl e(Val);

This (eTPU2 ONLY!) command writes the Scheduler Priority Passing Disable bit. 1t
writes the specified O or 1 value into the SPPDI S hit of the ETPUECR register. The
default value is O.

write_schedul er_priority_passing _disable(l);
In the above example priority passing in the scheduler is disabled.
write_global _tinme_base_enabl e(Enabl e);
The command enables the time bases for all the eTPUs.
wite entry_ table _base_addr(Addr);

In the Byte Craft eTPU "C" Compiler the event vector table base address can be
automatically generated using the following macro.

#pragm write h, (#define MY_ENTRY_TABLE_BASE_ADDR :: ETPUentrybase(0));

In the Byte Craft eTPU "C" Compiler the event vector table base address is specified as
follows:

#pragma entryaddr 0x800;

page 72, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.6.2.2

This command writes the SCMOFFDATAR register. This register is the opcode that gets
executed when the eTPU executes from an SCM address that is not populated with actual
memory.

wite scmoff_data(Val);

eTPU Timing Configuration Commands
write_angl e_node(Val);
wite_tcrl_control(Val);

wite_tcr2_control (Val);
wite_tcrl_source(Val);

These commands write their respective field values in the ETPUTBCR register.

wite tcrl prescal er(Prescaler);
wite tcr2_prescal er(Prescaler);

IMPORTANT NOTE: These two script commands write actual value of the 'system clock
divider' NOT THE VALUE OF THE TCR1P or the TCR2P reqisters!!! So, for
example, the script ‘'write_tcrl prescaler(6);' gives a divide by of '6' but the TCR1P
register gets writtento a'5'!

These commands write the prescaler ‘ Prescaler’ to the ETPUTBCR register. Valid values
for TCR1 are 1..256 and for TCR2 are 1..64.

write_angl e node(0); /1 Disable

wite tcrl control (1); /1 Systemclock/2 (default TCR1l cl ock
sour ce)

wite tcr2 control (2); /1 TCR2’s clk is falling TCRCLK Pin
wite tcrl prescaler(l); /] Fastest ... divide by 1

wite tcr2 prescal er(64); /1 Slowest ... divide by 64

In this example angle mode is disabled, the TCR1 counter is programmed to be equal to the
system clock divide by two (system clock divided by two, prescaler is divides by one), and
TCR2 is programmed to be the system clock divided by 512 (system clock divided by 8
with a 64 prescaler.)

wite tcrl control (2); /1 use TCRLl cl ock source
wite tcrl source(l); /1 System O ock/1l (eTPU2 Only!)
wite tcrl prescaler(l); /] Fastest ... divide by 1

In the above example system clock/1 is the input to the TCR1 prescaler. Thisis ONLY
available in the eTPU2 and beyond!

set _angl e_i ndi ces(<DegreesPer Cycl e>, <Teet hPer Cycl e>);

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 73

8. Script Commands Files

8.6.2.3

8.6.2.4

This command supports specification of angle indices required to display current angular
information in various portions of the visual interface including the, "Global Time and Angle
Counters" window. In a typical automotive application the angle hardware is used as a
PLL on the actual engine. Typically two engine revolutions are defined as a single "cycle"
so acycle is defined as 720 degrees. Also, a typical crank has 36 teeth and rotates twice
per engine revolution. The following script command generates this configuration.

/1 This configures the visualization of the crank
#defi ne DEGREES_PER CYCLE 720

#defi ne TEETH PER CYCLE 72

set _angl e_i ndi ces(DEGREES_PER CYCLE, TEETH PER CYCLE);

This command configures angle visualization for a cycle of 720 degrees, and a crank with
36 teeth which rotates twice per cycle yielding 72 teeth per cycle.

eTPU Host Service Request Register Script Commands
write_chan_hsrr (ChanNum Val) ;

This command writes channel ChanNum’s HSRR hits to value Val.
write_chan_hsrr(4,0);

In this example channel 4 s HSRR bits are written to zero. If channel 4 had a pending host
service request, it would be cleared.

eTPU Channel Address Script Commands
write_chan_base_addr (ChanNum Addr);

This command writes channel ChanNum's address Addr. Note that this writes the CPBA
register value.

#define PWML_CHAN 3

#define PWWR_CHAN 4

#define PWML_CHAN _ADDR 0x300

#define PWW_CHAN_ADDR (PWML_CHAN_ADDR + PWM_RAM)
write_chan_base_addr (PM\ML_CHAN, PWML_CHAN_ADDR) ;
write_chan_base_addr (P\M2_CHAN, PWW2_CHAN_ADDR) ;

In this example channel 3's data will start at address 0x300. Note channel variables and
static local variables use this.

page 74, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.6.2.5

8.6.2.6

eTPU Channel Function Select Register Commands
write_chan_func(ChanNum Val);
This command sets channel CHANNUM to function Val.

#def i ne MY_FUN_NUM 0x10
write_chan_func(7, 0x10);

In this example channel 7 is set to function 10 (decimal). All other channel function
selections remain unchanged.

In the Byte Craft eTPU "C" compiler the function number can be automatically generated
using the following macro.

#pragma wite h, (#define MY_FUNC_NUM :: ETPUf uncti onnunber (Pw)) ;

eTPU Event Vector Entry Condition (Standard/Alternate) Commands
write_chan_entry_condition(ChanNum Val);

This command writes channel ChanNun' s event vector (entry) condition to Val. Note that
this writes the CxCR register's ETCS field. A value of 0 designates the standard table and
1 designates alternate. Note that each function has a set value and that this value MUST
match that of the eTPU function to which the channel is set.

#defi ne UART_STANDARD ENTRY VAL 0
#define PWM ALTERNATE ENTRY VAL 1

write_chan_entry condition(UART1_CHAN, UART STANDARD ENTRY_VAL);
write_chan_entry condition(UART2_CHAN, UART STANDARD ENTRY_ VAL):

wite chan_entry_condition(PAWML_CHAN, PWJ ALTERNATE ENTRY_VAL);
wite chan_entry_condition(PAWR_CHAN, PWJ ALTERNATE ENTRY_VAL);
In this example the UART channels are programmed to use the standard event vector
table and the PWM channels are programmed to use the alternate event vector table.

The ETEC compiler automatically outputs entry table type information into the auto-defines
file.

In the Byte Craft eTPU "C" Compiler the event vector condition (alternate/standard) for
the eTPU function is specified as follows.

#pragma ETPU function Pwm alternate;

void Pvm (int24 Period, int24 Pul seWdth)
{

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 75

8. Script Commands Files

8.6.2.7

8.6.2.8

In the Byte Craft eTPU "C" Compiler the event vector mode can be automatically
generated using the following macro.

#pragma wite h, (#define PWM ALTERNATE _ENTRY_VAL :: ETPUentrytype(Pwm);

Note that setting of the event vector table’s base address is covered inthe System
configuration commandsSYSTEM_CFG_CMDS section.

write_chan_entry_pin_direction(ChanNum Val);

This command writes channel ChanNun' s event vector pin direction to Val. Note that this
writes the CxCR register's ETPD field. A value of 0 uses the channel’s input pin and a
value of 1 uses the output pin.

#define ETPD_PI N_DI RECTI ON_| NPUT 0
#define ETPD_PI N_DI RECTI ON_OUTPUT 1

write_chan_entry_pin_directi on(UART1_CHAN, ETPD_PI N_DI RECTI ON_I NPUT) ;
write_chan_entry_pin_directi on(UART2_CHAN, ETPD_PI N_DI RECTI ON_OUTPUT) ;

In this example the UART 1 chan event vector table thread selection is based on the input
pin, and UART2 event vector thread selection is based on the output pin.

See the System Configuration Commands section for information on setting the entry
table’ s base address.

eTPU Channel Function Mode Script Command
write_chan_node(ChanNum MbdeVal);

This command writes channel ‘ ChanNum' to function mode ‘ ModeVal'. Note that this
modifies the FM field of the CxSCR register. This is a two-bit field so valid values are 0O, 1,
2, and 3.

#define PWJML _CHAN 17
write_chan_node(PWML_CHAN, 3);

In this example, channel 17’ s function mode is set to 3

eTPU Channel Priority Register Commands
write_chan_cpr(ChanNum Val);

This command writes the priority assignment Val to the CPR for channel ChanNum.
write_chan_cpr (6, 2);

page 76, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.6.2.9

8.6.2.10

In this example a middle priority level (2=middle priority) is assigned to channel 6 by writing
atwo to the CPR bits for channel 6. All other eTPU channel priority assignments remain
unchanged.

eTPU Shared Subsystem Script Commands
config_shared_sub_system(subSystem d, engineld, chanNum ;

This command configures the subsystem 'subSystemld' to generated a link on engine
‘engineld’ channel 'ChanNum'. SubSystemld is the ID for the sub-system. The parameter
‘engineld’ programs the ETPUSSSNIR register's 'LENQ' field and is set to 'DISABLED",
'ENGINE_1', or 'ENGINE_2'. The parameter chanNum programs the ETPUSSSnIR
register's 'LCHAN' field.

i ssue_sub_system | ink(subSystem d);

This command issues a link that originates from the sub-system specified by the
subSystemid field.

config shared_sub_system(0, ENG NE_ 1, 17);

i ssue_sub_system |ink(0);
The above command sequence configures the shared memory subsystem to interrupt
channel 17 of engine 1 and then issues a link.

write_chan_shared_subsystem access_enabl e(chanNum

enabl eval); // (eTPU2 only)

This command enables or disables shared subsystem accesses. This is done on a per
channel bases in that some channels can have this enabled while others have it disabled.
The 'chanNum' specifies the channel to be enabled or disabled. The 'enableVal' can either
be '1' (enabled) or ‘0" (disabled.) Note that this command is only available for eTPU2.

write_chan_shared_subsystem access_enabl e(4, 1);
In this example, channel 4 is enabled for memory accesses to the shared subsystem.

eTPU STAC Bus Script Commands

The STAC Bus for sharing time bases (TCR1, TCR2) between eTPU engines on dual-
eTPU microcontrollers can be configured with the following script commands:
wite stac_tcrl _enable();

write stac_tcrl_assignnent (Mode);
wite stac_tcrl _server(ServerlD);

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 77

8. Script Commands Files

8.6.2.11

wite stac_tcr2_enable();
write_ stac_tcr2_assignment (Mode);
wite stac_tcr2_server(ServerlD);

The enable commands allow the specified time base to be exported to or imported from the
STAC Bus. Whether the time base acts as a server or client is determined by Mode,
where a Mode of O is client operation, and a Mode of 1 is server operation. When in client
mode, the ServerlD determines where the time base is to be imported from. The server
numbers for the time bases are hardcoded in hardware as follows:

0 — eTPU A TCR1
1 — eTPU B TCRL
2 — eTPU A TCR2
3 — eTPU B TCR2

A typical usage of the STAC Bus is to export the TCR2 time base (angle) from eTPU_A
to eTPU_B. This could be accomplished with the following set of script commands
(assumes other time base configuration already complete):

/1 configure STAC Bus

eTPU A write_stac_tcr2_enabl e(1);

eTPU A wite_stac_tcr2_assignnment(1l); // server

eTPU B.write_stac_tcr2_enabl e(1);

eTPU B.wite_stac_tcr2_assignment(0); // client

eTPU B.write_stac_tcr2_server(2); /1l inmport eTPU A's TCR2

/1 enable tiners
wite_global tinme_base_enabl e(l);

eTPU Link Script Command

set _| i nk(ChanNum ;
cl ear _I'i nk(ChanNum ;
verify_link(ChanNum Val);

This 'set_link' script command directly sets a Link Service Request (L SR) to channel
ChanNum and the ‘clear_link' clears the link. The verify_link() is used to verify that a link
is either set or cleared (Val isQir 1).

set _|ink(8);
wait_time(3);
verify_link(8, 1);
clear_link(8);
verify_link(8, 0);

In this example a link is generated on channel 8.

page 78, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc.

Reference Manual

8. Script Commands Files

Important note. There is no corresponding capability in the actual host interface relating
to the 'set_link' and 'clear_link' script commands. These commands are entirely a

figment of the rather distorted imagination of the simulation designer. As such there is no
related capability in the host interface, so please use these script commands with caution.

8.6.2.12 eTPU Interrupt Script Commands

Interrupts can cause special script | SR file to execute as described in the Script 1SR
section.

cl ear _chan_intr(ChanNunm ;
cl ear _chan_overfl ow_i ntr(ChanNun ;
clear _data_intr(ChanNunm ;
cl ear _data_overflow_intr(ChanNun ;

These commands clear the interrupts for channel ChanNum. 1t is equivalent to setting the
bit associated with the channel in the CICX, DTRC, CIOC, or DTROC fields.

verify_chan_intr(ChanNum Val);
verify_chan_overflow_intr(ChanNum Val);
verify_ data_intr(ChanNum Val);

verify_ data_overflow_intr(ChanNum Val);
verify_ illegal _instruction(Val);
verify_m crocode_exception(Val);

These commands verify that the respective interrupts are either asserted (Val==1) or de-
asserted (Val==0).
cl ear _gl obal _exception();

This command clears the global exception along with the exception status bits. It is
equivalent to setting the GEC field in the ETPUMCR field.

di sabl e_chan_i ntr (ChanNum ;
enabl e_chan_i ntr (ChanNum ;
di sabl e_data_i ntr(ChanNum ;
enabl e_dat a_i ntr (ChanNum ;

These commands enable/disable the interrupt for channel ChanNum. Note that if you
associate a script | SR file with an interrupt, these commands allow or prevent that file from
running on assertion of the interrupt.

clear _this_intr();

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 79

8. Script Commands Files

8.6.2.13

This command can only be run from within a script ISR file. It clears the interrupt that
caused the command to execute.

eTPU Interrupt Association Script Commands

Interrupt association script commands associate a script commands file with the firing of
interrupts such that when the interrupt is both enabled and active, the script commands file
executes. See the Script Commands Files chapter for a description of the use of 1SR script
commands files

| oad_chan_i sr("fil ename. eTpuComrand", ChanNum); // eTPU-Only
| oad_data_isr("fil ename. eTpuCommrand", ChanNum); // eTPU-Only
| oad_exception_isr("filenane. eTpuCommand"); [l eTPU-Only

In order for the ISR script to actually execute the ISR must be enabled. The following
script commands enable and disable | SRs for the eTPU.

enabl e_chan_i ntr(chanNum); /1 eTPU Only
di sabl e_chan_intr(chanNum); /1 eTPU Only
enabl e_data_i ntr(chanNum); /1 eTPU Only
di sabl e_data_intr(chanNum); /1 eTPU Only

This commands loads | SR script commands file filename. TpuCommand (or
filename.eTpuCommand) and associates them with the various types of interrupts from
channel ChanNum.

cl ose_chan_i sr(ChanNun) ; /1l eTPU only

cl ose_data_i sr(ChanNum; /1l eTPU only

cl ose_exception_isr(); /1l eTPU only

| oad_data_isr("ISR 22. eTpuCommand", 22);
enabl e_data_intr(22);

wait_tinme(5000);

close_data_isr(22);

di sable_data_intr(22);

This eTPU DATA isr example loads the file ISR_22.eTpuCommand and associates it with
the data interrupt from channel 22. If the interrupt for channel 22 is both asserted and
enabled within the first 5ms, then the script commands in the file will run.

| oad_exception_isr("d obal Exc. eTpuConmand"); // eTPU-Only

This eTPU example loads the file GlobalExc.eTpuCommand and associates it with the
global interrupt.

page 80, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.6.3 Variable, Memory, and Register Modification and Verification

These are the 'main banana’ script commands as far as data flow goes. Valuesin
variables, (more generic) memory, registers, etc., can be both modified and verified.

8.6.3.1 Memory Read Script Commands

Read memory script commands provide the mechanism for reading data from the target
memory into the scripting environment (variables). The required syntax is to assign a script
variable to the return value of the script command. The first argument of the script
command is an address space-enumerated type. The second argument is the address from
which the value should be read.

X = read_nmem u8(enum ADDR _SPACE, U32 address);
X = read_nmem ul6(enum ADDR_SPACE, U32 address);
X = read_nmem u24(enum ADDR_SPACE, U32 address);
X = read_nmem u32(enum ADDR_SPACE, U32 address);
U322 x;

X = read_mem u8(ETPU_DATA SPACE, O0x7);
In the above script command example, the byte found at address 0x7is read into script
variable 'X'.

S32 y;

y = read_nmem u24(ETPU_DATA_SPACE, 0x101);
In the above script command example, a 24-bit (three-byte) memory at address 101h is
read into 'y'. Note that the 24-bit value is signed-extended when it is converted to S32.

Note: Under the hood the variable to which the read value is assigned is actually treated as
the first argument. This means a statement like this:

X = read_nmem ul6(ETPU DATA SPACE, _AWB16DA | MM M nCurrent);
Could also be written like below.

read_nmem ul6("x", ETPU DATA SPACE, _AWB16DA | MM M nCurrent);
Related Topics

See the eTPU Channel Data Script Commands section which covers reading,
writing and verifying eTPU memory.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 81

8. Script Commands Files

8.6.3.2

8.6.3.3

Memory Modify Script Commands

Modify memory script command provide a way to read-modify-write any data in any target
memory. The first argument is an address space-enumerated type. The second argument
is the address at which the value should be written or read-modified-written. The third
argument is an assignment operation type. The fourth argument is the value to be used for
the assignment operation.

nodi fy_nmem u8(enum ADDR_SPACE, U32 address, enum ASSI GNVENT_TYPE op,
U8 val);

nodi fy_nmem ul6(enum ADDR_SPACE, U32 address, enum ASSI GNVENT_TYPE
op, UL6 val);

nodi fy_nmem u24(enum ADDR_SPACE, U32 address, enum ASSI GNVENT_TYPE
op, W4 val);

nodi fy_nmem u32(enum ADDR_SPACE, U32 address, enum ASSI GNVENT_TYPE
op, U32 val);

Memory can also be modified within script commands using the assignment operator. See
the Assignments in Script Commands Files section for a description. Note that since the
assignment syntax is not actually C-compatible, it is recommended that memory
modification script commands be used instead, as the non-C assignment syntax causes
script file code references not to be available.

Memory Verify Script Commands

V erify memory script commands provide the mechanism for verifying the values of the
target memory. The first argument is an address space-enumerated type. The second
argument is the address at which the value should be verified. The third argument is a
mask that allows certain bits within the memory location to be ignored. The fourth
argument is the value that the memory location must equal.
verify_nmem u8(enum ADDR SPACE, U32 address, U8 mask, U8 val);
verify mem ul6(enum ADDR SPACE, U32 address, Ul6 nmask, Ul6 val);
verify mem u24(enum ADDR SPACE, U32 address, U24 nmask, W4 val);
verify mem u32(enum ADDR SPACE, U32 address, U32 nmask, U32 val);

This command uses the following algorithm.
- Read the memory location in the specified address space and address.

- Perform alogical "and" of the mask with the value that was read from
memory.

- Compare the result to the expected value.

page 82, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

- If the expected value is not equal to the masked value, generate a verification
error.

The following example verifies the value of an 8-bit (byte) memory location.
verify_mem u8(ETPU DATA SPACE, 0x7, 0OxcO, 0x80);

The example above verifies that the two most significant bits found at address Ox7 are
equal to 10b. The lower 6 bits are ignored. If the bits are not equal to 10b, a script failure
message is generated and the target's script failure count is incremented.

verify mem ul6(ETPU DATA SPACE, 0x10, Oxffff, Ox55aa);

In the example above, a 16-hit (two-byte) memory at address 10h is verified to equal
Ox55aa. By using a mask of FFFFh, the entire word is verified.

verify_mem u24(ETPU_DATA SPACE, 0x101, Oxffffff, Ox555aaa);

In the example above, a 24-hit (three-byte) memory at address 101h is verified to equal
Ox555aaa. By using a mask of OxFFFFFF, the entire word is verified.

verify_mem u32(ETPU_DATA SPACE, 0x20, 1<<27, 1<<27);
In the example above, bit 27 of a 32-bit (four-byte) memory location at address 20h is
verified to be set. All other bits except bit 27 are ignored.
Related Topics

See the eTPU Channel Data Script Commands section which covers both writing
and verifying eTPU memory.

8.6.3.4 Register Write Script Commands

Write register script commands provide the mechanism for changing the values of the
target registers. The first argument is the value to which the register will be set. The
second argument is a eTPU register-enumerated type with a definition that depends on
the specific target and register width on which the script command is acting.

write regl(Ul, enum REG STERS Ul);
write_reg5(U5, enum REG STERS_U5);
write_ reg8(U8, enum REG STERS_U8);
write regl6(Ul6, enum REG STERS UL6) ;
write_reg24(U24, enum REG STERS_U24) ;
write reg32(U32, enum REG STERS U32);

write_regl6(0x5557, REG DI OB);
In the above script command example 5557 hexadecimal is written to register DIOB.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 83

8. Script Commands Files

8.6.3.5

8.6.3.6

Register Verify Script Commands

Verify register script commands provide the mechanism for verifying the values of the
target registers. The first argument is aeTPU reqgister-enumerated type with a definition
that depends on the specific target and register width on which the script command is
acting. The second argument is the value against which the register will be verified.

verify_regl(enum REG STERS_U1, Ul);
verify_reg5(enum REG STERS_U5, U5);
verify_reg8(enum REG STERS_U8, U8);
verify_regl6(enum REG STERS_U16, U16);
verify_reg24(enum REG STERS_U24, U24);
verify_reg32(enum REG STERS_U32, U32);

verify_ regl6(REG DI OB, 0x5557);

In the script command example above, register DIOB is verified to be 5557 hexadecimal.
If not, a script failure message is generated and the script failure count is incremented.

Symbol Write Script Commands

Write symbol value script commands provide a mechanism for writing data to
simulated/target memory using the symbolic names from the source code. The write_val()
command is for writing data of a basic type to a symbolically referenced memory location.

write_ val ("synmbol ExprString", "exprString");

The expression string (exprString) can be a numerical constant or a simple symbolic
expression. Constants can be supplied as decimal signed integers, unsigned hexadecimal
numbers (prepended with *0x’), floating point numbers, or as a character (e.g. ‘A’). A
symbolic expression can be just a local/global symbol or a simple expression such as *V
(de-reference), &V (address of V), V[constant], V.member or V->member, where V is a
symbol of the appropriate type. The special @ channel variable (eTPU only) reference
syntax is also supported. "symbolExprString” must be a symbolic expression as described
above, an "I-value" in compiler parlance. The type of the symbolic expression must be a
basic type — char, int, float, etc. If the types of the two sides differ then C type conversion
rules are followed before writing the data to memory.

Two other forms of the write symbol value script command are also supported that directly
take the numerical value to write as an argument.

write val _int("synbol ExprString”, U32 val);

write val _fp("synbol ExprString”, double val);

page 84, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

These forms allow the value to be input as a constant expression, perhaps using a series of
macras, thereby providing more flexibility.

The write_str() command is provided as a shorthand way to write a string into the memory
pointed to by a symbolic expression of pointer type..

write_str("pointerExprString", "stringExprString");

The pointer expression string (pointerExprString) is symbolic expression as described
above, but of type pointer rather than a basic type. It can be a pointer to any type, and is
implicitly type-cast to the char* type. "stringExprString” can either be a string constant, or
it can be of type char array or char pointer. In either case, write_str() function like the C
library function strcpy(). Use write_str with caution; no effort is made to check that the
destination buffer has sufficient space available, and the resulting bug induced by such a
buffer overflow can be extremely difficult to debug.

A key concept is that of symbol scope. A variable defined within a particular function goes
out of scope if that function is not being executed. To get around this, a script command
can be set to execute when the function becomes active using the at_code_tag(); script
command. See the Timing Script Commands section for a description.

at _code_tag(" &&Test 1Her e&&") ;
wite val ("Fail Flag", "0");

In the above example the target is run until it gets to the address associated with the source
code that contains the text & & TestlHere& & . Once this address is reached, symbol
FailFlag is set equal to zero.

at _code_tag(" &&Test 23Her e&&") ;
wite str("PlayerBuffer”, "M chael Jordan");

In this case the string "Michael Jordan" is written to the buffer named "PlayerBuffer”. If
the buffer has insufficient space to hold this string, a bug that is difficult to identify would
resullt.

See the Global eTPU Channel variable Access section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

8.6.3.7 Verify Symbol Value Script Commands

These verify symbol value commands have a similar syntax to those commands described
in the Write Symbol Value Script Command section.

verify val ("exprString", "testQpString", "exprString");

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 85

8. Script Commands Files

The expression strings (exprString) can be a numerical constant or a simple symbolic
expression. Constants can be supplied as decimal signed integers, unsigned hexadecimal
numbers (prepended with *0x’), floating point numbers, or as a character (e.g. ‘A’). A
symboalic expression can be just a local/global symbol or a simple expression such as *V
(de-reference), &V (address of V), V[constant], V.member or V->member, where 'V isa
symbol of the appropriate type. The special @ channel variable (eTPU only) reference
syntax is also supported. If the types of the two sides differ, C type conversion rules are
followed before performing the test operation.

"testOpString” is a C test operator. Supported operators are ==, =, >, >= <, <=, & &, and
Il

If the result of the specified operation on the expressions is O, or false, a verification error

is generated.
at _code_t ag(" &&Test 1Her e&&") ;
verify_val ("Fail Flag", "==", "0");

In the example above, the target is run until it gets to the address associated with the
source code that contains the text & & Test1Here& & . Once this address is reached, the
value of symbol FailFlag is read and a verification error is generated if it does not equal
zero.

Two other forms of the verify symbol value script command are also supported that
directly take the numerical value to compare against as an argument.
verify val _int("exprString", "testOpString", U32 val);
verify val _fp("exprString"”, "testOpString", double val);

These forms allow the test value to be input as a constant expression, perhaps using a
series of macros, thereby providing more flexibility.

Separate script commands are available to compare and verify string values.

verify str("exprl, "testOp", "expr2");
verify str_ex("exprl", "testOp", "expr2", len);

The "exprl" and "expr2" parameters can either be a string constant, or can be of type char
array or char pointer. If strings are resolved from both parameters then they are compared
using the comparator specified in "testOp". If the outcome of this is true (non-zero), the
verification test passes; otherwise a failure is reported. Supported comparator operators
are ==, !=,> and <, >=and <=. Greater-than and less-than operations follow the same
rules as the strcmp() standard library function.

page 86, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.6.3.8

The extended version of this command, verify_str_ex(); also support a length specifier, len.
Think strncmp where the comparison acts only on the first "len” characters and the
remainder are ignored.

at _code_tag("""StringTest 1""");
verify str("sonmePtr"”, "==", "Hello World");

In the example above, the target is run until it gets to the address associated with the
source code that contains the text MStringTest1™. Once this address is reached, the
ASCII values are read until the terminating character, a byte of value zero, is reached.
The resulting string is compared, case-sensitively, with the string "Hello World". 1f the two
strings are not equal, a verification error is generated.

at _code_tag("""StringTest2/"");
verify_str_ex("sonmePtr", "<=", "Hello World", 5);

In the example above, the first five letters of two strings are compared and verification
error results unless somePtr is less than or equal to "Hello".

See the Global eTPU Channel variableA ccess section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

eTPU Engine Data Script Commands

These engine data script commands are only available on the eTPU2 products.
write_engi ne_data32(AddrOf fset, Val);
write_engi ne_data24(AddrOf fset, Val);
write_engi ne_datal6(AddrCOffset, Val);
write_engine_data8 (AddrOffset, Val);

verify_engi ne_dat a32(AddrOf fset, Val);
verify_engi ne_dat a24(Addr O f set, Val);
verify_engi ne_datal6(AddrOffset, Val);
verify_engi ne_data8 (AddrCOffset, Val);

These commands write engine data at address AddrOffset to value Val, or verify that the
data at address AddrOffset matches value Val. Note that 32-bit numbers must be located
on a double even address boundary (0, 4, 8, ...,) that 24-bit numbers must be located on a
single-odd boundary (1, 5, 9, ...), that 16-bit accesses must be located on even boundaries
(0,24,...) and that 8-bit numbers can be on any address boundary.

The address is formed by adding the engines base address (see ERBA.) with the address
formed in the by the Addroffset field. See the System Configuration Commands section

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 87

8. Script Commands Files

8.6.3.9

for information on how the Engine Relative Base Address (ECR.ERBA) field is
writtenwrite_engine_data32 (0x20, OXC6E2024A);

verify_engi ne_data32(0x20, OxC6E2024A);
verify_engi ne_dat a24(0x21, OxE2024A);

verify_engi ne_datal6(0x20, OxC6E2);
verify_engi ne_datal6(0x22, 0x024A);
verify_engi ne_data8 (0x20, 0xC6);
verify_engi ne_data8 (0x21, OxE2);
verify_engi ne_data8 (0x22, 0x02);
verify_engi ne_data8 (0x23, Ox4A);

In this example data at an address offset of 0x20 (relative to that eTPU’ s engine base
address) word is written with a 32-bit value OXC6E2024A (hex). The written value is then
verified as 32-, 24-, and 8-bit sizes.

Note the ETEC eTPU C Compiler automatically generates all needed engine variable
address data into the auto-defines file as a series of macros; no explicit user effort is
required.

Bitwise access to engine-space parameter RAM is supported with a set of matching
functions to those above.

wite_engine_bits32(AddrOfset, BitOfsetFronVsB, BitSize, Val);
wite_engine_bits24(AddrOfset, BitOfsetFronVsB, BitSize, Val);
wite_engine_bitsl6(AddrOfset, BitOfsetFronVsB, BitSize, Val);
wite_engine_bits8 (AddrOfset, BitOfsetFronVsB, BitSize, Val);

verify_engine_bits32(AddrOfset, BitOffsetFronVBB, BitSize, Val);
verify_engine_bits24(AddrOfset, BitOffset FronVBB, BitSize, Val);
verify_engine_bitsl6(AddrOfset, BitOffset FronVBB, BitSize, Val);
verify engine_bits8 (AddrOfset, BitOffsetFronVBB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The hit offset is from the MSB of the unit. For example, to set a _Booal bit that is in
the LSB of an 8-hit unit, the script command would be;

/1l set _Bool at LSB of 8-bit unit to 1
write_engine_bits8(0x10, 7, 1, 1);

eTPU Channel Data Script Commands

write_chan_data32(ChanNum AddrOffset, Val);
write_chan_data24(ChanNum AddrOffset, Val);
write_chan_datal6(ChanNum AddrOffset, Val);
write_chan_data8 (ChanNum AddrOffset, Val);

page 88, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

verify_chan_dat a32(ChanNum AddrOffset, Val);
verify_chan_dat a24(ChanNum AddrOf fset, Val);
verify_chan_datal6(ChanNum AddrOffset, Val);
verify_chan_data8 (ChanNum AddrOffset, Val);

These commands write channel ChanNum's data at address AddrOffset to value Val, or
verify that the data at the specified parameter RAM memory location is value Val. Note
that 32-bit numbers must be located on a double even address boundary (0, 4, §, ...,) that
24-bit numbers must be located on a single-odd boundary (1, 5, 9, ...), that 16-bit accesses
must be located on even boundaries (0,2/4,...) and that 8-bit numbers can be on any
address boundary.

#defi ne UART_CHAN 12

write_chan_data32 (UART_CHAN, 0x20, OxC6E2024A);
verify_chan_dat a32(UART_CHAN, 0x20, OxC6E2024A);
verify chan_dat a24(UART_CHAN, 0x21, OxE2024A);
verify chan_datal6(UART_CHAN, 0x20, OxC6E2);
verify chan_datal6(UART_CHAN, 0x22, 0x024A);
verify chan_data8 (UART_CHAN, 0x20, 0xC6);
verify chan_data8 (UART_CHAN, 0x21, OxE2);
verify chan_data8 (UART_CHAN, 0x22, 0x02);

verify chan_data8 (UART_CHAN, 0x23, 0x4A);

In this example channel 12’ s data at an address offset of 0x20 (relative to that channel's
base address) word is written with a 32-bit value 0XC6E2024A (hex). The written value is
then verified as 32-, 24-, and 8-hit sizes.

In the Byte Craft eTPU "C" Compiler the address offset can be generated using the
following #pragma in the code:

#pragma write h, (#define MY_ADDR_OFFSET :ETPUlocation(Pwm, MyFuncV ar));

The ETEC eTPU C Compiler automatically generates all needed address data into the
auto-defines file; no explicit user effort is required.

Bitwise access to parameter RAM is supported with a set of matching functions to those
above.

write_chan_bits32(ChanNum AddrOffset, BitOffsetFromvSB, BitSize, Val);
write_chan_bits24(ChanNum AddrOffset, BitOffsetFromvSB, BitSize, Val);
write_chan_bitsl6(ChanNum AddrOffset, BitOffsetFromvSB, BitSize, Val);
write_chan_bits8 (ChanNum AddrOffset, BitOffsetFronMSB, BitSize, Val);
verify chan_bits32(ChanNum AddrOffset, BitOffsetFronMSB, BitSize, Val);
verify_chan_bits24(ChanNum AddrOffset, BitOffsetFronMSB, BitSize, Val);
verify_chan_bitsl16(ChanNum AddrCOffset, BitOffsetFronMSB, BitSize, Val);
verify_chan_bits8 (ChanNum AddrCOffset, BitOffsetFromvSB, BitSize, Val);

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 89

8. Script Commands Files

8.6.3.10

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a_Booal bit that is in
the LSB of an 8-bit unit, the script command would be:

/'l set Bool at LSB of 8-bit unit to 1
write_chan_bits8(BOOL_CHAN, 0x10, 7, 1, 1);

With the eTPU Development Tool's enhanced scripting capabilities, it is possible to read
from channel frame memory into script variables, as a shortcut from using the
read_mem_u<>() script commands.

U32 x;

X = read_chan_data_u32(ChanNum Addr Of fset);
X = read_chan_data_u24(ChanNum Addr Of fset);
X = read_chan_data_ul6(ChanNum Addr O fset);
X = read_chan_data_u8(ChanNum AddrOfifset);

Depending upon the variable type, sign-extension is performed as necessary. The
alternative form for reads is:

read_chan_data_u32("x", ChanNum AddrCffset);

eTPU Global Data Write/Verify Commands

write_gl obal _data32(AddrOffset, Val);
write_gl obal _data24(AddrOffset, Val);
write_global _datal6(AddrOffset, Val);
write_global _data8 (AddrOffset, Val);

verify_gl obal _data32(AddrCOf fset, Val);
verify_gl obal _data24(Addr O fset, Val);
verify_gl obal _datal6(AddrOf fset, Val);
verify_gl obal _data8 (AddrOffset, Val);

These commands write global data at address AddrOffset to value Val, or verify that the
data at address AddrOffset matches value Val. Note that 32-bit numbers must be located
on a double even address boundary (0, 4, 8, ...,) that 24-bit numbers must be located on a
single-odd boundary (1, 5, 9, ...), that 16-bit accesses must be located on even boundaries
(0,24,...) and that 8-bit numbers can be on any address boundary.

The address is specified as an offset from the base of parameter RAM.

write_global data32 (0x20, OxC6E2024A);
verify gl obal _data32(0x20, OxC6E2024A);
verify_ gl obal _dat a24(0x21, OxE2024A);
verify_ gl obal _datal6(0x20, OxC6E2);
verify_ gl obal _datal6(0x22, 0x024A);

page 90, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

verify_gl obal _data8 (0x20, 0xC6)
verify_gl obal _data8 (0x21, OxE2)
verify_gl obal _data8 (0x22, 0x02);
verify_gl obal _data8 (0x23, O0x4A);

In this example data at an address offset of 0x20 (relative to that eTPU’ s engine base
address) word is written with a 32-bit value OXC6E2024A (hex). The written value is then
verified as 32-, 24-, and 8-bit sizes.

Note the ETEC eTPU C Compiler automatically generates all needed global variable
address data into the auto-defines file as a series of macraos; no explicit user effort is
required.

Bitwise access to engine-space parameter RAM is supported with a set of matching
functions to those above.

wite global bits32(AddrOfset, BitOffset FroniveB, BitSize, Val);
wite global bits24(AddrOfset, BitOfset FronivsB, BitSize, Val);
wite global bitsl6(AddrOfset, BitOffset FroniveB, BitSize, Val);
wite global bits8 (AddrOfset, BitOffset FroniveB, BitSize, Val);

verify global bits32(AddrOfset, BitOfsetFronVeB, BitSize, Val);
verify global bits24(AddrOfset, BitOfsetFronVeB, BitSize, Val);
verify global bitsl6(AddrOfset, BitOfsetFronVeB, BitSize, Val);
verify global bits8 (AddrOfset, BitOfsetFronVeB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a_Bool bit that is in
the LSB of an 8-bit unit, the script command would be:

/1 set _Bool at LSB of 8-bit unit to 1
write_global bits8(0x10, 7, 1, 1);

8.6.4 Pin and Node Modification and Verification

This section includes script commands for controlling, modifying, and verifying pins and
nodes. For all devices, input pins are controlled and their values are verified. V erification
can be over aregion of time (e.g., a 3 micro-second pulse should occur somewhere
between 100 and 200 microseconds) or at a specific snapshot in time (e.g., the pin must be
high at exactly the time when the script executes.) For analog devices such as the
MC33816, the various voltages and currents can be both controlled and verified.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 91

8. Script Commands Files

8.6.4.1

Pin Window Verification Commands

These command have the purpose of verifying the state of the pin (or node) within a time-
window. Within this time-window an entire pulse can be verified, a single transition can be
verified, or the absence of any transitions at all can be verified. The commands in this
section differ from the commands like, 'verify chan_output_pin();' (documented in section
Pin Verification and Control Script Commands) which verify the pin state state at a
snapshot in time and is therefore subject to 'false pass' scenarios in which the pin pulses
occur (and are not detected) between adjacent snapshots. These script commands
described in this section are not subject to this limitation because the pin state is verified
over an entire time-windw.

Script verify pulse();

The verify_pulse(); script command verifies that exactly one pulse (two transitions) occurs
on a pin (or node) within a time-window.

Parameter 'Node' specifies the Node or Pin type. See the Pin and Node Enumerated Type
section for a listing of the pin and node names. For the eTPU, only the CHAN_OUTPUT
node is valid.

Parameter 'Index’ is the index of the Node. For example, in the eTPU, this might signify
the channel number.

Parameters 'StartTime' and 'EndTime" specify the beginning and end of the time-window in
which the pulse must occur.

Parameter 'PulseType' can be either LO_HI_LO (a positive pulse) or HI_LO _HI (a
negative pulse.)

Parameters 'FirstTransitionTime' and 'SecondTransitionTime' specify the times of the two
transitions in micro-seconds.

Parameter 'Index’ is the index of the pin. For instance, in the eTPU there are 32-channels,
so aNode of 'CHAN_OUTPUT" and an index of ‘4’ refers the the eTPU's channel 4
output pin.
verify_ pul se(Node, |ndex, StartTine, PulseType,
FirstTransitionTi me, SecondTransitionTinme, EndTine);

The default 'tolerance’ is one system clock minus one nanosecond. This can be overridden
withthe 'set_verify region_tolerance(); script command described below.

page 92, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

This script command verifies the following aspects of this waveform. Note that the script
must execute after the pulse and as such verifies that the pin transitions that have already
occurred.

e Atthe'Start Time' the pinis at Statel (low in this diagram)

e The First Transition occurs within +/- the allowed tolerance

e The Second Transition occurs within +/- the allowed tolerance

e Exactly two transitions occur between the Start Time and the End Time

—
- 1 ==

2 = - Tolerance — -
[F|r5tTran5|t|qE1_:I'_|_|:ne | S:—::::an:l'_ranmtlﬂn Time]
| B it

ok Pt ety =
Start Time S R [_End Time _

- e e butot ey ;o
S, L .
-y o~

Script verify_transition();

The verify_transition(); script command verifies that exactly one transitions occurs on a pin
(or node) within a time-window.

Parameter 'Node' specifies the Node or Pin type. See the Pin and Node Enumerated Type
section for a listing of the pin and node names. For the eTPU, only the CHAN_OUTPUT
node is valid.

Parameter 'Index’ is the index of the Node. For example, in the eTPU, this might signify
the channel number.

Parameters 'StartTime' and 'EndTime' specify the beginning and end of the time-window in
which the transition must occur.

Parameter 'TransitionType' can be either RISING (a low to high transition) or FALLING
(a high to low transition.)

Parameters 'TransitionTime' specify the time of the transition in micro-seconds.

Parameter 'Index' is the index of the pin. For instance, in the eTPU there are 32-channels,
so aNode of 'CHAN_OUTPUT' and an index of '4' refers the the eTPU's channel 4
output pin.
verify transition(Node, |Index, StartTime, PulseType,
TransitionTi ne, EndTine);

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 93

8. Script Commands Files

The default 'tolerance’ is one system clock minus one nanosecond. This can be overridden
with the 'set_verify_region_tolerance(); script command described below.

This script command verifies the following aspects of this waveform. Note that the script
must execute after the transition and as such verifies that the pin transition have already
occurred.

e Atthe 'Start Time' the pin is either low (if verifying a rising edge) or high (if
specifying a falling edge.)

e The Transition occurs within +/- the allowed tolerance

e Exactly one transition occurs between the Start Time and the End Time

- Tolerance
Start Time Transition Time |
— i —

e, I | &

e -
e End Time
t-\.i'\--\.i'\- i —

e o
o P

Script verify _pin_region();

The verify_pin_region(); enhanced script command verifies the pin (or node) over a time-
window. The intent of the command is to verify that pin (or node) stays at a particular
state (high or low) over an entire time-window, and specifically that no pin transitions at
occur occur within the time-window. Note that there is no 'tolerance’ band.

Parameter 'Node' specifies the Node or Pin type. See the Pin and Node Enumerated Type
section for a listing of the pin and node names. For the eTPU, only the CHAN_OUTPUT
node is valid.

Parameter 'Index’ is the index of the Node. For example, in the eTPU, this might signify
the channel number.

Parameters 'StartTime' and 'EndTime" specify the beginning and end of the time-window in
which the pin must be at 'State’ (HI or LO).

Parameter 'State’, is the pin state in the time-window. Allowed values are HI and LO.
verify_pin_region(Node, Index, StartTinme, State, EndTi ne);

page 94, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc.

Reference Manual

8. Script Commands Files

Note that there is no implied tolerance. | suppose you could think of the tolerance as being
zero in the same way as | think of myself as being a billionaire with zero hillions of dollars.

e Between the Start Time and the Script Execution Time the pinis at State

e No transitions occur between the Start Time and the End Time

Start Time Enc_i Time

—3 Region £

Script set_verify region_tolerance();

set _verify region_tol erance(M croSecondsTol erance);

The set_verify_region_tolerance() script command sets the tolerance for the
verify_pulse(); and verify_transition(); script commands to 'MicroSecondsTolerance'.

Note that only this tolerance only applies to the time of the transitions. It does not apply to
either time-window boundaries (set by 'StartTime and EndTime'.) This does not apply to
the 'verify_pin_region(); script command because it does not have a pin-transition to which
this script command would apply.

Note that once set, this value applies for future script commands. However, if the
simulator is reset, then the tolerance is restored to the defaullt.

8.6.4.2 Pin Verification and Control Script Commands

Note that there are superior ‘region verification' scripts defined in section "Pin Region
Verification Commands" that you may want to use instead of the

‘verify _chan_output_pin();' documented in this section. The "verify _chan_output_pin();'
described below verifies the pin state state at a specific snapshot in time and is therefore
subject to 'false pass' scenarios in which the pin pulses occur (and are not detected)
between adjacent snapshots. The pin region verification script commands described in the
"Pin Region Verification Commands" section are not subject to this limitation because the
pin state is verified over an entire region.

eTPU input pins are normally controlled using test vector files. eTPU output pins
configured as outputs are normally controlled by the eTPU and are verified using master

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 95

8. Script Commands Files

8.6.4.3

behavior verification test files described in the Functional V erification section. Therefore,
these commands are not the primary method for controlling and verifying pin states.
Instead, these commands serve as a secondary capability for pin state control and
verification.

wri te_chan_i nput _pi n(ChanNum Val);
wri t e_chan_out put _pi n(ChanNum Val);
wite_tcrclk_pin(Vval);

verify_chan_out put _pi n(ChanNum Val);
verify_ouput _buffer_di sabl ed(ChanNunm ;
veri fy_ouput _buffer_enabl ed(ChanNum ;

These commands write either ChanNum's or the TCRCLK pin to value Val, verify that
ChanNum's pinis equal to Val, or verify that an output buffer is enabled or disabled.

#defi ne TEST_CHAN 4
write_chan_i nput _pi n(TEST_CHAN, 0);
write tcrclk_pin(1l);

In this example, channel 25's input pin is cleared to a low, and the TCRCLK pin is set high.

#defi ne TEST_CHAN 4

verify_chan_out put _pi n(TEST_CHAN, 1);
verify_ ouput _buffer_di sabl ed(TEST_CHAN) ;
wait _tinme(23.4);

verify_chan_out put _pi n(TEST_CHAN, 0);
verify_ouput _buffer_enabl ed(TEST_CHAN) ;

In this example channel 4's output pin is verified to have a falling transition within a 23.4-
micro-second window. It is also verifying that the pin is acting like an open-drain (active

low, passive high.)

Pin Transition Behavior Script Commands

The pin transition behavior capabilities allow the user to generate behavioral models of the
source code and to verify the source code against these saved behavioral models. The
script commands allow the user to both create pin transition behavioral model and automate
the verification process. Script command capabilities include the ability to save and load
pin transition behavior files, the ability to enable continuous verification against these
models and control tolerance of tests, and the ability to perform a complete verification of
all recorded behavior at once.

NEW : Enhanced behavior verification starting with release 5.00 provides much more
flexible and useable pin transition verification capabilities. With enhanced behavior

page 96, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

verification pin transition data is saved in a new format that is .csv (comma separated
value) format for compatibility with many other tools. However, the enhanced behavior
verification can read original style .bv files as well as the new .ebv files. Existing scripting
commands apply to original .bv files only where noted.

A more complete discussion of functional verification is given in the Functional V erification
chapter while a discussion of the specifics of pin transition behavioral modeling is given in
the Pin Transition Behavior V erification section. With the new enhanced behavior
verification the loaded master pin transition behavior data can be viewed in theWaveform
Window.

Enhanced Behavior Verification Script Commands

The test tolerance commands apply whether an old-style .bv file or new .ebv file is being
used as the master, however, the file manipulation script commands only apply to .ebv files.

create_ebehavior_file("filenane.ebv");

This command creates an enhanced behavior data file with the specified name. .ebv file
creation in a script command file has the following limitations:

- only one can be created
- cannot have the same file name as a running (under verification) .ebv file
- must occur at simulation time O before any wait_time() or at_time() script commands

- must occur after any external gate instantiation or after any vector file commands
add_ebehavi or _pi n("<pi n name>");

By default, when an enhanced behavior data file is created all pins will be saved. On the
eTPU, that consists of all 32 channel input, all 32 channel output pins, and the _tcrclk pin.
With this script command, the user can select just the pins desired to be saved to the .ebv
file, as this is generally just a small subset. The <pin name> argument is the name provided
in the .vector file through the "node" command, or is the default name of the pin (e.g.
_ch3.out is the channel 3 output pin on the eTPU). These script commands must
immediately proceed the create_ebehavior_file() script command. Once one
add_ebehavior_pin() script command is used, all pins of interest must be added with this
script command as the default of all is disabled.

cl ose_ebehavior _file();

Closes an enhanced behavior file that was created, saving off any remaining buffered data
to file. When using the created .ebv file, verification should be stopped at the same time as
when the .ebv file data stopped being recorded; see stop _ebehavior_file().

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 97

8. Script Commands Files

run_ebehavior_file("filenane.ebv");

This script command opens the specified enhanced behavior verification file. The loaded
file is often referred to as the "master file" or "gold file". By default, all pins found in the
.ebv file are enabled for verification. The script command has the same limitations as
create_ebehavior_file() script command, in that it must be called out at a simulation time of
0, etc. The default tolerance for all pin transition data being verified is two system clocks
and zero offset.

set _ebehavi or _pin_tol erance("<pin name>", <tine tol erance
node>, <tinme offset in us> <tinme tolerance in us>);

Sets the time tolerance allowed between the loaded master file and the current simulation
run for the specified pin. The default is to verify all the pins in the .ebv file (or .bv file if an
old-style behavior data file is loaded), but once one of these script commands is specified
then each pin to be verified must be specified with a set_ebehavior_pin_tolerance() script
command. The <pin name> argument is the name provided in the .vector file through the
"node" command, or is the default name of the pin. The only available time tolerance mode
currently available is "EBV_ABSOLUTE" - this means that pin transition times in the gold
file will be compared directly to the pin transition times that occur in the current simulation
run, taking into account the offset and tolerance. The time offset in microseconds is an
adjustment made to pin transition data in the gold file before comparing to the simulation pin
transition time. For example, if additional code in the initialization of an eTPU function has
caused it to start outputting a signal 2us later than previously, then a time offset of 2us can
be specified and a smaller time tolerance used in the comparison. The time offset can be
positive or negative. The time tolerance controls the maximum amount of difference
between the master/gold file pin transition time and the simulation pin transition time before
a behavior verification error is thrown. Behavior verification throws an error if the
absolute value of the time difference between a gold file pin transition time and the current
simulation pin transition time exceeds the specified tolerance. In general, these script
commands should immediately follow the run_ebehavior_file() script command, although
tolerances can be changed on the fly during simulation.

set _ebehavi or _gl obal _tol erance(<tinme tol erance node>, <tine
of fset in us> <time tolerance in us>);

This script command sets behavior verification tolerances for all pins of interest (default to
all, or those specified with set_ebehavior_pin_tolerance). The arguments - mode, time
offset and time tolerance are described in the set_ebehavior_pin_tolerance()
documentation.

di sabl e_ebehavi or _pi n("<pi n nane>");

page 98, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

Pins can be individually disabled from behavior verification with this script command. Note
that this command and set_ebehavior_pin_tolerance work sequentially when determining
the final set of pins of interest.

stop_ebehavior _file();

Used to end enhanced behavior verification and close the .ebv file being used as the
master/gold file. For the pins being verified, the gold file and current simulation must
match at this time or a behavior verification error will occur. The stop_behavior_file()
script command should occur at the same time as the close_ebehavior_file() command did
during enhanced behavior file creation.

Deprecated Behavior Verification Script Commands

read_behavior _file("filenane. bv");

This command loads the pin transition behavior file into the master pin transition behavior
buffer. This buffer forms a behavioral model of the pin transition behavior of the source
code. Only old-style .bv files can be read with this command.

verify_all _behavior();

This command verifies all recorded pin transition behavior against the master pin transition
behavior buffer. It generates a behavior verification error message and increments the
behavior failure count for each deviation from the behavioral model. Only old-style .bv
files can be verified with this command.

enabl e_conti nuous_behavi or () ;

This command enables continuous verification of pin transition behavior against the master
pin transition behavior buffer. During source code simulation each functional deviation
generates a behavior verification error message and causes the behavior verification failure
count to be incremented. This is useful for identifying the specific areas in which the
microcode behavior has changed. This command only applies to verification with old-style
.bv files. Enhanced behavior verification automatically runs in continuous mode.

di sabl e_conti nuous_behavi or ();

This command disables continuous verification of pin transition behavior against the master
pin transition behavior buffer. Note that pin transition behavior is still recorded in the pin
transition behavior buffer. This command only applies to verification with old-style .bv
files. Enhanced behavior verification automatically runs in continuous mode.

resize_pin_buffer(<NunmPi nTransitions>);
This command resizes the pin transition buffer. The default size is 100K transitions.
resi ze_pin_buffer(500000);

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 99

8. Script Commands Files

8.6.4.4

In this example the pin transition buffer size is changed such that it can hold 500K pin
transitions. This script command should only be executed at time zero.

Note that resizing the pin transition buffer can have serious affects on performance. For
instance it can cause a long delay when the eTPU Development Tool is reset. 1t can also
significantly slow down the logic analyzer redraw rate, such that the simulation speed is
bound by the redraw rate. Simulation speed reductions can be obviated by hiding or
minimizing the logic analyzer while the eTPU Development Tool runs, such that redraws
are not required, thereby improving simulation speed.

The effective pin transition buffer size can also be increased in other ways. Thisis
discussed in the Waveform Options Dialog Box section.

External Logic Commands

Boolean logic that is external to the eTPU is instantiated through the use of place_xyz();
script commands. Several types of external logic are available. The script command used
to instantiate each type of logic is listed below. See the External L ogic Smulation chapter
for a detailed description of the use of external Boolean logic gates.

- place_buffer(InPin, OutPin); Instantiates a buffer follower

- place_inverter(InPin, OutPin); Instantiates an inverter

- place_and_gate(In1Pin, In2Pin, OutPin); Instantiates an'AND' gate
- place_or_gate(In1Pin, In2Pin, OutPin); Instantiates an 'OR' gate

- place_xor_gate(In1Pin, In2Pin, OutPin); Instantiates an "XOR' gate
- place_nand_gate(In1Pin, In2Pin, OutPin); Instantiates a 'NAND' gate
- place_nor_gate(In1Pin, In2Pin, OutPin); Instantiates a 'NOR' gate

- place_nxor_gate(In1Pin, In2Pin, OutPin); Instantiates an 'INVERTING
XOR' gate

- remove_gate(Out); Removes the gate that drives channel 'Out'

The eTPU has up to two pins per channel which (depending on the specific device) may or
may not actually be connected together or to from outside of the microcontroller. Indexes
are defined as follows for the eTPU.

- 0to3l Channels 0 through 31 inputs, respectively
- 32t063 Channels 0 through 31 outputs, respectively
- 64 TCRCLK pin

page 100, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

pl ace_and_gate(5, 33, 64);

This example places an 'AND' gate with eTPU channels 5's input pin and eTPU channel
2's output pin as inputs and the TCRCLK pin as the outpuit.

Two eTPU Engine Configurations

Intwo eTPU configurations it is possible to place gates between the two eTPU’ s pins.
This is done using the following syntax.

- 12810 159 Other eTPU’ s channels 0 through 31 inputs
pins

- 160to 191 Other eTPU’ s channels 0 through 31 output
pins

- 192 Other eTPU’s TCRCLK pin

pl ace_xor _gate(160, 161, 5);
This example places a‘ XOR’ gate from eTPU B’s channel 0 and 1 output pins to eTPU
A’s channel 5 input pin.
Each of the place_xyz(); script command has an extended version that supports cross
target/core gates, as shown below.
- place_buffer_ex(InTarget, InPin, OutTarget, OutPin);
Instantiates a buffer follower
- place_inverter_ex(InTarget, InPin, OutTarget, OutPin);
Instantiates an inverter
- place_and_gate ex(InlTarget, In1Pin, In2Target, IN2Pin, OutTarget, OutPin);
Instantiates an 'AND' gate

- place_or_gate ex(InlTarget, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
Instantiates an 'OR' gate
- place_xor_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
Instantiates an "XOR' gate
- place_nand_gate ex(InlTarget, In1Pin, In2Target, In2Pin, OutTarget,
OutPin); Instantiates a'NAND' gate
- place_nor_gate ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
Instantiates a 'NOR' gate
- place_nxor_gate ex(InlTarget, In1Pin, InZTarget, In2Pin, OutTarget,
OutPin); Instantiates an 'INVERTING XOR' gate

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 101

8. Script Commands Files

8.6.5

8.6.5.1

The InTarget, In1Target, In2Target and OutTarget are the names of the target and are
expressed as strings such as "eTPU_A" or "Chl_CoreQ".

pl ace_or_gate_ex("eTPU_ A", 32+16, "Chl Core0", 10,
"eTPU A", 11);

In the above example an 'OR' gate is placed with its two inputs coming from the eTPU A's
channel 16 output pin and the MC33816's OA_1 pin. The output of the OR gate drives
eTPU A's channel 11's input pin.

Code

Code coverage, which is a critical aspect of structured testing, is done with the script
commands found in this section. It is also possible to arm the simulator to create a warning
when a specific (and presumably unexpected) section of code executes.

Code Coverage Script Commands

An important index of test suite completeness is the coverage percentage that a test suite
achieves. The eTPU Development Tool provides several script commands that aid in the
determination of coverage percentages. |n addition, script commands provide the capability
to verify that minimum coverage percentages have been achieved. A discussion of this
topic is found in the Code Coverage Analysis section. The following are the script
commands that provide these capabilities.

write coverage file("Report. Coverage");
verify file_coverage("MFile.uc",instPct,braPct);
verify_ all _coverage(instPct, braPct);

/'l eTPU-Only
verify file_coverage_ex("MFile.c",instPct, braPct, entPct);
verify_ all _coverage_ex(instPct, braPct, entPct);

The write_coverage _file(...) command generates a report file that lists the coverage
statistics. Statistics for individual files are listed as well as a cumulative file for the entire
loaded code.

The verify_file_coverage(...); and verify_file_coverage_ex(...); commands are used as
part of automation testing of a specific source file. The instPct and braPct parameters are
the minimum required branch and coverage percentages in order for the test to pass. The

page 102, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

entPct parameter is the minimum require entry percentage and is available only in the
eTPU simulator. These parameters are both expressed in floating point notation. The valid
range of coverage percentage is zero to 100. Note that for each branch instruction there
are two possible branch paths: the branch can either be taken or not taken. Therefore, in
order to achieve full branch coverage, each branch instruction must be encountered at least
twice and the branch must both be taken and not taken.

The verify_all_coverage(...); and verify_all_coverage_ex(...); are similar to the

verify file_coverage commands except these commands focus on the entire build rather
than specific source code modules. As such, they are less useful as a successful testing
strategy will focus on specific modules rather than on the entire build.

Note that this capability is also available directly from the file menu.
wait_tinme(100);
verify file_coverage("toggle.uc",92.5,66.5);

verify all _coverage(33.3,47.5);
write coverage file("record. Coverage");

The code in this example waits 100 microseconds and then verifies that at least 92.5
percent of the instructions associated with file toggle.uc have been executed and 66.5
percent of the possible branch paths associated with file toggle.uc have been traversed. In
addition, the example verifies that at least 33.3 percent of all instructions have been
executed and that 47.5 percent of all branch paths have been traversed. A complete report
of instruction and branch coverage is written to file record.

Inferred Event Vector Coverage

In eTPU applications it is often difficult to get complete (100%) event vector coverage.
There are two situations in difficulties may be encountered.

The first situation would be a valid and expected thread that is difficult to reproduce in a
simulation environment. For example when measuring the time at which a rising edge
occurs, it may be difficult to generate a test case for when the input pin is a zero, because
a thread handler will normally execute immediately such that the pin is still high.

But an event vector handling the case of a rising edge and a low pinis valid. For instance,
arising edge followed by a falling edge could occur before a thread executing in another
channel completes. Now the thread handling this rising edge executes with a low pin state.

It is therefore important to test this case, but how? The solution to achieving event vector
coverage for this case is to be clever in designing atest. For example, you might inject two
very short pulses into two channels running the same function. The channels will be

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 103

8. Script Commands Files

serviced sequentially, so if you keep the pulse width shorter than the thread length than the
second thread will execute with the input pin low.

The second situation in which it may be difficult to achieve complete event vector coverage
is when there are multiple event vectors that handle invalid cases. For instance, all
functions must handle links, even when a link is not part of the functions normal operation.
Such alink could occur if there was a bug in another function. Since there are number of
such invalid situations, they are typically grouped. As such, it may be justified to bundle
these together using the following script command. This command allows coverage of a
single event vector to count as coverage for other (inferred) event vectors.

i nfer_entry_coverage(FuncNum FronEntryl ndex, ToEntryl ndex);

Consider the following thread labeled, "invalid_flag0". This thread is never expected to
occur because the function clears flag0 at initialization, and flag0 is never set. So thus state
which handles a match or transition event in which the flag0 condition is set should never

execute.
¥ eTpui: Source: MeasurePeriod.c o] 3
else if{ { IsMatchBOrTransitionfEvent() && (flag@==1) }) ‘:J
luu5n: Bx409B8 Std Entry 13, Addr Bx26C, EnableMatches, p==#{ (relative U24 =) 8x8), diob=={ (relative U24 =) @x4) [A]
H HSR==8bABB Link==8 HMatchA/TranB==8 HMatchB/TranA==1 InputPin==8 ChanFlagi==X ChanFlagB==1
[eesE: oxu09B Std Entry 15, Addr 8x26C, EnableMatches, p=={ (relative U24 =) ©x8), diob==*{ (relative U24 =) Ox4) [@]
H HSR==0b008 Link==8 HatchA/TranB==8 HatchB/TranA==1 InputPin==1 ChanFlagi==X ChanFlag@==1
luuﬁn: Bx409B8 Std Entry 21, Addr Bx26C, EnableMatches, p==#{ (relative U24 =) 8x8), diob==#{ (relative U24 =) @x4) [A]
H HSR==8bABO Link==8 HMatchA/TranB==1 HMatchB/TranA==1 InputPin==8 ChanFlagi==X ChanFlagB==1
HoosE: oxuo9B Std Entry 23, Addr 8x26C, EnableMatches, p=={ (relative U24 =) 8x8), diob=*{ (relative U24 =) 8z4%) [8]

HSR==8b888 Link==8 HatchA/TranB==1 HatchB/TranA==1 InputPin==1 ChanFlag1==% ChanFlag@==1
{
invalid_flag@:
// Mark invalid flag® state to make observable
// for debug purposes ...

0 Clear(flagB);
B826C: BxFFFSFCF? chan clear ChannelFlagB;; FormatD3 [4]]
i BadStateFault = Bx334698; [|
[e270: exon633586 au P = B8x334698;; FormatA1 [4]
0 3
[Je274: BxAFFFFBS3 ram #({relative U24 =) BxD) = p_23_8; FormatB2 [8]

: OXAFFFFB83 seq end;; FormatBz [4] =
| | 4

. |

A test has been written to excersize this thread, and one can see that Event vector 15 has
been covered because the box on the left is white. But entries 13, 21, and 23 have not
been executed because the boxes on the left are still black. Since this is an invalid case
that actually should never execute, it is considered sufficient to infer coverage of entries 13,
21, and 23, as long as event vector 15 is covered. This is done using the following script
command.

infer_entry_coverage(MEASURE_PERI OD_FUNC, 15, 13);

infer_entry_coverage(MEASURE_PERI OD_FUNC, 15, 21);
infer_entry_coverage(MEASURE_PERI OD_FUNC, 15, 23);

Although there are a number of restrictions listed below that are enforced by the eTPU
Development Tool, the most important restriction is not enforced. Namely, that this
coverage by inference should only used for invalid cases where the thread exists purely as

page 104, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

Built In Test (BIT) and would not in normal operation be expected to execute. In fact,
when testing to the very highest software testing standards, 100 percent event vector
coverage should be achieved without the use of this script command.

- Execution of an event vector that is covered by inference results in a
verification failure

- The FromEntrylndex’ s thread and the ToEntryl ndexthread thread must be the
same.

Note: when developing eTPU code using the ETEC eTPU class programming paradigm,
unused/unexpected entries are often directed to the built-in global error handler. These
entries thus do not show up in the user source module, but rather are associated with the
global error handler source code (_global_error_handler.sta).

Cumulative Coverage

To produce the highest quality software it is imperative that testing cover 100% of
instructions and branches, and event vectors (for eTPU targets). Additionally, for quality
control purposes, this coverage should be proven using the verify _coverage scripts. But
most test suites consist of multiple tests, such that the coverage is achieved only after all
tests have run. The cumulative coverage scripts provide the ability to prove that the entire
test suite cumulatively has achieved 100% coverage.

The typical testing procedure might work as follows. A series of tests is run, and at the
end of each test the coverage data is stored. At the end of the very last test, the coverage
data from all previous tests are loaded such that the resulting coverage is an accumulation
of the coverage of all previous tests. Then the verify coverage script command is run
proving that all tests have passed. The following illustrates this process.

Run Test A

save_cunul ative_file_coverage("MFunc.c", "TestA CoverageData");
Run Test B.

save_cunul ative_file_coverage("MFunc.c", "TestB. CoverageData");
Run Test M

save_cunul ative_file_coverage("MFunc.c", "TestM CoverageData");
Run Test N

| oad_cunul ative_fil e_coverage("MFunc.c", "TestA CoverageData");

| oad_cunul ative_fil e_coverage("M/Func.c", "TestB. CoverageData");

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 105

8. Script Commands Files

| oad_cunul ative_file_coverage("MFunc.c", "TestM CoverageData");
verify_file_coverage("MFunc.c ", 100, 100, 100);

Code Coverage Annotated Listing Files

It can be useful to generate reports files that provide coverage information at the source
and opcode level. The write_coverage _listing_file() has been provided to generate such
reports.

write coverage listing file("Mdul eNane.c",
"ListingFileNane", enum COVERAGE LI STI NG_OPTI ONS) ;

For a specified module (source file name), a code coverage annotated listing file with the
name specified by the "ListingFileName" argument is created. Any previous file of the
same name is overwritten. The output form is very much like a regular listing file as
generated by the ETEC compiler, with the additions of

- source file line number preprended to each line

- opcode/disassembly lines include a coverage field that indicates to what level the opcode
has been executed by tests (none, full execution, true branch, false branch, inferred
coverage)

The COVERAGE_LISTING_OPTIONS argument supports two mode options

ALL _LINES : Qutput all lines of the specified nodul e/source
file with listing information.

NON_COVERED ONLY_LINES : CQutput only line associated with
opcodes not fully executed.

Independent flags that modify the modes listed above may be added to the
COVERAGE_LISTING_OPTIONS argument. Currently one modifier flag is supported:

FILTER ETPU ENTRIES : lgnore entry table code for
di sassenbly purposes, and consider it fully covered so it
is ignored in non-covered only node.

Example:

write coverage_listing file("CoverageListing.c", "..\\tenp\
\CL_100percent _nc_filter.lst",
NON_COVERED ONLY_LI NES + FILTER _ETPU _ENTRI ES);

page 106, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.6.5.2 Code Warning Script Commands

A warning can be generated when the first opcode following a code label is executed.
Note that the warning is generated on execution of the code, not when the program counter
gets to the code. This means that the warning is executed a bit later than might be
expected.

set _code_| abel _warni ng("PWF_Error");
In the above script command a warning is assigned to the code label 'PWMF_Error'. If
the code following this label is executed a warning is generated.
This can be used (say) when code that is not expected to execute actually executes. One
example of thisisin the eTPU

<...snip...>
| F o o e e e o e

e cmmeemmemmmemmmeeammeemmsemeeammeemmeemmeemm e .. mm———aa
________________ * [
el se
{
PWVF_Error:
Cl ear Al |l Lat ches();
}
}

Note that a similar result can also be achieved using a Print action tag described more fully
in the 'Print Action Tag' section. This capability is illustrated below.

<...snip...>
% o e e e e e e e e e e e eeeao

ClearAll Latches(); // @\SH@rint("The 'dangling
el se' thread is executing");
}
}

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 107

8. Script Commands Files

8.6.6 Files

These script commands control creation of files. For instance, trace data can be piped to an
output file and 'data dump' files can be generated from regions of data or code memory.

8.6.6.1 Trace Buffer and Files

Overview

Trace files have two primary purposes; they are useful for generation of a file that appears
identical to the trace window but can be loaded into a file viewer to access advanced
search capabilities, and they are used to load into a post-processing facility for advanced
trace analyses. The various capabilities and settings are focused on these two purposes.

Generating Viewable Files

Viewable trace files can be generated by selecting the Trace buffer, Save As ... submenu
from the Files menu. Note that the trace buffer is about five times larger than what
appears in the trace window. A viewable trace file can also be generated using script
commands. See the Trace Script Commands section.

Because viewable files are appropriate only for things like advanced search capabilities, no
error or warning is generated if the underlying trace buffer has overflowed.

Generating Parseable Files

Parseable files can be generated only by using the trace commands described in the Trace
Script Commands section. To ensure generation of deterministic parseable trace files,
these files can be generated only if the selected trace events are enabled within the eTPU
Development Tool and the trace buffer has not overflowed when generating a trace file
from the buffer.

For large trace files it is best to use the streaming capability, thereby avoiding possible trace
buffer overflow issues.

Parsing the Trace File

All post processing on the trace files should be done on files generated using the
"parseable” option.

page 108, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.6.6.2

Although the file format is intended to be self-explanatory, it is purposely left
undocumented to retain flexibility for future enhancements. Instead, it is recommended
that those wishing to post-process the trace files use the trace file parse source code
available from ASH WARE. The public methods in the TraceParser class are
documented and will remain stable for future releases.

Post processing of the trace file is an excellent way to analyze important performance
indices. For instance, eTPU latency calculations such as minimum, maximum, average,
and standard deviation would be one excellent application.

File Script Commands

These commands support loading and saving files via script commands.

dunmp_file(startAddress, stopAddress, enum ADDR_SPACE,
"filenanme. dunp”, enum FI LE_TYPE,
enum DUMP_FI LE_OPTI ONS) ;

This command creates the file filename.dump of type FILE _TY PE, using the options
specified by DUMP_FILE OPTIONS. The file is created from the image located
between startA ddress and stopAddress, out of the address space ADDR_SPACE.

dunp_file(0, Oxffff, CPU32_SUPV_DATA SPACE, "Dunp.S19",
SRECORD, DUMP_FI LE_DEFAULT) ;

#define MY_OPTIONS NO ADDR + NO SYMBOLS

dunp_file(0, Oxffff, CPU32_SUPV_CODE_SPACE, "Dunp.dat",
DI'S_ ASM MY_OPTI ONS) ;

The downside of the dump_file command is that it does a one-time dump of the entire file
overwriting any previous file. An alternative to this is to continuously write the trace data
to afile asit is generated. See the Trace Script Commands section.

This example creates a Motorola SRECORD file, Dump.S19, from the first 64K of the
CPU32 s supervisor data space. The default options are used for this dump. An assembly
file, Dump.dat, is also created from the first 64K of supervisor code space and both
address mode and symbolic information are excluded. Assuming the target processor is a
CPU32, the generated assembly code is for the CPU32.

verify files("fileNanel.dat", "fileNanme2.dat",
enum VERI FY_FI LES_RESULT) ;

This script command verifies two file named fileNamel.dat and fileName2.dat. 1n addition
to checking for matching or mismatching, this script command also can verify non-

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 109

8. Script Commands Files

8.6.6.3

existence of either file or both files. Expected results are specified with the
VERIFY_FILES RESULT enumeration.

verify files("new dat", "gold.dat", FILE1_M SSING);
dunp_file(0, 0x28, ETPU DATA SPACE, "new. dat", | MAGE,
DATAS8) ;

verify files("new dat", "gold.dat", FILESMATCH);

In the above example a new file named "new.dat" is generated, and is compared against
file "gold.dat" to make sure that they match. By first verifying that file "new.dat" does not
exist the fact that file "new.dat" is actually generated by the dump command is also
verified.

dunp_file(0, 0x28, ETPU DATA SPACE, "new. dat", |MAGE, DATAS8);
verify files("new dat", "gold.dat", FILES M SVATCH);
wait_tinme(100);
dunp_file(0, 0x28, ETPU DATA SPACE, "new. dat", | MAGE,

DATA8 | FI LE_APPEND);
verify files("new dat", "gold.dat", FILES MATCH);

The above example illustrates use of the FILE_APPEND options to store multiple data
snapshoats into a single file. By first verifying that the files mismatch, then that the files
match, it proves that it is this verification process that actually generated the passing
results.

Related Topics:
Trace Script Commands

CSV Data Import/Export

read_csv_1d("<data_1ld_array_var>", "<csv format file>",
SCRI PT_CSV_CONTROL) ;
read_csv_2d("<data_2d_array_var>", "<csv format file>",

SCRI PT_CSV_CONTROL) ;

The above script commands read a data file in CSV format into script array variables. The
one-dimensional version will read the first column of a CSV file into the specified array,
while the two-dimensional version will read the entire CSV file into the specified script
array variable. Any necessary type conversions will be performed. IMPORTANT
NOTE: the script array variable dimensions will be enlarged IF NEEDED to hold the data.

S32 a[20];
F64 b[1][1];
S32 a_len;
S32 b_len[2];

page 110, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

read_csv_1d("a", "csv_data file_10rows.csv",
CSV_READ FIRST LINE); // first line of file is data, not
header

a_len = read_dimlength("a", 0); // a_len gets value of 20
read_csv_2d("b", "csv_data file_15rows_3cols.csv",

CSV_I GNORE_FIRST_LINE); // first line in file is header;

i gnore

b_Ien[0] read_dimlength("b", 0); // returns 15

b _len[1] read_dimlength("b", 1); // returns 3

Since the read of a CSV file may change the dimensions of an array, there is a script
command to retrieve the length of a script array variable dimension.

read_di m | ength("<array_var>", <di nension index>);
Array data can also be exported to a CSV-format file.

write_csv("<source array var>", "<output file>", "<header
text>");

The source array variable can be one or two dimensional. It's entire contents are written
to the specified file in CSV format. If the header text parameter is an empty string, no
header line is written to the file and data starts on the first line, otherwise the header text is
written out as the first line.

write_csv("capture", "pin_data.csv", "TIME, PIN STATE");

For enhanced flexibility, data can be appended to existing files. The file must exist before
executing the command, whose format is as follows:

append_csv("<source var>", "<output file>");

The source variable may be non-array or one dimensional (appends one line), or two
dimensional, in which case the number lines appended is equal to the number of rows in the
array variable.

8.6.7 System Script Commands

system commandSt ri ng) ;
verify system(commandString, returnVal);

These commands invoke the operating system command processor to execute an operating
system command, batch file, or other program named by the string, <commandString>.

The first command, system, ignores the return value, while the second command,

verify _system, verifies that the value returned is equal to the expected value, returnval. |If
the returned value is not equal to the expected value than a script verification error is
generated.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 111

8. Script Commands Files

system("copy c:\\tenp\\report.txt check.txt");
verify_system("fc check.txt expected.txt", 0);

In this example the operating system is invoked to generate a file named check.txt from a
file named report.txt. The file check.txt is then compared to file expected.txt using the fc
utility. A script verification error is generated if the files do not match.

exit();

This shuts down the eTPU Development Tool and sets the error level to non-zero if any
verification tests failed. If all tests pass, the error level is set to zero. The error level can
be examined by a batch file that launched the eTPU Development Tool, thereby supported
automated testing. See the Regression Testing section for a detailed explanation of and
examples showing how this command can be used as part of an automated test suite.

print(messageString);
print_pass(nessageString);
/1 NOTE: does not affect exit code in auto-run node

These commands are geared toward promoting camaraderie between coworkers. These
commands cause a dialog box to open that contains the string, <messageString>. The truly
devious practical joker will find a way to combine this script command with sound effects.

print("Ht any key to fuse all P-wells "
"with all N-substrates in your target silicon");

In the example above, your coworker at the adjacent lab bench pauses for a certain
amount of healthy introspection. A well-placed and timed bzilch-chord can significantly
enhance its effect.

print("\"TEST RESULTS:\n"
" A=%l\ n"
B=%\ n"
C%\",A B C);

The print_pass() print command is identical to the print() script command except

print_pass() leaves the error level of the simulation unaffected. The print() script
command always sets the simulation error level to 1.

The print command supports using __ FILE___ as an argument that gets replaced by the
name (and absolute path) of the file in which it is found.

print("\"% : TEST COWPLETE\", __FILE_ _"); // outputs
"<filename> : TEST COWPLETE"

In the case of print_sfn(), the error level of the simulation run is unaffected. These script
commands are available to be used via action tags as well.

page 112, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

Formatted symbolic information can be generated using as described in the "String within a
String” section. See the example shown above.

verify_version_ex(Tool, verH , verLo, verBuil dChar,
messageString);

This command generates a warning message if the Tool version is earlier than that
specified by <verHi>, <verLo> and <verBuildChar>. Tool can be either
TOOL_DEV_TOOL or TOOL_ETEC. If an earlier than required version of the eTPU
Development Toal is actually running then a dialog appears that contains the text specified
by <messageString>.
verify_ version_ex(TOOL_DEV_TOO., 0,82,'A,
"This deno application that illustrates GLOBAL | NI TI ALI ZATI O\\ n"
"wWill not work in this early version of the eTPU Devel oprment
Tool .");

In the example above the message, "this demo ..." appears if run on a eTPU Development
Tool version earlier than version 3.50, build B. We recommend this script command be
placed first in the script file so that it gets processed before any parse errors or
unsupported command errors can occur.

Note that the following script command is deprecated in the eTPU Development Tool!
However, if it is run in the eTPU Development Toal it checks the equivalent Mtdt V ersion.
This prevents false-passes because the eTPU Development Tool version are restarted at
version 1.00.

verify version(verH , verlLo, verBuildChar, nmessageString);

This command generates a warning message if the eTPU Development Tool version is
earlier than that specified by <verHi>, <verLo> and <verBuildChar>. If an earlier than
required version of the eTPU Development Todl is actually running then a dialog appears
that contains the text specified by <messageString>.
verify version(3,50,'B,
"This deno application that illustrates GLOBAL | NI TI ALI ZATI O\\ n"
"wWill not work in this early version of the eTPU Devel oprment
Tool .");

In the example above the message, "this demo ..." appears if run on a eTPU Development
Tool version earlier than version 3.50, build B. We recommend this script command be
placed first in the script file so that it gets processed before any parse errors or
unsupported command errors can occur.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 113

8. Script Commands Files

8.6.8

Trace Script Commands
print_to_trace(Message)

This command prints the string ‘Message' to the Trace Window assuming that the last
executed channel at the time the script was executed is enabled in the Trace Options ...
dialog box (or to a current trace stream if so configured).

print_to_trace_exl(ChanNum Message)

This command prints the string Message to the Trace Window assuming 'ChanNum' is
enabled in the Trace Options ... dialog box (or to a current trace stream if so configured).
Note that this works only in the eTPU.

start_trace_streamex("Fil eNane. Trace", enum TRACE EVENT_OPTI ONS,
enum TRACE _FI LE_OPTI ONS, enum BASE_TI Mg,
U32 numirailingDigits, int isZeroTraceTine);

start_trace_streamex("Fi |l eNane. Trace", enum TRACE EVENT_OPTI ONS,
enum TRACE _FI LE_OPTI ONS, enum BASE_TI Mg,
U32 numirailingDigits, int isZeroTraceTine);

These commands saves the target’ s trace buffer to file FileName.trace with the options set
by TRACE EVENT_OPTIONS.,, TRACE FILE OPTION, BASE TIME OPTIONS,
and numTrailingDigits.

The numTrailingDigits field defines the number of digits to display after the decimal point.
For example, if you specify numTrailingDigits to be 2 and the time options to use micro-
seconds then the representation of 1.333 microseconds is '1.33.

The 'isZeroTraceTime' parameter specifies if the time reference used by the tracing
capability gets referenced to the time when the 'start_trace_stream’ script command is
executed. For instance, if the start_trace_stream were to be issued at time 100
microseconds and 22 microseconds an 'Pin Transition' occurred, then the time of the 'Pin
Transition' event time would be listed at 122 microseconds if 'isZeroTraceTime' isa'0.'
Conversely, if 'isZeroTraceTime isa'1' the time would be listed as 22 microseconds.

Note that the start_trace stream_ex() and the start_trace stream() script commands take
identical parameters. The difference between the two command is that

start_trace _stream_ex() allows OPCODE_FETCH to be disabled while MEM_READ is
enabled. Inthe legacy start_trace stream() if MEM_READ is enabled then the
OPCODE_FETCH is also enabled.

page 114, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

Note that this command has been improved starting with Version 4.8. The enabled
events specified by the script command all get logged to the trace file, even if not enabled
inthe GUI. Any and all events specified in the script command get sent to the trace log
file. Previously, when saving in 'VIEWABLE' mode, any and all events in displayed in
the trace window were sent to the log file, and the parameters passed in the script file
were ignored. This VIEWABLE mode behavior of previous versions was, well, goofy.
And the limitation of not being able to continuously log events to the trace file if those
events were not enabled in the GUI was beyond goofy ... it was flat out weak.

end_trace_stream();

This command stops tracing to a stream and closes the file so that it can be opened by a
text viewer that requires write permission on the file.
at _ti me(400);
start_trace_strean("Stream Trace", ALL-D VIDER - MEM READ,
PARSEABLE, US, 3, 1);

prl nt to trace("**\ n"

"xxxxx START OF TEST \n"

"**\ n") .
)

wai t_tinme(1500);
end_trace_strean();

The above example begins streaming all trace data except dividers and memory reads to a
trace file named "Stream.Trace". Time is recorded in micro-seconds with three trailing
digits following the period such that the least significant digit represents nano-seconds. The
isResetTime field is set to "true" so that script execution time of 400 micro-seconds is
subtracted from the time and the clocks field.

Formatted symbolic information can be generated using as described in the "String within a
String” section. The following is an example of this format.

print_to_trace("\"TEST RESULTS:\ n"
' A=%\ n"
B=%d\ n"
C=%\",A B, C");

In the above example, variables A, B, and C must be in scope at the time the script
command is executed.

However, in it is possible to print eTPU Channel Variables using the '@<ChanNum>'
syntax as shown below.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 115

8. Script Commands Files

The print_to_trace command supportsusing__ FILE __and/or __ LINE___ as arguments
that get replaced by the name (and absolute path) of the file in which it is found, or the file
line number of the text.

print_to trace("\"%s(%) : TEST COWPLETE\", _ FILE _,
__LINE__"); // outputs "<filename>(<linenunm>) : TEST
COVPLETE"

Save Trace Buffer Script Command (DEPRECATED!)
save_trace_buffer("Fil eNane.trace", enum TRACE _EVENT_OPTI ONS,

enum TRACE FI LE OPTI ON, enum BASE_TI ME,
U32 nunirailingDigits);

WARNING: this save_trace_buffer() script command is deprecated.

WARNING: This command won't work if the '-NoEnvFile' is used as part of a command
line because the default behavior is for traces to NOT be saved to a trace buffer.

8.6.9 Math Script Commands

Exponential Approach

Say an R/L circuit starts at -0.5 amps and exponentially approaches 1.5 amps. How long
does it take to cross 1.4 amps? This script command calculates the amount of time for this

threshold to be reached.
#defi ne | NDUCTOR_M CRO HENRI ES 2000.0
#def i ne LOAD_ OHVS 10.0
F64 time_constant_us = | NDUCTOR_M CRO HENRI ES / LOAD_OHVS
F64 start_anps = -0.500;
F64 threshold anps = 1.3;

F64 term nal _anps = 1.5;

F64 crossover _tine_us;

/'l The crossover tinme gets set to 460 nicro-seconds.
crossover _time_us = exponential approach(start_anps,
t hreshol d_anps, term nal _anps, tine_constant _us);

page 116, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

Script 'exponential_approach();'

=]
=1

15 15 15

Currant (Amps)

1000 1200 1400

Time (micro-seconds)

Natural Log

F64 result;
result = natural |og(val);

This command returns the natural log of number 'Val'.

/1 Calculate the (negative) nunmber of tine constants
/1 for a 90% decay. Note: returns -2.3.

F64 neg_tine_constants;

neg_time_constants = natural _log(0.1);

8.6.10 Simulation Configuration

enabl e_target _interrupts(lnterruptSourceTarget)

This command enables cross-target interrupts in a multi-target environment that support
such behavior. By default such interrupts are disabled from invoking interrupt handlers in

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 117

8. Script Commands Files

8.7

the destination target, but do signal via interrupt registers. 1n a System DevTool simulation,
this is intended to allow eTPU interrupts (channel and global exception) to activate interrupt
handlers in the simulated Host target.

enabl e_target _interrupts("eTPU A"); // enable ISRs from
eTPU A (run in Host script environment)

For eTPU targets, by default interrupts are mapped to the Host vector table as follows:
eTPU-A : channel interrupts 0-31, global exception 32
eTPU-B : channel interrupts 64-95, global exception 96
eTPU-C : channel interrupts 128-159, global exception 160

Note: this script command is currently only available on the Host target.

Automatic and Pre-Defined Define Directives

ASH WARE Specific Script

It is often desirable to conditionally parse (or not parse) portions of a script command file
depending on whether or not it is in the ASH WARE development environment. The
following #define is automatically prepended when parsing any script file, and therefore
can be used to control the aforementioned conditional parsing.

#define _ASH WARE SCRIPT_ 1
This #define is prepended prior to parsing every script file.

#i f ndef _ASH WARE_SCRI PT_
voi d RunEngi neDeno()

{
#endi f

The code above causes the function declaration to be ignored by the ASH WARE parser.
T ool-Specific Scripts

With the introduction of the new Development Tool in some cases it may be helpful to have
tool-specific behavior. This is achieved using the 'Development Tool' define as follows.

#define _ASH WARE_DEV_TOOL_ 1

page 118, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

This #define is prepended prior to parsing every script file in the 'Development Tool' but
NOT in the legacy 'Mtdt' toal.

When running as a hardware debugger (rather than a simulator) the following define allows
differentiation between the simulator and debugger.

#define _ASH WARE_DEV_TOOL_ 1
The following is an example usage of simulator/debugger specific scripting.

#i fdef _ASH WARE HARDWARE DEBUGGER

/1l These scripts will execute if it is a debugger
verify spi_datal6(_AWB16DA | MM StartPins_, 0x08);
verify spi_datal6(_AWB16DA | MM StartPins45 , 0x00);
#el se

/1 These scripts will execute if it is a simulator
verify spi_datal6(_AWB16DA | MM StartPins_, 0x00);
verify spi_datal6(_AWB16DA | MM StartPins45 , 0x01);
#endi f

Target-Specific Scripts

It is often desirable to have a single script commands file run on multiple targets. In this
case target-dependent behavior is accomplished using the target define. The target define
is generated using the target name as follows.

#defi ne _ASH WARE_<Tar get Name>_ 1

TargetName is defined in the build batch file and is found in a pull-down menu in the upper
right hand side of the eTPU Development Tool.

#i fdef _ASH WARE DBG32_
set _crystal _frequency(32768);
#endi f /1 _ASH WARE DBG32_

Note the the target name as embedded in the macro name always has all letters
capitalized. In this example the set_crystal_frequency(); script command executes only if
the script command is running under a target named DBG32.

The build define is also injected as a macro into the script environment.

#def i ne <Buil dDefine> 1
A script file shared among projects testing on different targets can then have target-
specific sections:

#i f def MPC5554 B

/1 do eTPULl stuff
#elif defined(MPC5674F_2)

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 119

8. Script Commands Files

/'l do eTPU2 stuff
#endi f

Determining the Tool Versions

The compiler version and simulator version are available as the system macros
__ COMPILER _VERSION__and __ MTDT_VERSION__ . These resolve as strings and
are available in script commands such as print_to_trace() and verify_trace(). See below.

print_to_trace("Using conpiler version % and sinulator version %",
__COWPI LER_VERSION__, __MIDT_VERSI ON__);
verify str("__MIDT_VERSION__", "==", "TPU Sinmul ator, Version 3.50 Build D");

These can also be used in @A SH@print action commands that are embedded in the
source code files, as follows.

/1 @\SH@rint_to_trace("Conpiler version is %\n", __ COWILER VERSION__);

Determining the Auto-Run Mode

The eTPU Development Toal is often launched as part of an automated test suite. Under
these conditions the test starts running and executes to completion (assuming no failures)
with no user intervention. The following is automatically defined when the eTPU
Development Toal is launched in auto-run mode.

_ASH_WARE_AUTO_RUN_

The following is typically found at the end of a script file used as part of an automated test
suite.

#i fdef _ASH WARE_AUTO RUN _
exit();

#el se

print("All tests are done!!");
#endi f // _ASH WARE_AUTO_RUN_

Determining the Interrupt Number
Channel interrupts for channels 0...15 are numbered O...15.
ISR script commands execute in response to an enabled and asserted interrupt as

described in the 1SR Script Commands Files section. On the eTPU each of these script
commands has a unique number, as follows.

- Channel interrupts for channels 0...31 are numbered 0...31.
- Datainterrupts for channels 0...31 are numbered 31...63.

- The global exception interrupt number is 64.

The ‘define’ is formed using the target name, as follows.

page 120, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

ASH WARE<Tar get Nane>_| SR_

When running under a target named, "eTPU_A", the I SR script loaded for channel 25's
channel interrupt is automatically defined as follows.
#define _ASH WARE eTPU A ISR 25

If this same script command file is also loaded for the DATA interrupt, then the automatic
define would be as follows.

#define _ASH WARE_ETPU ISR 57
An example of how this can be used is as follows

#define THIS ISR NUM (_ASH WARE ETPU | SR)

#define THIS_CHAN NUM (_ASH WARE ETPU | SR_ & Ox1F)
clear_this_intr();

/!l Wite a signature to indicate that this ISR ran

wite chan_data24 (TH S_CHAN NUM O0xD, OxFD12A4 + TH S_| SR NUM;

Passing Defines from the Command Line

When launching the eTPU Development Todl it is often useful to pass #define directives to
the primary script commands file from the command line. This is explained in detail in the
Regression Testing section.

The following command line is found in the batch files used as part of the automated testing
of the eTPU simulator

echo Running ALUCP B6 Tests ...
eTpuSi nul at or. exe - pAut oRun. ETpuSysSi nProj ect -d_TEST_ALUOP_B6_
if O&ERRORLEVEL% NEQ O (goto errors)

eT PU Target Pre-Defined Define Directives

The following define directives are automatically loaded and available for the eTPU
Simulation target.

#define ETPUL MPC5554 B 1
#define ETPU2 MPC5554 B 2

8.8 Listing of Script Enumerated Data Types

This section describes the pre-defined enumerated types used by various script commands.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 121

8. Script Commands Files

8.8.1

8.8.2

8.8.3

Script FILE_TYPE Enumerated Data Type

The following enumerated data type is used to specify the file type used in various script
commands. This specifies a dis-assembly, S Record, Intel Hexadecimal, or C data
structure file type.

enum FI LE_TYPE {DIS_ASM SRECORD, |HEX, | NAGE, C_STRUCT, }

Script VERIFY_FILES Enumerated Data Type

The following enumerated data type is used to specify the expected results of a file
comparison.

enum VERI FY_FI LES_RESULT {
FI LES_MATCH, FILES_M SMATCH,
FILE1L_M SSI NG FILE2_M SSI NG, BOTH_FI LES_M SSI NG

Script FILE_OPTIONS Enumerated Data Type

The following enumerated data type is used to specify the options when dumping data to a
file. The available options depend on the type of file being dumped.

enum DUVP_FI LE_CPTI ONS {

/1 Disables listing of address information in dis-assenbly
/1 and "C' data structure files:
NO_ADDR,

/1 Disables listing of hexadeci mal dunp, addressing node,
/1 and synbol data

[/ in dis-assenbly files:

NO_HEX, NO _ADDR_MODE, NO_SYMBOLS,

/1 Adds a #pragma format "val" to each dis-assenbly |ine

/1 This is helpful for non-determnistic assenbly | anguages
/1 to cause the assenbler to generate a determnistic opcode
YES_PRAGVA,

/1 Adds a blank |ine between assenbly |ines

/1 Handy for finding opcode boundaries in parallel instr sets
/1 such as eTPU where a single opcode’ s dis-assenbly

/1 can span nultiple |ines.

page 122, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

YES BLANK_LI NES,

/1 Selects the endian ordering for inage
/'l and "C' data structure files:
ENDI AN_VBB_LSB, ENDI AN LSB MSB,

/1 Selects data size in image and "C' data structure files:
DATA8, DATA16, DATA32,

/] Selects decimal data instead of hexadeci mal
/1l for "C' data structure files:
QUT_DEC,

/1 Append to file if it already exists

/] (default is to overwite any existing file)
/] Available only for CStruct and Image files
FI LE_APPEND,

/'l Specifies default options:
DUVP_FI LE_DEFAULT,

}s

8.8.4 Trace Options Enumerated Data Types

The following enumerated data type is used to specify the event options when saving a
trace buffer to afile.

enum TRACE_EVENT_OPTI ONS {

/1 Al'l targets

STEP, EXCEPTI ON, OPCODE_FETCH, MEM READ, MEM WRI TE,
Dl VI DER, PRI NT, ERROR,

/1 eTPU Target only

TPU_TI ME_SLOT, TPU_NOP, TPU_PI N_TOGGLE,
TPU_STATE_END, TPU_MATCH_CAPTURE,

TPU_TCR1_COUNTER, TPU_TCR2_COUNTER,

/1 NOTE: Sanme as (TPU_TCR1_COUNTER| TPU_TCR2_COUNTER)
TPU_TCR_COUNTER,

/1 Al'l options
ALL,

}

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 123

8. Script Commands Files

8.8.5

8.8.6

Note the 'OPCODE_FETCH' option has been added to the eTPU Development Tool in
version 2.3 and can be used with the start_trace_stream_ex() script command. It was
added because it is generally desired to see memory reads, while opcode fetches are
generally not desired and are so numerous as to get in the way. Note that when using
the start_trace_stream() script command, the OPCODE_FETCH is also enabled by
MEM_READ.

The following enumerated data type is used to specify the file format options when saving
atrace buffer to afile.

enum TRACE_FI LE_OPTI ONS {

VI EWABLE, // This format is optimnmized for view ng
PARSEABLE, // This format is optimzed for parsing
}

Code Coverage Listing Options Enumerated Data Type

The following enumerated data type is used to specify the listing file options when writing a
code coverage annotated listing file (write_coverage _listing_file() script command).

enum COVERAGE_LI STI NG_OPTI ONS {
/1 listing file nodes
ALL LINES, // output all source nodule |ines and
di sassenbl y
NON_COVERED _ONLY_LINES, // output only non-fully-covered
source nodul e |ines
/1l flag itens bel ow can be added to alter main nodes above
FI LTER_ETPU_ENTRI ES, /1 do not show di sassenbly, and do
not show entry

/1 table source/disassenbly at all
in non-covered node

b

Base Time Options Enumerated Data Type

The following enumerated data type is used to specify the base time for various script
commands.

enum BASE_TIME { US, NS, PS, }

page 124, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

8.8.7 Build Script TARGET_TYPE Enumerated Data Type

The following enumerated data type is used to specify the target type. No mathematical
manipulation of this data type is valid.

enum TARGET_TYPE
ETPU_SI M

b

{

8.8.8 Build Script TARGET_SUB_TYPE Enumerated Data Type

The following enumerated data type is used to specify the target’s sub type. No
mathematical manipulation of this data type is valid.

enum TARGET_SUB_TYPE {
/1 eTPU2 SIM - Single Engine

MPC5632M 0_A
MPC5633M 0_A
MPC5634M 0_A
SPC563M64_0_A
SPC563MB0_0_A
SPC563MB4_0_A

/1 eTPU2 SIM - Dual Eng

MPC5674 2 A /]
MPC5674 2 B /]
MPC5674 0 A [/
MPC5674 0 B /1
JPC563M50_1 A, [/
JPC563M50_1 B, //

/1 eTPU SIM - Dua

MPC5566_0_1, //
MPC5566_0 2, //
MPC5554 B 1, //
MPC5554 B 2, //

/1 eTPU SIM — Single Engi ne — 55xx

MPC5567_0_1, //
MPC5565 0 1, //
MPC5553 A 1, [/
MPC5534 0 1, //

Rev- 2,
Rev- 2,
Rev- 0,
Rev- 0,
Rev- 0,
Rev- 0,

Rev- 0,
Rev- 0,
Rev- B,
Rev- B,

Rev
Rev
Rev
Rev

o>»>r>r

ne
Engi
Engi
Engi
Engi
Engi
Engi

Engi ne

ne
ne
ne
ne
ne
ne

Engi ne
Engi ne
Engi ne
Engi ne

W>w>w>

w>w>

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 125

8. Script Commands Files

8.8.9

/1l eTPU SIM — Single Engine - Coldfire
MPC5571_0_1, // Rev 0, MPC5570 and MPC5571
MCF5232_0_1, // Rev O

MCF5233_0_1, // Rev
MCF5234_0_1, // Rev
MCF5235_0_1, // Rev

b

[oNeNe]

Build Script ADDR_SPACE Enumerated Data Type

This enumerated data type is used when specifying the applicable address spaces for
various build script commands. It is also used in the generic modify_mem_uXX() and
verify_mem_uXX() script commands.

enum ADDR_SPACE {

/1 eTPU
ETPU_CODE_SPACE, ETPU_CTRL_SPACE, ETPU_DATA SPACE,
ETPU_DATA 24 SPACE, ETPU_NODE_SPACE, ETPU_UNUSED_SPACE,

/1
ALL_SPACES,

b
In the following very specific cases, mathematical manipulation of this enumerated data
type is allowed.

- Single instances of values referencing the same target may be added to each
other.

- Single instances of values referencing the same target may be subtracted
from ALL_SPACES.

The following are some valid mathematical manipulations of this data type.

/1 The follow ng references

/1 a CPU32's USER and SUPERVI SOR code spaces
CPU32_USER_CODE_SPACE + CPU32_SUPV_CODE_SPACE
/1 The follow ng references

/1 all used CPU32 address spaces

ALL_SPACES - CPU32_UNUSED SPACE

The following are some invalid valid mathematical manipulations of this data type.

/1 VI NVALI D! Target types (GIM and MC33816) cannot be
i nterm xed

page 126, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

GTM_RAM SPACE + MC33816_DATA SPACE

/1 VIVINVALID !

/'l The sane val ue cannot be added or subtracted to itself
ETPU_DATA SPACE + ETPU _DATA SPACE

8.8.10 Build Script READ_WRITE Enumerated Data Type

This enumerated data type is used when specifying the applicable read and/or write cycles
for various build script commands.

enum READ VW\RI TE {

RW READS, RW READL16, RW READ24,
RW READ32, RW READ64, RW READ128
RWWRI TES, RWWRI TE16, RW WRI TE24,
RWWRI TE32, RW WRI TE64, RW WRI TE128,
RW ALL,

b
Some mathematical manipulations are allowed. Single instances of all but the RW_ALL
values can be added together and single instances of each value may be subtracted from

RW_ALL.

#define SOVE_READS RW READ8 + RW READ16 + RW READ32
#define NON_ACCESS32S RWALL - RWWRITE32 - RW READ32

In this example, ALL_READS is defined as any read access, be it an 8-, 16-, or a 32-hit
read cycle. NON_ACCESS32S s defined as all 8-, 16-, 24-, 64-, and 128-hit read and
write cycles.

8.8.11 Assignment Operation Enumerated Data Type

This enumerated data type is used in the modify _mem_uXX() script commands.
enum ASSI GNMENT_TYPE {

ASSI GN_EQUAL, /Il =

AND_EQUAL, Il &=
OR_EQUAL, Il | =
XOR_EQUAL, [l ~=
BSL_EQUAL, /[l <<=
BSR_EQUAL, /] >>=
PLUS_EQUAL, Il +=
M NUS_EQUAL, /[l -=
TI MES_EQUAL, [l *=
DI VI DE_EQUAL, [l I=

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 127

8. Script Commands Files

REMAI NDER EQUAL, // %
b

8.8.12 eTPU Register Enumerated Data Types

The eTPU register enumerated data types provide the mechanism for referencing the
eTPU registers. These enumerated data types are used in commands that reference the
TPU registers such as the register write commands that are defined in the Write Reqgister
Script Commandssection.

The following enumeration provides the mechanism for referencing the eTPU's registers.
enum REG STERS U32 { REG P_31 0, };

enum REG STERS_U24 {

REG A, REG B, REG C REG REG D, REG DI OB, REG SR, REG ERTA,
REG ERTB, REG TCR1, REG TCR2, REG Tl CK_RATE, REG MACH,

REG MACL, REG P,

b

enum REG STERS_U16 {

REG TOOTH_PROGRAM REG RETURN ADDR, REG P 31 16,
REG P_15 0,

b

enum REG STERS U8 {
REG LI NK, REG P 31 24, REG P 23 16, REG P_15 8, REG P _7_0,
b

enum REG STERS U5 { REG CHAN, };

enum REG STERS U1l {

REG Z, REG C FLAG REG N, REG.V,
REG Mz, REG MC, REG MN, REG M,
b
The following are examples of how the enumerated register types are used.

wite_reg32(0x12345678, REG P);
verify_reg32(REG P, 0x12345678);
wite_reg24(0x123456, REG A);
verify_reg24(REG A, 0x123456);
wite_regl6(0x1234, REG_RETURN_ADDR) ;

page 128, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

8. Script Commands Files

verify regl6(REG RETURN ADDR, 0x1234):

wite_reg5 (0x12, REG_CHAN) ;
verify regb (REG CHAN, 0x12);
write_regl (Ox1, REG Z);
verify_regl(REG Z, Ox1)

8.8.13 Pin and Node Enumerated Type

This enumerated type is used to specify external pins and various simulation nodes.
enum PI N_AND_NODE {

/1 eTPU Channel Qutput Pin
CHAN_OUTPUT,

b

8.8.14 Script CSV_CONTROL Enumeated Data Type

This is used in the CSV import script commands to control how the file is read and
processed.

enum SCRI PT_CSV_CONTROL { CSV_| GNORE_FI RST_LI NE,
CSV_READ FI RST_LI NE, }

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 129

page 130, eTPU DevTool IDE

9. Test Vector Files

9

Test Vector Files

Overview

Test vector provides a complex test vector generation capability. Simulated signals similar
to those found in a typical environment can be generated. Test vector files are used for
forcing of "high" or "low" states at the device's input or 1/0 pins.

It is helpful to compare test vector files to script commands files. Roughly, test vector files
represent the external interface to the device, while script commands files represent the
CPU interface. Test vector files are treated quite differently from script commands files.
While script commands file lines are executed sequentially and at specific simulated times,
test vector files are loaded all at once. Test vector files are used solely to generate
complex test vectors on particular eTPU Development Tool nodes. As the eTPU
Development Tool executes, these test vectors are driven unto the specified nodes.

L oading and Editing the Test Vector File

Test vector files are opened (and created ... if appropriate) by double clicking on the
'Vector' node in the project window. Once created, the test vector file will always be
reloaded prior to beginning or restarting execution.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 131

9. Test Vector Files

Test Vector Generation Functional M odel

| [TPU

Haster
Tast

-
Have

Form _l_l_ Channel 7

Vector
Clock

Generator

T
Have

Form _l_l_ Channel 2

Generator

]

7
Wave

Form _I_I_ T2 Clock

Generator

The test vector generation model consists of a single master test vector clock and a
number of wave form generators. The same master test vector clock clocks all wave form
generators. The wave form generators cannot produce waveforms whaose frequencies
exceed that of the master test vector clock.

A wave form might consist of a loop in which a node is driven high for 10 master test
vector clock periods then low for 15. The loop could be set up to run forever.

Test vector files provide the following functionality.

The master test vector clock frequency is specified.
The wave form generators are created and defined.
Wave form outputs drive device input pins (nodes).

Multiple nodes are grouped (i.e., group COMM consists of UART_RCV1
and UART_RCV?2).

Complex Boolean states are defined.

Before being parsed, test vector files are run through a C Preprocessor. Thus the files can
use the #include mechanism as well as macros and other preprocessor directives and

capabilities.

page 132, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

9. Test Vector Files

Command Reference

The following test vector commands are available.

Node

Group
State

Frequency
Wave

In addition there is an eTPU example of the waveforms generated for an automobile
engine monitor system.

Comments

Test vector files may contain the object-oriented, C++ style double slash comments. A
comment field is started with two sequential slash characters, //. All text starting from the
slashes and continuing to the end of the line is interpreted as comment. The following is an
example of a comment.

/!l This is a comment.

9.1 Node Command

node <Nanme> <Node>

The node commands assign the user defined name, "Name" to a node, "Node". Note that
depending on the microcontroller, the input and output from each channel may (or may not)
be brought to external pins. Please refer to the NXP literature for the specific
microcontroller being used.

Standar d eTPU Nodes
- chQ.in Channel 0's input pin
- chO.out Channel 0's output pin
- chlin Channel 1's input pin
- chl.out Channel 0’ s output pin
- .c.f.131.in Channel 31’ s input pin
- ch31.out Channel 31's output pin
- terelk eTPU external clock input pin

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 133

9. Test Vector Files

In the example shown below the name A429Rcv is assigned to the eTPU’ s channel 5 input

pin.

node A429Rcv

Thread Activity Nodes

chd.in

Thread activity can be extremely useful in both understanding and debugging eTPU
Development Tool functions. The eTPU Development Tool provides the following thread

activity nodes.

ThreadsGroupA
ThreadsGroupB
ThreadsGroupC
ThreadsGroupD
ThreadsGroupE
ThreadsGroupF
ThreadsGroupG
ThreadsGroupH

These nodes can be renamed. In the following example, the ThreadsGroupB node is
assigned the name A429RcvThreads. Note that the primary purpose of renaming these
nodes is to provide a more intuitive picture in the logic analyzer window, as shown below.
See the Waveform Options Dialog Box section for more information on how to specify
groups for monitoring of TPU and eTPU thread activity.

I RevThrzads - l

¥ Avto-Seroll

o S

25

?

Set

TR

node RcvThreads ThreadsGroupB

=10l x|
=kl 7 » [
1,546.820.1 o8 Mouse: 19597514 n8
Data Start: 000,000.0 o8 Contaxt: 000,000.0 n¥ Current Time: 3,382,000.0 o8
Laft Cursor: 1,848.531.2 n8 Delta Corsor: 109.505.2 n8 Right Cursor: 1.958.040.3 nS

page 134, eTPU DevTool IDE

(C) 2012-2024 ASH WARE, Inc.

Reference Manual

9. Test Vector Files

9.2 Group Command
group <GROUP_NAME> <NODE 1> [NODE 2] ... [NODE N

The group command assigns multiple nodes, "NODE N" to a group name
GROUP_NAME. These nodes can be referred to later by this group name. The group
name may contain any ASCII printable text. These group names are case sensitive
(though this is currently not enforced.) Up to 30 nodes may be grouped.

define ADDRESS1 chb

define ADDRESS2 ch7

define DATA ch3

group PORT1 ADDRESS1 ADDRESS2 DATA

In this example a group with the name PORT1 is associated with eTPU channel pins 5, 7,
and 3.

9.3 State Command
state <STATE_NAME> <BI T_VALUE>

The state command assigns a bit value BIT_VALUE to a user-defined state name
STATE_NAME. State names may contain any ASCI| printable text. These state hames
are case sensitive (though this is currently not enforced.) Bit values must consist of a
sequence zeros and ones. The total number of zeros and ones must be between one and
30.

state NULL 0110
In this example a user-defined state NULL is associated with the bit pattern 0110.

9.4 Frequency Command
frequency <FREQUENCY>

The frequency command sets the master test vector clock to FREQUENCY whichis a
floating point number whaose terms are miillion cycles per second (MHz). All test vectors
are set by this frequency. Since the entire test vector file is loaded at once, if a test vector
file contains multiple frequency commands, only the last frequency command is used and
all previous frequency commands are ignored.

frequency 1

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 135

9. Test Vector Files

9.5

9.6

In this example the master test vector generation frequency is set to one MHz. Thisisa
convenient test vector frequency because its period of one microsecond makes timing easy
to calculate.

Wave Command

The wave command creates and defines a new wave form generator. There is no limit to
the number of wave commands that may be used in a test vector file. The number of
wave form generators is equal to the number of wave commands found in the test vector
file.

wave <GROUP> <STATE REPEAT> <(STATE REPEAT <...>)
REPEAT> end

The wave command causes the nodes of GROUP to be stimulated by the state and repeat
count pairs STATE REPEAT. Multiple states and repeat counts are allowed. A special
infinite repeat count, *, generates an infinite repeat count. This command may span
multiple lines. An end statement must terminate the command.

wave OUTPUTS
(OFF 5 DRIVE A 1 DRIVE B 2) 3
OFF *

end

The resulting wave form from this example is shown below. The wave form begins with
signal A and signal B being off for five master test vector clock periods. Signal A is then
driven for one period. Then signal B is driven for two periods. These three states
constitute a loop which executes three times. After the loop has executed three times the
OFF state is driven forever. Note that the NODE, GROUP, STATE, and FREQUENCY
commands are omitted from this example for simplification purposes.

a I L]
I I S I N

Engine Example, eTPU

/'l File: ENGl NE. Vect or
/1 AUTHOR: Andrew M Kl unpp, ASH WARE.
/| DATE: 950404

I

page 136, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

9. Test Vector Files

/1 DESCRI PTI ON

11 This generates the test vectors associated with a four cylinder

/'l car. The four spark plugs fire in the order 1,3,2,4. For convenience
/1 an engine frequency is chosen such that one degree corresponds to

/1 10 m croseconds (10 m croseconds will be witten as 10us).

/'l A test vector frequency is chosen such that one degree corresponds

/1 to one time-step

/1l The test vector frequency is the eTPU Devel opnent Tool's

/1 internal test vector tinebase

/1 Wthin each engine revolution two spark plugs fire.

/1 ASSI GN NAMES TO PI NS

/1 Assign the descriptive nanes to the synch and spark plug signals.
node Synch ch3

node Sparkl ch8

node Spark2 chil1

node Spar k3 ché

node Spar k4 ch4

/| ASSOCI ATE PINS WTH A GROUP

/'l Make a group naned SYNCH with only the SYNCH eTPU channel as a nenber
group SYNCH Synch

/1 Make a group naned SPARKS that consists of the four spark plug signals
group SPARKS Spark4 Spark3 Spark2 Sparkl

/1 DEFI NE THE SYNCH STATES

/1 The synch signal can be either pulsing (1) or waiting (0).
state synch_pulse 1

state synch_wait O

/1 DEFI NE THE SPARK FI RE STATES

/1l There are five states

Il There is one state for each of the four spark plugs firing.
I There is one state for none of the spark plugs firing
state FIRE4 1000

state FIRE3 0100

state FIRE2 0010

state FIREL 0001

state NO_FIRE 0000

/1 SET THE TEST VECTOR BASE FREQUENCY

/1l In order to have a convenient relationship between tinme and degrees
/1 an engine revolution is mude to be 3600us such that one degree

/'l corresponds to 10us.

/1 Thus a convenient test vector time-step period of 10us is chosen

/'l frequency = 1/period = 1/10us = 0.1WnZ

/'l (Frequency is expressed in MHz; this is a nodification of a

/'l previous version of the User Manual.)

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 137

9. Test Vector Files

frequency 0.1

/| CREATE/ DEFI NE THE SYNCH WAVE FORM
/1 This generates a one degree (10us) pulse every 360 degrees (3600us)
wave SYNCH (synch_pulse 1 synch_wait 364) * end

/| CREATE/ DEFI NE THE SPARK WAVE FORM
/'l Each spark is equally spaced every 1/2 revol ution
/1 which is 180 degrees (1800us).
/'l Each spark plug triple fires and each fire lasts one degree (10us).
/1l
/1 In addition there is a 17 degree (170us) lag of this wave form
/1l relative to the synch wave form
wave SPARKS
no_fire 17 /1 This creates a 17 degree |ag

(/1 Enclose the following in a bracket to generate a | oop/

/'l The first plug fire cycle lasts five degrees (50us).
/1 The spark plug fires three tines
firel 1 no_fire 1 firel 1 no_fire 1 firell

/'l The delay between fire cycles is 180 degrees
/1l less the five degree fire cycle.

/1 180-5=175 degrees

no_fire 175

/1 The third plug fires next.
fire3 1 no_fire 1l fire3 1 no_fire 1l fire3 1

/'l G ve another 175 degree del ay.
no_fire 175

/'l The second plug fires next.
fire2 1 no_fire 1 fire2 1 no_fire 1 fire2 1

/1 G ve another 175 degree del ay.
no_fire 175

/1 The fourth plug fires next.
fired 1 no_fire 1 fired4 1 no_fire 1 fired4 1

/'l G ve another 175 degree del ay.
no_fire 175

) * [/l Enclose the loop and put the infinity character, *
end

The following wave form is generated from the above example.

page 138, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

9. Test Vector Files

SPERK 4 mm

SPRERK 3 mm

SPRERK 2 Hﬂ”

Jmﬂ SPERK 1 Hﬂﬂ_

] SYNCH]]

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 139

page 140, eTPU DevTool IDE

10. Functional Verification

10

Functional Verification

Functional verification supports an automated method for verifying that behavioral
requirements are met by the code. These capahilities can be grouped as data flow
verification, pin transition behavior verification, and code coverage verification.

The following diagram shows a hardware perspective of functional verification. Pin
transition verification is applicable only to eTPU Simulation.

Data Flow Pin Transition
Verification Behavior Verification

¥ 4

Reference Manual

= TPU =
CPU I nte!'f ace Pi_n_ External
Registers TPU Microcode Transitions Hardware
Code Coverage
Verification
(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 141

10. Functional Verification

10.1

Data flows between the eTPU and the CPU via interface registers. Data flow verification
provides the capability of verifying this data flow.

Pin transitions are generated by the eTPU or by external hardware. Pin transition
verification capabilities allow the user to verify this pin transition behavior.

Code coverage provides the capability to determine the thoroughness of a test suite. Code
coverage verification allows the user to verify that a test suite thoroughly exercises the
code.

A Full Life-Cycle Verification Perspective

The following describes a typical software life-cycle. Initially, a set of requirements is
established. Then the code is designed to meet these requirements. Following design, the
code is written and debugged. A set of formal tests is then developed to verify that the
software meets the requirements. The software is then released.

Now the software enters a maintenance stage. 1n the maintenance stage, changes must be
made to support new features and perhaps to fix bugs. Along with this, the formal tests
must be modified and rerun. Then the software must be re-released.

This life-cycle can be described as having three stages: development, verification, and
maintenance. All of these three stages are supported. The IDE and GUI are primarily of
interest in the initial development phase. V erification involves developing a set of
repeatable and automated tests that that show that the requirements are being met. In the
maintenance stage these previously-developed automated tests are rerun to prove that
requirements are still being met when bug fixes and enhancements cause the code base to
change.

There is a significant emphasis on automation such that a complete test suite can be run,
sometimes spanning hours, and a series of tests results in a single 'pass' or 'fail' result.

Data Flow Verification

Data flow verification is one of the verification capabilities for which an overview is given
in the Functional V erification chapter.

Data flows between the eTPU and the CPU primarily across the Channel Interrupt
Service Request (CISR) register and the parameter RAM. The data flow verification
capabilities address data flow across these registers.

page 142, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

The eTPU parameter RAM data flow is verified using the verify _chan_data24(X,Y ,Z) and
verify _chan_bits24(X,Y ,Z,V) script commands described in the eTPU Parameter RAM
Script Commands section.

The data flow across the CISR register is verified using the verify_intr(X,Y) script
command described in the eTPU Interrupt Script Commands Script Commands section.

In the following example data flow across channel 10's CISR and parameter RAM is
verified at a simulated time of 100 microseconds and again at 250 microseconds.

/1 Wait for the eTPU Devel opnment Tool to run 100 mi cro-
seconds.

at_tine(100);

/1 Verify that channel 10's CISR is set.

verify_ cisr(0xa,1);

/1 Verify that channel 10’s paranmeter 2 bit 14 is set.
verify ram bit(0xa, 2, 14, 1);

/1 Verify that channel 10's paranmeter 3 is 1000 hex.
verify_ram word(0Oxa, 3, 0x1000);

/1 Verify that channel 10's paranmeter 5 is 1500 hex.
verify_ram word(0Oxa, 5, 0x1500) ;

/1 Clear channel 10's CI SR

cl ear _cisr(0xa);

/1 Wait for the eTPU Devel opnent Too

/1 to run an additional 150 microseconds.
wait_tinme(150);

/1 Verify that channel 10's CISR is set.

verify_ cisr(0xa,1);

/1 Verify that channel 10's paraneter 2 bit 14 is cleared.
verify ram bit(0xa, 2, 14, 0);

/1 Verify that channel 10’s paranmeter 3 is 3000 hex.
verify_ram word(0xa, 3, 0x3000);

/1 Verify that channel 10's paranmeter 5 is 3500 hex.
verify_ram word(0Oxa, 5, 0x3500);

10.2 Pin Transition Behavior Verification

Pin transition behavior verification is one of the verification capabilities for which an
overview is given in the Functional V erification chapter. Pin transition behavior verification
capabilities include the ahility to save recorded pin transition behavior to enhanced pin
transition behavior (.ebv) files, the ability to load saved pin transition behavior files into the
eTPU Development Tool, and the ability to verify that the most current pin transition

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 143

10. Functional Verification

behavior matches the saved behavior. Old-style behavior verification files (.bv) can still be
read and used for verification, but can no longer be created. All pin transition behavior
verification must now be managed via scripting. GUI menu options are no longer available.

From a behavioral model perspective these capabilities correlate to the ability to create
behavioral models and the ahility to compare source microcode against these behavioral
models. The emphasis in the eTPU Development Tool is on the automation of these
modeling capabilities through script commands, as the capabilities are no longer available
from the menus.

Pin Transition Buffers

There are two pin transition storage buffers in the eTPU Development Tool as shown in
the following diagram.

Loaded As Simulator Runs Read From File

4 4

Running Buffer | o Master Buffer
of Recorded Pin Compare of Pin Transition
Transition Behavior| e Behavior
Saved To File

The running buffer is filled as the eTPU Development Tool runs. Whenever a pin transition
occurs, information regarding this transition is stored in this buffer, which is also used to
draw the signals in the logic analyzer window. This pin transition information can be
selectively recorded to file using the create _ebehavior_file("filename.ebv"),

add _ebehavior_pin(*"<pin name>") and close_ebehavior_file() script commands; also see
Enhanced Pin Transition Behavior V erification below.

page 144, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

Enhanced Pin Transition Behavior Verification

The new enhanced pin transition behavior verification makes use of a user-friendly data file
format and provides more options on how master file pin transitions are compared to
transitions in the current simulation. With the original behavior verification capability,
anything other than an exact match, clock cycle for clock cycle, was considered a failure.
The reality is that often times even very small code changes can result in a signal being
shifted by a clock cycle or two, which previously would result in failure. Enhanced
behavior verification provides options for controlling the tolerance used in comparisons, so
that small changes that are functionally correct can pass verification. Additionally, master
file pin transition data can now be viewed in the Waveform Window making it easier to
track down problems when a failure does occur.

The first step in making use of pin transition behavior verification is to create a master file,
also called a .ebv file for its default extension. These enhanced behavior verification files
are text and in comma-separated value (CSV, or .csv) format. All behavior verification is
controlled from the scripting environment - to create a master file use the
create_ebehavior_file("filename.ebv™) script command. It must execute at simulation time
zero, but after any vector file load or pin buffer placements.

/1l save off all pins
create_ebehavi or _fil e("Engi ne. EBV")

By default all pins are saved to the .ebv file. On the eTPU, this is all 32 channel input pins,
all 32 output pins, and the TCRCLK pin. In many cases, only a small subset of pins are of
interest. The add_ebehavior _pin(*<pin name>") script command allows the user to save
data only on those pins of interest. The pin name comes from any node naming in the
vector file, or is the underlying default pin name (e.g. "ch3" is the channel 3 pin on the
TPU, or "_chb.out" is the channel 5 output pin on the eTPU).

/'l save off only the fuel injection output signals
create_ebehavior _file("Engine_lnjection. EBV")

/1 add_ebehavi or _pin commands nust innmediately follow the
create command

add_ebehavi or _pin("Injectorl");
add_ebehavi or _pin("Injector2");
add_ebehavi or _pin("Injector3");
add_ebehavi or _pin("Injector4");

After the creation setup commands are complete, and the script file exercises the software,
the .ebv file needs to be closed and any unsaved data flushed out. Note that data may be
saved in several steps as the simulation runs - enhanced behavior verification is not subject

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 145

10. Functional Verification

to buffer size limitations due to its continuous file management. This is done with the
close_ebehavior_file() script command.

wait_tinme(20000000); /1l Let the tests run to conpletion
cl ose_ebehavior_file(); // close EBV being saved

As mentioned, the .ebv file is in comma-separated value format. The first line contains the
column header information, which is time units for the first column, followed by pin names
of all saved pin data. After that, each line contains a simulation time value in microseconds
followed by the value of each pin. Below is an example of the first few lines of an .ebv file
which contains data on just two pins.

TIME (US), PWM A, PWM B,

000000000000. 000000, 0, 1,

000000000019. 980000, 1, 1,

000000000039. 980000, 0, 1,

000000000049. 980000, 0, O,

The comma-separated value allows the file to be easily parsed by other existing tools, such
as spreadsheet applications.

Once a master .ebv file has been created, it can be used to verify pin behavior stays within
an expected tolerance range on subsequent simulation runs. Typically this is done after a
software change has been made that is not supposed to affect pin transition behavior. With
enhanced behavior verification, only a continuous verification model is supported. As with
.ebv file creation, all control is via script commands. First, which .ebv file to be used for
the verification run must be specified - this is done with

run_ebehavior_file("filename.ebv"). By default, all pins found in the .ebv file are verified
with a default transition error tolerance equivalent to two system clocks.

/1l test all pins
run_ebehavi or _fil e("PWV gol d. EBV");

The above command should be issued at simulation time zero, at the same place in the
script file as the .ebv file was generated with the create_ebehavior_file() command. The
simulation should run, and at the end, at the same time as when the .ebv file was saved and
closed, the verification should be stopped with the stop_ebehavior_file() script command.

stop_ebehavior _file(); // stop EBV verification

Tolerances can be adjusted, and the pins being verified can be specified, using the
enhanced behavior verification pin tolerance script commands. With the
set_ebehavior _global _tolerance() script command, all pins under test can have their
allowed error tolerance set.

run_ebehavi or _fil e("Engi ne_gol d. EBV");
/1l verify all pins in the .ebv file to a 2us tol erance
set _ebehavi or _gl obal _tol erance(EBV_ABSOLUTE, 0.0, 2.0);

page 146, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

The set_ebehavior_pin_tolerance() script command serves a dual purpose. Once one of
these commands is specified, only pins specified with set_ebehavior_pin_tolerance() script
commands will be verified.

run_ebehavi or _fil e("PWV gol d. EBV")

/1l test only PWM A and PW C pins w appropriate tol erance
set _ebehavi or _pin_tol erance("PW A", EBV_ABSOLUTE, 0.0,
1.1);

set _ebehavi or _pin_tol erance("PW C', EBV_ABSOLUTE, 0.0,
1.1);

Although the tolerances can be adjusted at any time during simulation, if using
set_ebehavior_pin_tolerance() to configure a subset of pins to test, these commands should
directly follow the run_ebehavior_file() command. Tolerances can then be adjusted later,
either by individual pin or globally.

Currently there is one tolerance type - "EBV_ABSOLUTE". This means the absolute time
of each transition in the master file is compared to the absolute time of the matching
transition in the current simulation run. In the comparison process, first the offset is is
applied to the master file transition time, and then the difference between the two times is
calculated. If the absolute value of this result is less than the configured tolerance, the
behavior is considered valid and simulation continues. If it is greater than the tolerance, a
behavior error is thrown - this may or may not trigger a pop-up error dialog depending upon
the IDE messages configuration.

Last, individual pins can be disabled from behavior verification with the
disable ebehavior pin() script command.

di sabl e_ebehavi or _pi n("PW C");

With enhanced behavior verification, an .ebv file can be created while simultaneously using
another one for verification. This could be handy in the sense that after running a
simulation session the user has a new current pin transition file - it could be used as an
input into other toals, or if verification is successful, it could be copied as the new "gold", or
master file.

/1l create and verify sinmultaneously
create_ebehavior_file("Powertrain_current.EBV")
run_ebehavior _fil e("Powertrain_gol d. EBV")

/1l ... simulation ...

/1 finish behavior verification
cl ose_ebehavior _file(); // close EBV being saved
stop_ebehavior_file(); // stop EBV verification

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 147

10. Functional Verification

10.2.1

When enhanced behavior verification is used with a dual-eTPU simulation model, an .ebv
file and the associated commands apply to a single eTPU engine. In other words, if pin
transition behavior verification is to be done on each eTPU, there must be a separate .ebv
file for each.

Deprecated Pin Transition Behavior Verification

Legacy .bv pin transition data files can still be used by the new enhanced behavior
verification; .bv files can no longer be generated. The master buffer can be loaded only
with pin transition behavior data from a previously saved file. This file forms a behavioral
model of the source microcode. Changes can be made in the source microcode and the
changed microcode can be verified against these behavioral models. This file is loaded
using the read _behavior_file("filename.bv") script command.

There are two options for verifying pin transition behavior against the previously-generated
behavioral model. The first option is to continuously check the running pin transition
behavior buffer against the master pin transition behavior buffer. This is selected by the
enable_continuous _behavior() script command that follow a behavior file load. The second
option is to perform a complete check of the running buffer against the master buffer all at
once. Thisis selected using the verify_all_behavior() script command at the end of a
simulation run. Time tolerances for pin transitions default to 2 system clocks, but can be
adjusted using the new enhanced behavior verification set _ebehavior pin tolerance() and
set_ebehavior_global_tolerance() script commands.

A count of failures is displayed in the Configuration Window. This count is incremented
whenever a behavior verification failure occurs. By default, each failure will generate an
error dialog, but this can be disabled by de-selecting Options -> Messages... -> Behavior
verification failure.

A consideration regarding these behavioral models is the buffer size. The maximum
behavioral buffer size is currently set at 100,000 records, though this may increase in future
releases. If the number of recorded pin transitions equals or exceeds this buffer size then
the buffer rolls over and verification against this buffer is not possible.

A second consideration is TCR2 pin recording. Normally TCR2 pin transitions are not
written in these buffers. This is because the recording of TCR2 pin transitions very quickly
fills up the buffer and causes the buffer to quickly roll over. When the buffer rolls over
verification is not possible with legacy .bv files.

page 148, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

10.3 Pin Transition Verification Example

The following is an example eTPU Commands Script that both generates, and verifies pin
transition data. The #define' CREATE_EBV_FILE ' determines if the .EBV file will be
generated (create the gold file) or tested (test the current run against a previously-
generated gold file.

/'l Linker-generated header file
#i ncl ude "MyCode_defi nes. h"

#define TEST_CHAN 4

/1 Set the clock to 100 MHz (10 ns/clock -->le7

Fent oSeconds/ cl ock)

set _cl k_peri od(10000000);

write_entry_table base_addr(_ENTRY_TABLE BASE_ADDR);
write tcrl control (2); /1 System clock/2, NOT gated
by TCRCLK

write tcrl prescaler(l);

write_global tine_base_enable(l);

/1 Channel Configuration Registers Functions (CxCR, CxSCR,
CxHSRR)

write_chan_base_addr (TEST_CHAN, 0x300);
write_chan_func(TEST_CHAN, _FUNCTI ON_NUM Pwm) ;
write_chan_entry_condition(TEST_CHAN
_ENTRY_TABLE_TYPE_Pwm) ;

/1

SRRk R I IR S I S R S S R S S R I b

khkkkhkkhkkhkkhkkhkkhkhkkk

write_chan_cpr (TEST_CHAN, 3);

write_chan_hsrr (TEST_CHAN, 7);

write_chan_data24 (TEST_CHAN, _CPBA24_ Pwm Peri od_,
0x000400) ;

write_chan_data24 (TEST_CHAN, _CPBA24_ Pwm Hi ghTi ne_,
0x000050) ;

/1 #define _CREATE_EBV_FI LE_
#i fdef _CREATE_EBV_FI LE_

create_ebehavior_file("MGol dSi m ebv");
add_ebehavi or _pi n("PW") ;

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 149

10. Functional Verification

10.4

#el se
run_ebehavior _file("MCol dSim ebv");
#endi f // _CREATE_EBV_FI LE_

I

R R R R R R R R R R R R R R R I I R I R R I R I R R R

khkhkkkhkxkdxkkkxk*k

/1 Run the sinmulator for awhile

/'l Conpare recorded pin-transitions with known-good gold
file

wait _time(1000);

#i fdef _CREATE_EBV_FI LE_

cl ose_ebehavior _file();

#el se

st op_ebehavi or _file();

#endi f // #ifdef _CREATE EBV_FILE_

#i fdef _ASH WARE_AUTO RUN _
exit();

#el se

print("All tests are done!!");
#endi f // _ASH WARE_AUTO_RUN_

Code Coverage Analysis

Code coverage analysis is one of the verification capabilities for which an overview is
given in the Functional V erification chapter.

There are two aspects to code coverage. The first aspect is the code coverage visual
interface while the second aspect is the coverage verification commands.

Code Coverage Visual Interface

The visual interface is enabled and disabled using the project's IDE Options settings. When
this is enabled, black boxes appear as the first character of each source code line that is
associated with a microinstruction. As the code executes, and the instruction coverage
changes, these black boxes change to reflect the change in the coverage. This is
summarized below.

page 150, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

A black box indicates a'C' source line or assembly instruction that has not
been executed.

An orange box indicates 'C' source line that has been partially executed.

A blue box indicates an assembly branch instruction in which neither
branch path has been traversed.

A green box indicates an assembly branch instruction where the branch
path has been traversed.

A red box indicates an assembly branch instruction where the non-branch
path has been traversed.

D A white box indicates a'C' source line or assembly instruction that has
been executed.

Code Coverage Verification Commands

B 0 EEE =

The code coverage verification commands, described in the Code Coverage Script
Commands section provide the capability to verify both instruction and branch coverage
percentages on both an individual file basis and a complete microcode build. | the required
coverage has not been achieved then a verification error message is generated and the
count of script failures found in the Configuration Window is incremented.

Code Coverage Report Files

Code coverage report files can be generated using the
write_coverage_file("filename.Coverage™) script command described in the Code
Coverage Script Commands section. Code coverage report files can also be generated
directly from the File menu by selecting the Coverage submenu. This is described in the
Files Menu section.

The top of the code coverage report file contains a title line, a copyright declaration line,
and a time stamp line.

Following this generic information is a series of sections. The first section provides
coverage data on the entire microcode build. Succeeding sections provide coverage
information on each file used to create the microcode build.

Each section contains a number of lines that provide the following information. The
instruction line lists the total number of instructions. Both regular and branch instructions
are counted, but entry table information is not. The instruction hits line lists the number of
instructions that have been fully covered. The instruction coverage percent line lists the
percent of instructions that have been covered. The branches line lists the total number of

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 151

10. Functional Verification

branch paths. This is always an even number because for each branch instruction there
are two possible paths (branch taken and branch not taken.) 1f the branch path has been
traversed then this counts as a single branch hit. Conversely if the non-branch path has
been traversed then this also counts as a single branch hit. The branch instruction is
considered fully covered when both the branch-path and the non-branch-path have been
traversed. The branch coverage percent line contains the percentage of branch paths that
have been traversed.

Flushed instructions for which a NOP has been executed are not counted as having been
covered.

An example of such afile (eTPU target) follows.

/'l Code coverage analysis file.
/'l Copyright 1996 ASH WARE, I nc.
/1 Wed Feb 6 09:08:29 2019

Tot al
I nstructions: 43
Instruction Hits: 14
I nstruction Coverage Percent: 32.56
Br anches: 18
Branch Hits: 4
Branch Coverage Percent: 22.22
Entries: 32
Entry Hits: 5
Entry Coverage Percent: 15. 63
C.\ M dt\ Test sHi gh\ ETpu\ Cover age\ Pwm c
I nstructions: 14
Instruction Hits: 14
I nstruction Coverage Percent: 100. 00
Br anches: 4
Branch Hits: 4
Branch Coverage Percent: 100. 00
Entries: 32
Entry Hits: 5
Entry Coverage Percent: 15. 63
C\Mdt\CGuiltestfiles\Lib_global _error_handler. sta
I nstructions: 29
Instruction Hits: 0
I nstruction Coverage Percent: 0.00
Br anches: 14

page 152, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

Branch Hits: 0

Branch Coverage Percent: 0. 00
Entries: 0

Entry Hits: 0

Entry Coverage Percent: 0. 00

Code Coverage Annotated Listing Files

Listing files (source file lines with the associated disassembled opcodes shown below each
line that generates code) annotated with code coverage information can be generated with
the write_coverage listing file() script command described in the Code Coverage Script
Commands section. An option parameter allows users to select between outputting a
complete annotated listing file for a specified module, or output just the source lines and
object code not executed (covered). In both cases every line is prepended with the original
source line number. When the non-covered listing option is specified, a line gap is placed
between annotated source/assembly wherever source code lines have been filtered. A
small annotated sample is shown below.

[536]: else if (IsMatchAEvent () && (flagl==1) &&
(flag0==1))

[536]: [X]: 0016: 0x4250 Alt Entry 11, Addr 0x940, Enabl eMatches,
p_31 _0=*((channel U32 *) 0x0), diob=*((channel U24 *) 0x5) [0]

[536]: : : HSR==0b000 Link==X matchA/ TranB==1

mat chB/ TranA==0 | nput Pi n==0 ChanFl agl==1 ChanFl ag0==1 [2]

[536]: []: O01E: 0x4250 Al't Entry 15, Addr 0x940, Enabl eMatches,
p_31 _0=*((channel U32 *) 0x0), diob=*((channel U24 *) 0x5) [0]

[536]: : : HSR==0b000 Link==X matchA/ TranB==1

mat chB/ TranA==0 | nput Pi n==1 ChanFl agl==1 ChanFl ag0==1 [2]

[537]: {

[538]: /1 Al 32 bits were received & half a gap has
been detected

[539]: /1l filtering (if any) is done now, while parity
check is done

[540]: /'l when the full gap is validated

[541]: AW A429R_Val i dHal f GapFil ter:

[542]:

[543]: Cl r Fl ag0();

[543]: [X]: 0940: OxDFE87A8C ram p_23_0 = *((channel int24 *) 0x31);
Format D6 [O]

[543]: : . OxDFE87A8C chan cl ear Channel Fl ag0, clear

Mat chRecogni ti onLat chA;; Format D6 [4]

[544]: Cl ear Mat chAEvent () ;

[545]:

[546]: if (RxFilter.Label)

[546]: [X]: 0944: 0x0008F019 alu nil = p+0x0, Sanpl eFl ags;; Format A2

[4]

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 153

10. Functional Verification

10.5

[546]: [T]: 0948: 0OxF0OD84BC7 seq if z==true then goto addr_0x978,
flush;; FormatEl [4]

[547]: {

[548]: unsi gned i nt24 bitlndex;

[549]: unsigned int24 filterWrd;

[550]: #i fdef __ETEC _

[551]: bitlndex = __bit_n_update(0,
Data.B.Bits23_0 & 15, 1, 0);

[551]: []: 094C. OxBFEFFB80 ram p_23_0 = *((channel int24 *) 0x1);;
For mat B2 [4]

[551]: []: 0950: Ox0C380BFA alu a = p & OxF;; Format A3 [4]

[551]: []: 0954: Ox3F3F1FFD alu sr = ((u24) 0) | (1<<a);; FormatB6

[4]

After the prepended source code line number, each opcode line has coverage status shown
inside brackets [], followed by code address, opcode (or entry point), and disassembly. The
coverage status can be one of the following:

[1] - not executed at al

[X] - fully executed (both paths taken if branch)
[T] - only branch true path executed

[F] - only branch fal se path executed

[I] - inferred entry point coverage

Note, if the non-covered listing option is specified, and the module has been fully executed,
the result is an empty outpuit file.

For eTPU targets, an additional flag option can be applied that causes entry table items to
be ignored (no disassembly for "all* mode, all entry source and disassembly filtered for non-
covered mode).

Regression Testing (Automation)

Regression Testing supports the ahility to launch the eTPU Development Tool from a DOS
command line shell. Command line parameters allow specific tests to be run. From the
command line the project file that is run and the primary script file(s) that are loaded into
each target are specified. Command line parameters also are used to specify that the
target system automatically start running with no user intervention, and to accept the
license agreement thereby bypassing the dialog box that would otherwise open up and
require user intervention. A script command is used to terminate the eTPU Development
Tool once all the tests have been run.

Upon termination, the eTPU Development Tool sets the error level to zero if no verification
tests failed, and otherwise error level is set to be non zero. This error level is the eTPU

page 154, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

Development Tool’ s termination code and can be queried within a batch file running under
the operating system’s DOS shell. By launching the eTPU Development Tool multiple
times, each time with a different set of tests specified, and by checking the error level each
time the eTPU Development Tool terminates, multiple tests can be run automatically and a
single pass (meaning all tests passed) or fail (meaning one or more tests failed) result can
be determined.

Note that this only works in operating systems that support access to exit codes from a
batch file. Windows 98 does not support this. True operating systems such as Windows 7,
Windows XP Professional, Windows 2000 Professional, and Windows NT 4.0. do support
automation.

10.6 Testing with a Specific Compiler Version

A production software release will generally be tied to a specific ETEC Compiler version.
However as ASH WARE continues to release new software versions, the once-default
(latest installed) software version will at some point longer be the default. 1t is therefore
important to be able to tie regression tests to a specific ETEC compiler version. This is
done by selecting the build target as show by the blue arrow, below. Right-click to bring up
the popup menu and select 'settings' to bring up the settings window shown below. Within
the settings window, select the version of the compiler you wish to tie the tests to. The
green arrow shows the tests being tied to ETEC compiler version 230C. Note that if the
tests were to be run on a compiler that does not have version 2.30C installed, then the tests
would fail. This setting is stored in the project file and not the environment file!

Also, see related section 'Using Non-Installed ETEC Versions'.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 155

10. Functional Verification

ASH WARE M(33816 DevTool IDE V2_308 : DEMO - G\Mtdt) TestsHighDevTool\CustomETecDeploymentProj_V2_20B.ETpuldePrg

File Build Edit Step Run Breaskpoints View Options Help

HFd NAAMITHSG 20 160k EEER B E

| Project = | | Settings |
- IDE Options Name | Local Ovemide Value | Global Value |
- & zzz_1ETpuSim MtDiBuild ETEC Tools Directory N/A Version 2.30C =l
E|J§|_ Target eTPU_A Executable/output directory . Default
5 verify220B.ET) yricnd Object (intemmediate) file directory obijt Version 2.42J
State machine auto-generated code dirsctory . version %d-'-"-

. Il Vector Fils: <Not 8
. =+ Build Folder

: i CC: MyCodec
E L. Link: MyCode.elf Version 2.31B
EE- Reference Folder Version 2314

= Testbat ——Tr]
System W

Versien
Version 2404
System Yersion 2 31B

Version 2.20B
ersien 1.31F
Development

10.7 Command Line Options

When launching the eTPU Development Tool the last-loaded project file is automatically
loaded and the project file contains most of the settings such as the name of the script file
to load, which messages to suppress, etc. However, it can be useful to specify the project
file to load or even to override settings contained in the project file. This is by specifying
settings at the command line when launching the eTPU Development Tool. Thisis
especially useful when building regression tests.

Display Help -h -h

Prints a list of all the
Command Line

Parameters
Project File -p=<ProjectFileName>| "P=Pro.ETpuldePro
ifi ' Loads project file
L oads the specified project - 0a0
file. Note that if a relative Proj.ETpul deProj
path is used to specify the

project file, it is relative to

page 156, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

the current working
directory at app launch.
Also note that all other
relative paths is command
line options are relative to
the project file directory,
NOT the current working
directory (although they are
often the same).

Executable Image File

L oads the specified
executable image file (e.g.,
MyCode.elf)

-exe=<Exel mageFile>

-exe=<MyCode.elf>
Loads "MyCode.elf"

file (single target) path
relative to project file
directory.

Script File -s=<ScriptFileName> | -s=RarChunkTest.Cmd
L oads the specified script L oads script file
file (single target). Path "RarChunkTest.Cmd"
relative to project file
directory.

Script File - -s=MyScript. Cmd@@Cpu32
L oads the specified script | SS<SCriptFileName>@ | | qqs ooript
file into the specified target | @<TargetName> "MyScript.Cmd" into the
(multiple targets). Path CPU32 simulation model
relative to project file named "Cpu32"
directory.

Vector File -v=<V ectorFileName> | -v=MyV ector.vector
L oads the specified vector

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 157

10. Functional Verification

Vector File

L oads the specified vector
file into the specified target
(multiple targets). Path
relative to project file
directory.

v=<V ectorFileName>
@@<TargetName>

v=MyV ector.vector@@Chl _
Core0

Vector Define

In vector file, define the
DefinedText asVal. Note
that the '=<Val>' portion
can be omitted and 'VAL'
will be assigned a default
value of '1'.

va=<DefinedText>=<
Val>

-vd=CONTROL_CASE

Passes the #define
CONTROL_CASE 1to
the vector file

vd=CMD_LINE_DEFINE_A
:Ol -
vd=CMD_LINE_DEFINE_B
=10
Passes two defines with
values '01' and '10' on the
command line.

In script commands file,

Define as true -d=<DefinedText> -d=CODE_BASELINE
In script commands file, Passes the #define
#define DefinedText 1 CODE_BASELINE 1to
the script file
Define as value -d=<DefTxt>=<Val> |-d=MY_VAR=55

Passes the #define

#define DefTxt Val MY _VAR 55 to the script
file
Build Define -bd=<DefinedText> -bd=MPC5674 2
In MtDt build script, define Defines MPC5674 as 'true'
the DefinedText as true in the build define such that

page 158, eTPU DevTool IDE

(C) 2012-2024 ASH WARE, Inc.

Reference Manual

10. Functional Verification

Logs Auto Build output to
the file, "FileName.log".

the MPC5674 rev 2 model
is loaded.

Log File -If5=<FileName.log> | -If5=Error.log
Logs messages to end of Logs messages to file
file, "FileName.log". Path "Error.log"
relative to project file
directory.

Log File Test Suite Mode -IfmTestSuite -lfmTestSuite
Outputs formatted Sets logging to test suite
messages and extra mode (only applies if
verification information into logging enabled via -If5).
the log file, when specified.

Useful when using the tool
for verification purposes.

Test Name -tn=<TestName> "-tn=Pulse Width Test"
Used in conjunction with Appends 'Pulse Width Test
the log file to append a test Passes' (or 'fails) to the
result to the end of the log end of the log file.
file.

Suppress Warning #1 -ws=1 -ws=1
Suppress the "Source Code
Missing" warning

No Popup Dialogs -q -q
Disables display of dialog
boxes

Build Log File -blf5=<FileName.log> | -blf5=Build.log

L ogs build output to file
"Build.log"

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 159

10. Functional Verification

Path relative to project file
directory. Can only be
used in conjunction with the
-AutoBuild option.

Suppress Environment File
Load

Normally an environment
file is loaded that specified
window positions, file scroll
locations, etc. This
suppresses loading of the
environment file and can
improve the repeatability of
certain tests.

-NoEnvFile

-NoEnvFile

Run Minimized

Runs the eTPU
Development Tool
'‘Minimized' such that it is
possible to continue on ones
computer while running
regression tests.

-Minimize

-Minimize

Automatically Build

Forces the target system to
rebuild the code, even when
not out of date, when the
eTPU Development Tool is
launched. Note that if a
target's build is disabled,
this will NOT cause the
code to build. Instead, use
the '-
EnableCodeBuild=<Target>
" option.

-AutoBuild

-AutoBuild

page 160, eTPU DevTool IDE

(C) 2012-2024 ASH WARE, Inc.

Reference Manual

10. Functional Verification

Override a Disabled Build

For a target with it's build
disabled in the project file,
this overrides the 'Disable’
such that the code will be
built.

-EnableCodeBuild=<T arget>

-EnableCodeBuild=eTPU_A

Prevent Build

Prevents code rebuild even
if the code is out of date.

-NoBuild

-NoBuild

Automatically Run

Sets the target systemto
running when the eTPU
Development Toal is
launched

-AutoRun

-AutoRun

Network Retry Time

Time to wait (in seconds)
for a network license if
none is available

-NetworkRetry=<Sec>

-NetworkRetry=30

Retries for 30 seconds if
unable to make a network
connection

Network License Checkout

Perform a network license
checkout, providing
success/fail status, and then
exiting.

NetworkCheckout=<y:
mid:h:m>

networkcheckout=2035:5:6:16:
00

Attempts to check out a
license until 4om of May 6,
2035.

Network License Checkin

Check back in a checked-
out license, which frees the
license for other users

-NetworkCheckin

-NetworkCheckin

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 161

10. Functional Verification

10.7.1

10.7.2

(after the linger time has
completed)

Using the —d (define) Option and Escape Characters

There are issues with passing a quote character into eTPU Development Tool in Windows
because Windows uses the quote character to bunch multiple pieces of text into a single
command line parameter. Consider the case where a filename is to be passed into the
eTPU Development Tool. A good way of doing this is to define a string, then use the
dump_file(); script command as follows.

#define FILE_TO DUMP "n:\\ MyDat aFi |l e. dat"

dunmp_file(0, 0x28, ETPU DATA SPACE, FILE_TO DUMP, | MAGE, DATAS8);

It is possible to pass the FILE_TO_DUMP #define into the eTPU Development Tool from
the command line (instead of having it in the script commands file) using the following
command line parameter.

" dFI LE_TO_DUMP=\ " MyDat aFi | e. dat\""

There are four quote characters in the command line parameter shown above. The first
and last quote characters are used by Windows to bunch everything between them

together into a single command line parameter which would (for example) allow spaces to
appear within the single parameter.

But the filename, MyDataFile.dat, is a string, and strings must be surrounded by quote
characters in the script commands file. This is accomplished by preceding the quote
character with the backslash character. Windows interprets this backslash-quote
combination literally and the quote character is thereby passed along with the filename into
eTPU Development Tool.

Warning Suppresion Command Line Options

Warning suppression command line options are used to suppress warnings from being
generated.

This is useful for regression testing in which a warning can cause a regression test to fail.

Although warning can also be suppressed in the ‘Messages Options' dialog box, doing so
does not work well in conjunction with regression tests, and here is why. Messages

page 162, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

disabled in the ‘Messages Options' dialog are stored in the environment file. Each user has
their own environment file. So a regression test that might pass when one user runs it
might fail when the other user runs it because one user has a message enabled that the
other user has disabled. So by disabling options on the command line, all users running the
same regression test will get the same behavior.

Note that this is significantly different in DevTool relative to MtDt because MtDt did not
have environment files and therefore MtDt stored these Messages Options in the
(generally common) project file.

The following list shows the value and meaning of each command line warning.

Warning Or M essage D

Behavior Verification Failure 101
Script Command Verification Failure 102
Bad at_time(); script command 103
Divide by zero 104
Obsolete set_cpu_frequency script command 105
A 32-bit script not at double-even address boundary 106
A 24-bit script not at single-odd address boundary 107
A 16-bit script not at an even address boundary 108
A memory-write script failed to write 109
Non-ASCIl character in script command file 110
‘print_pass()' script command 111
Missing source code 112
New HSR issues with prior HSR still set 200
New LSR issues with prior LSR still set 201
Un-Initialized User-Defined Chan Mode (UDCM) Selected 202
eTPU2 code loading into eTPU1 model 203
AU's B bus active, but ignored 204
Semaphore Locked too long 205

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 163

10. Functional Verification

Resenved field 206
Invalid Entry 207
Entry Standard/Alternate Mismatch 208
Invalid PRAM Access 209
Invalid OPCODE fetch 210
Invalid call return 211
Un-flushed call followed by another call 212
MRLE set when MRL==1 213
Race condition detected 214
Invalid TBCR.TCR2CTL Value 215
Invalid TBCR.TCR1CTL Value 216
Event vectoring on output pin unsupported 217
Write of unsupported ETPUSCMOFFDATAR<Not Applicable> 218
Invalid Memory Size 219
Bad CIN field assertion, CIN is ignored in this operation 220
MACH or MACL access prior to operation completion 230
SampleFlags active for a MAC operation 231
Bad combination of BINV and CIN for this operation 232
TPR's LAST, TICKS, and HOLD asserted all at once. 240
TPR.TICK changed before or on TPR.IPH assertion 241
TPR's IPH asserted, then TICKS changed on next cycle 242
TPR's IPH asserted, then LAST asserted on next cycle 243
Setting of TPR.LAST on two contiguous teeth 244
Angle Owerflow TCR2 > (TPR.TICKS+1) * TeethPerCycle 245
TBCR.AM changed while MCR.GTBE is enabled 246
Detection Edge (TBCR.TCR2CTL) mismatches CHO IPAC 247

page 164, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc.

Reference Manual

10. Functional Verification

Bus error 300
Address error 301
Breakpoint instruction encountered 302
Privililedge violation 303
Stack frame error exception 304
Bad Binary Coded Decimal (BCD) number 305
Interrupt with IARB equal to zero 306
Interrupt with duplicate priority & IARB 307
Double Bus Fault 308
Chk/Chk2 exception 309
lll-formed CHK2 or CMP2 bounds par (b1>b2) 310
Legal illegal instruction 311
llegal illegal instruction 312
A and F line emulator exceptions 313
Un-initialized jump register 400
Un-initialized subroutine return address register 401
Un-initialized indexed access base address register 402
Out of bounds RAM access 403
Out of bounds CODE access 404
Invalid opcode 405
Set control register bit 'stcrb’ instruction when control register is read-only due to
‘Control_register_split.cr_shared_ucX being set 410
Writing the 'Condition Register' (ar) as an ALU result. This register cannot be

written as an ALU result. 411
Executing a new SHIFT or MULTIPLY operation before the not-yet-finished SHIFT or
MULTIPLY operation is complete. 412
Accesging the. 'mh' or 'ml' register before the not-yet-finished MULTIPLY or SHIFT 413
operation is still underway.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 165

10. Functional Verification

Shift is out of the valid range which is between 1 and 15 bit positions, 414
ALU Write of the same register being written by the SHIFTER (note: alu result is 415
overwritten, shifter 'wins’)

Bad Shortcut 420
Bad Core Clock Configuration. Set 'ck_per' to 3 (SysClk/4) in dual-core mode, or 1 421
(SysClIk/2) in single core mode. See also 'flash_enable.’

Core execution not enabled. To enable, set 'Flash_enable.pre_flash_enable' 440
Core execution on second core not enabled. To enable, set

' - 441
Flash_enable.en_dual_uc

Code Width too small. Note: 'Flash_enable.Code_width' must be >= 3 442

Checksum failure. See 'Flash_enable.checksum_h' and 'Flash_enable.checksum_I' | 443

VBOOST Owenwltage, the VBOOST circuitry has exceeded the maximum allowed

450

wltage
Waiting on un-initialized wait table row 470
Waiting on un-initialized timer 471
Waiting on un-enabled 'Start Event' (register 'Start_config_reg’, start6_sens_ucX

, 472
through startl_sens_ucXall 0's)
Waiting on un-written DAC 473
Waiting on un-settled DAC 474
Waiting on un-settled OP AMP 475
Bad wait table row (row>5) 476
A 'reqi’ instruction has been executed while the Software Interrupt Senice Routine is 480
already active or pending
A ‘iret’ instruction has been executed but no Software Interrupt Senice Routine is 481
active
A second START interrupt occured prior to completion of an existing SOFTWARE 482

interrupt

Interrupt Senice Routine (ISR) has begun but its handler address has not been
written in (Diag_routine_addr, Driver_disabled_routine_addr, or 483
Sw_interrupt_routine_addr)

page 166, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

10.7.3 Preventing Multiple Rebuilds by Forcing '‘No Build'

The '-NoBuild' Development Tool command line option prevents code from being rebuilt,
even when if the code image is out of date such that the eTPU Development Tool's
internal ‘Make' capability would normally force a code rebuild. This allows (say) a series
of tests to be run on a set of source code without an executable code image getting re-built
over and over again, thereby saving time. Note that this option adds a tad bit of risk that
your code could potentially be out of date and would no longer work correctly if it were to
be rebuilt.

Question: Why not just disable the code rebuild by not passing '-AutoBuild' on the the
command line? Answer - when '-AutoBuild' is not specified on the command line a ‘Make'
occurs in which a build may (or may not) occur depending on the many files' time stamps.
However the make timestamps (currently) go into the environment file (yuck - this should
be changed) which generally don't get saved as part of a regression test suite. So
generally, even if '-AutoBuild' is NOT specified on the command line, your code is likely
going to get rebuilt on every test run. The '-NoBuild' option overcomes this by forcing your
code to not be rebuilt.

10.8 File Location Considerations

Although this discussion is equally applicable to eTPU Development Tool as a whole it is
important to point out how files are located within the context of Regression Testing.

A "project file relative”" approach is used for searching and finding almost all files. This
means that the user should generally locate the project files near the source code and script
files within the directory structure. Consider the following directory structure.

C:\BaseDin\SubDirA\Test. Sm32Project
C:\BaseDir\SubDirB\Test. Cpu32Command

To load the script command file, Test. Cpu32Command, the following option could be used
-s=.\SubDirB\Test.Cpu32Command
By employing this "project file relative” approach the testing environment can be moved

around without having to modify the tests and therefore the files names can be smaller and
easier to use.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 167

10. Functional Verification

10.9

Log File

The log file is written to the directory where the project file is located. However, the -
[f5=<L ogFileName> does accept relative (or absolute) directory information. For instance,
if the following command line option is specified,

-1 f5=..\MySubDi r\ MyLogFi |l e. | og

then the log file will be generated up one directory and then down into directory '"MySubDir'
relative to the project file. So take the following example.

Starting directory where the eTPU Development Tool is called:
c: \ Wor ki ngCode\

DevTool . exe -p=MySubDi r 1\ MySubDi r 2\ Pr oj . ETpul deProj -1f5=..
\ MySubDi r 3\ MyLogFi | e. | og

Then the log file will be generated in the following directory.
c: \ Wor ki ngCode\ MySubDi r 1\ MySubDi r 3\ MyLogFi |l e. | og

Note that the eTPU Development Tool will continue to use that log file in that directory
until it is closed even if the user manually changes to a different project file in a different
directory.

Note that this is different from the way Mtdt worked in that Mtdt always used the 'Current
Working Directory' as the starting point for where the log file is generated.

Test Termination

Termination of eTPU Development Tool and the passing of the test results to the command
line batch file is a key element of Regression Testing. At the conclusion of a script file,
eTPU Development Tool can be shut down using the exit script command, as described in
the System Commands section. This command causes the eTPU Development Tool's
termination error level to be set to be non-zero if any verification tests failed, or zero if all

the tests passed.

The overall strategy in ensuring that a zero error level truly represents that all tests have
run error free and to completion is to treat any unusual situation as a failure. Specifically, a
failing non-zero termination code will result unless the following set of conditions has been
met.

- No verification tests are allowed to fail in any target.
- All targets must have executed all their script commands.

page 168, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

10. Functional Verification

- eTPU Development Tool must terminate through the exit(); script command.
Abnormal termination such as detection of a fatal internal diagnostic error
results in a non-zero error level.

10.10 Cumulative Logged Regression Testing

Cumulative logged regression testing supports the ability to run an entire test suite without
user intervention, even if one or more of the tests fail. This capability overcomes the
problem in which a failure halts the entire test suite until acknowledged by the user. Using
this capability, the alert is logged to a file rather than being displayed in a dialog box.

Test completion occurs when the exit() script command is encountered. At thistime, a
PASS or FAIL indicator is appended to the end of the log file. Because it is appended to
the end of the log file, the normal usage would be to delete the log file prior to beginning the
test suite. Then, upon completion of a test run, the log file grows. At the end of the test
suite, the log file can be perused, and any failing tests are quickly identified.

Note that only certain types of failures bypass the normal message dialog box. For
instance, if the failure log file itself cannot be written, then this generates a failure message
in a dialog box which must be manually acknowledged.

This capability is invoked using a combination of two Command Line Parameters, shown
below.

-LF5=MyL ogFile.log -Quiet

The first command, -LF5=MyL ogFile.log specifies that message are appended to the end of
alog file named, "MyL ogFile.log."

The second command, -Quiet, specifies that the dialog boxes that normally carry test errors
or warnings are not displayed. Note that this command only works in conjunction with —
AutoRun, —IAcceptLicense, and -LF5<LogFileName.log.> If any of these options is not
selected, then this —Quite command is ignored. Note also that if the user halts the
simulation, then this option is disabled such that messages shown in dialog boxes will
require manual acknowledgement.

It is convenient to name each test run. That is, when eTPU Development Toal is launched,
the command line parameter shown below applies a name the test run. This name shows
up inthe log file. This allows the particular test run that is causing any failures to be easily
identified when perusing the log file.

-th=<TestName>

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 169

10. Functional Verification

10.11

Note that command line parameters do not handle spaces will. To include spaces in the
name, enclose the parameter in quotes, as shown below. In the following example, the
name, "Angle Mode" is specified.

"-tn=Angle Mode"

Regression Test Example

The keys to successful Regression Testing is the ability to launch eTPU Development Tool
multiple times within a batch file that runs in a DOS command line shell and to verify within
this batch file that the tests that were automatically run had no errors. These multiple
launches of eTPU Development Tool, and the tests contained therein, form a test suite.

The following is a batch file used to launch the eTPU Development Tool multiple times.
Note that there is only a single target such that no target must be specified on the
command line. Had this been a test running in a multiple-target environment, the target
name would have to be specified along with each script file.

Note that DEV_TOOL_ETPU_BIN is a system variable set by the installer that allows
regression tests to 'find' the installation directory.

echo of f
set EXE=%OEV_TOCL_ETPU_BI NoA ETpuDevTool . exe

%8l M6 - p=M/Pr o] . ETpul deProj -AutoBuild -AutoRun -1f5=SimLog -q -s=Test 1. ETpuConmand
if YERRORLEVEL% NEQ O (goto errors)

98 M6 - p=M/Pr oj . ETpul deProj -AutoBuild -AutoRun -1f5=SimLog -q -s=Test2. ETpuConmand
if 9ERRORLEVEL% NEQ O (goto errors)

@CRO ***hkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkk kKA khhkkkkkk

echo SUCCESS, ALL TESTS PASS

eChO hhkkhkhkhhhkhkhhhhhhhhhhhhkhhhhhhhkhhhhhhkhhkhhhhhhhhkkk
goto end

lerrors

eChO hhkkhkhkhhhkhkhhhhhhhhhhhhkhhhhhhhkhhhhhhkhhkhhhhhhhhkkk
echo YI KES, WE GOT ERRCRS!!

eChO hhkkhkhkhhhkhkhhhhhhhhhhhhkhhhhhhhkhhhhhhkhhkhhhhhhhhkkk
:end

If the above test were named TestAll.bat then the test would be run by opening a DOS
shell and typing the following command

C:\TestDir\ Test Al |

page 170, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

11. Action Tags

11

Action Tags

An action tag is an identifier embedded in the source code as a comment that alerts eTPU
Development Tool to perform a specified action when code execution has reached that
point in the source code. The action tag is "@ASH@". When target code is loaded, the
eTPU Development Tool scans the source code for action tags — thus if the source code
can not be located, the associated action tags will not get activated.

The full form of an action tag includes the action — "@A SH@<action>". Code execution
momentarily pauses when the associated source code is reached, and the requested action
is performed. Simulation then re-starts as if nothing happened.

A few of the supported action tag commands are: print action, timer action and write value
actions.

Action tags that are embedded in source code are associated with the underlying
executable code as follows. The search for executable code begins at the line that
contains the action tag and moves downwards in the source code file. If no executable
code is found at or below the line where the action tag appears, then the search continues
upwards. If there is no executable code associated with the source code file at all, then the
action tag fails.

See http://mww.etpu.org for an example application.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 171

http://www.etpu.org

11. Action Tags

11.1 Print Action Tag

The Print action command is similar to the "C" languages prinf() function, and has
essentially the same syntax. There are two flavors available - the first being
"print_to_trace". The resulting text appears as a line in the Trace window. When coupled
with the @A SH@ action tag in the source code file looks similar to the following.

/[l @\SH@rint_to_ trace("action tag test 1");
/* @\SH@rint_to_ trace("action tag test 2"); */
/[l @\SH@rint _to trace("variable A = %\n", A);

As with the "C" printf, the first argument is the format string. The ASH WARE Print
command uses the same syntax for the format string, which can then be followed by a
varying number of arguments. The Print command checks that the number of conversion
characters in the format string matches the number of parameters that follow the format
string and issues an error if there is a mismatch. The parameters can be constants or
simple expressions (variables). With code compiled using tools that support more advanced
debugging information, simple expressions such as struct.member, structPtr->member,
array[2], and *pointer are supported.

The output of the Print command always goes to the Trace window, and using the
start trace stream(); script command it can also be directed to a file. Directing it to a file
can be extremely useful for verification and automated testing.

IMPORTANT NOTE: although the print action command works via the print_to_trace()
script command, it has a slightly different syntax. The print_to_trace() script command
must have its input encapsulated in a single string, while the print action version has its
format string and any additional arguments NOT encapsulated in an enclosing string.

See the Global eTPU Channel variable Access section for information on accessing
channel variables using the format shown below.

@chan num nanme>. <functi on var nane>

The format specifier, %, is used to denote that a parameter value is to be inserted in the
resulting text. The % character must always be followed by a valid conversion character
such as %d. If the % character is not followed by a conversion character then a warning
message is generated and any automated tests will fail. The % character is generated by
two consecutive % characters.

The other flavor of the Print action commands have the same capabilities, but sends their
output to either a message dialog (thereby pausing simulation), or to a log file if autorun
logging is enabled. See the print() and print_pass() script command documentation for
more detalils.

page 172, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

11. Action Tags

/1 @\SH@rint("action tag print to dialog or log file");
/1 @ASH@ri nt _pass("output a nessage w thout affecting the
simul ator exit code");

11.2 Timer Action Commands

The timer action commands provide a method for instrumenting source code to verify that
time critical paths are being met.

[l @\SH@Q i mer_start("Test 1");

/1 @ASH@ i nmer_stop("Test 1");

The passed parameter is the test name and can contain any text with the restriction that
each test must have both a timer_start and a timer_stop action command. In other words,
timer action commands must come in pairs such that each named test has both a start and
astop. Additionally, only one start and one stap is permitted for each test.

In order for a timing measurement to be considered valid, the following must occur. The
code containing the start tag must be first and the code containing the stop _tag must be
traversed next. In other words, the traversal must occur in pairs of start/stop, start/stop,
etc. If this order is broken (a stop before a start, two starts in a row, or two stopsin a
row) then the action timer is invalidated and any verification scripts that thereafter test the
timers will result in verification failures.

The test tag is case sensitive such that the following tag,
/1 @ASH@ i ner_start (" Test Tag");
is a different test from the following tag
/'l @ASH@ i mer_start ("TESTTAG') ;
On both target-reset and on code-reload, all timing measurements are reset.

Related | nformation

Naming timing regions in source code
Verifying traversal times a script command file
View named timing regions timing using the Watch Window

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 173

11. Action Tags

11.3 Write Value Action Tag

When the source code containing a write value action tag is traversed, the specified
symboalic write value script command (write_val, write_val_int or write_val_fp) is
exercised.

Il @\SH@wite_val ("s24", "0x123456");

/[* @\SH@wite_val _int("varui 32", 0x10101010); */
/1 @SH@Qwite_ val _fp("ratio", 0.232323);

See the Print Action Tag section for more information on referencing channel frame
variables.

page 174, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

12. External Circuitry

12

External Circuitry

This section covers external circuitry.

12.1 Logic Simulation

External logic is used to drive one /O or input pin with other 1/0 or output pin(s). External
logic can include buffers, inverters, ‘and' gates, 'or' gates, 'xor' gates, etc. These external
logic gates are placed using external logic commands within script commands files.

These external logic gates are evaluated on a 'one pass per per instruction cycle' basis and
there is no attempt to elegantly handle a-stable situations. For instance, an inverter that has
both it's input and output connected to the same pin would simply toggle once every
instruction cycle.

There are a number of limitations to the Boolean logic.

There are only two logic states, one and zero.
The logic is simulated with a single pass per instruction cycle.

All output states are calculated before they are written, and therefore all
calculations are based on the pre-calculated states. Thus it takes multiple
passes for state changes to ripple through sequentially connected logic.

All Boolean logic inputs and outputs must be input, output or 1/0 pins.

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 175

12. External Circuitry

- Behavior of pins connected to Boolean logic outputs and also driven by test
vectors is undefined.

Example 1: Driving a Pin with another Pin

In the following script command the output pin which drives the buffers input is the eTPU's
channel 5 output pin (output pin's start at index 32 so channel 5'sis at 37.) The channel
drives the TCR2 pin which is at index 64.

pl ace_buffer(32+5, 64); // eTPU

Buffer created by the
‘place buffer(x,y);
script command

XMIT o—bi

RECV fo————

Example 2: Driving a Pin with the Logical Combination of
Two Pins

In the following multi-drop communications example eTPU channel 5's output pin is a
communications channel output. eTPU channel 7's output pin is used as a gate to enable
and disable the output. eTPU Channel 1's input pin is the communications input. Since the
eTPU's output pins start at 32, a 32 is added to both arguments to designate these as the
output pins. Anidle lineislow. An AND gate is instantiated using the

place_and gate(X,Y ,Z) script command. The gate pin causes an idle (LOW) state on the
input by going low. By going high the gate pin causes the state on the output channel to be
driven unto the input channel.

pl ace_and_gat e(32+5, 32+7,1); // eTPU

page 176, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

12. External Circuitry

‘AND’ gate created by the
‘place_and _gate(x, v, E}J

scnpt cummaﬂd

QUTPUT fo—
GATE C‘.-—

INPUT o

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 177

page 178, eTPU DevTool IDE

13. Workshops

13

Workshops

When debugging multiple targets/cores each will have it's own set of windows. That can be
alot of windows to keep sorted out! Workshops provide a mechanism to group windows
into workshops ... thereby making it easy to show/hide whole groups of windows all at
once. Consider the situation with five windows. These windows have been assigned to
four workshops, 'All’, 'Host', 'eTPU_A", and 'M iscWindows' as shown below.

All windows are always
visible when the "All
workshop is active

- - : Five
!I . ﬂ g ﬂ Host eTPU_A MiscWindows ===-F windows
etpu_util.c Imain.c I Watch] Data Mem : Host] AutoStruct ¢ I N total
| :] 8
/* Copy microcode #*/
code_end = f3 memcpy32((uint32_t*)fs etpu code_ start, code, —
/* Clear rest of program memory */
fz memset32 (code _end, 0, unused code_ ram};
i ff __ SKIP SCM CODE
eTPU->MCR.B.VIS = 0; /* disable CPU writes to eTEU code memor:y
J/* Configure MISC */ el
| | >

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 179

13. Workshops

Say the Host CPU hits a breakpoint. It's workshop is the "Host' workshop which becomes
active due to it hitting the breakpoint. Also, all '‘Host' workshop window become visible and

windows not in the "Haost' workshop become hidden.

The ‘Host’ workshop is selected
indicating that it is the active
workshop. It’s two windows visible

Two windows in the
..IEII ‘Host’ workshop
windows total

etpu_util.c |rﬂa1c:|
| =)
f# Canyg meeracsade
’ bt LI 0OC0dS K|
code_end = fs_memcpy32((uint32_t*)fs_etpu code_start, code,]
* Clear rest of program memory */
fs_memset32(code_end, 0, unused code_ram);
ri SKIF 5CM CODE
eTPU->MCR.B. VIS = 0; /% disable CPU writes to eTPU code memor)
* Configure MISC * 5
1| | 3

page 180, eTPU DevTool IDE

(C) 2012-2024 ASH WARE, Inc. Reference Manual

13. Workshops

It is also possible to activate a window simply by clicking on it's workshop button.

Click here to activate the
‘eTPU_A’ workshop thereby
making it's window visible
. All Host MiscWindows ‘mt
AutoStuct.c I
'/ init globals
|:| g =8 = Dx87;
[g 516 = 0x8765;
[g 524 = O0x876543;
[g =532 = 0x87654321; e
[] g £8 = 0.25;
[] g fi6 = 0.5;
[] g £24 = 0.75;
[] g u8 = Oxfe;
g ulé = Oxfedec: 52
4] | »

'Target-less' workshops are also possible as shown below. The 'M iscWindows' workshop
has two associated windows.

MiscWindow’ workshop has no target/core

Unlike the ‘Host’ and ‘e TPU_A’ workshops, this
Gﬁtiaﬁ(}n_ However, it still has two windows!

BEEX B o e v] @

Watch | Data Mem : Host]
| Symbel | Value | Type | Target
i UNAVAILABLE Host
9832 -2023406815 int32 eTPU_A
832 205419896 _CHANNEL int32 [ACTIVE]
cadd symbol>
1| | i

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 181

13. Workshops

Closely coupled with workshops is the concept of the active target/core. It is generally
best to associate targets/cores with workshops. Thusly, when the workshop is switched,
the active target/core is also automatically switched to the one associated with the newly
activated workshop. The active target/core is important in that eTPU Development Tool
acts on the active target/core in a variety of situations. For instance, when a single step
command is issued, the active target/core is the one that gets single stepped and all other
targets/cores are treated as slave devices and are stepped however much is required in
order to cause the active target/core's simulation to progress by one step. eTPU
Development Tool makes use of the active target/core when a new executable code image
is loaded. Clearly the user needs to have the ahility to select a new executable image into
a single specific target. But which target should this be? The eTPU Development Tool
automatically selects the active target/core as the one into which the executable code
image is to be loaded.

To associate workshops with targets, see the Workshops Options Dialog Box section. In
that section there are descriptions of putting workshop buttons on the toolbar, renaming
workshops or automatically giving a workshop the same name of its associated target, and
associating workshops with targets.

When a target is assigned to a workshop, the windows associated with that target are
automatically made visible within the assigned workshop. It is often desirable to override
this, either to make individual windows visible in multiple workshops or to remove window
from specific targets. See the Occupy Workshop Dialog Box section for a detailed
description of how this is done.

page 182, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

14. The Waveform Window

14

The Waveform Window

The Waveform Window displays signals in a graphical format similar to that of a classical
oscilloscope combined with a logic analyzer. Variables, (including color-coded
enumerations,) analog signals, and digital signals can all be displayed displayed.

The following Waveform Window help topics are available:

Running the simulation from the waveform window

Chooasing signals to display

Viewing a variable as a waveform

Resizing the waveforms' height and width individually, and all together
Resizing a waveform's amplitude manually

Resizing the waveform's amplitude automatically, very cool!
Controlling the view of time manually

Contralling the view of time automatically, very cool!
Enabling/disabling automatic scrolling, avoid annoyance!
Snapping to a transition

Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc)
Viewing eTPU Thread Activity

Executing to a precise time in the waveform, the '"Holy Grail'!

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 183

14. The Waveform Window

Hint: Click this button
to change the signal
that gets viewed

Waveforms |

Direct Injection |

2

g
MyScriptVar | 3
|4 |

start1 | J

™ Auto-Scroll [€] 4]
m 0.000uS

Data Start: 0.000uS Context Time
Left Cursor: 146.436uS Delta Curzor- 605.267uS

@e corresponding to the mouse

Hint: Right-click the mouse
anywhere in this region to run
the simulator to the simulation

location

¥
1.290.586 uS
Cument Time: 1,161.750uS
Right Cursor: 751.703 uS

then click this button to zoom (time) such that the area of the

Holly Grail Hint: Position the Left and Right Vertical Cursors’, ‘
waveform between the vertical cursors fills the entire display area

Digital Signal Waveform
An example of this most basic waveform type is shown below.

page 184, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc.

Reference Manual

14. The Waveform Window

Hint: Use the keyboard’s left and right

I : Hint: Click on the ‘Right
arrow keys to ‘snap’ the active vertical Vertical Cursor’ to switch it ta
cursor to adjacent signal transitions be the ‘active’ cursor
Waveforms |
| B &
]
MhyStartFin |
ik]
™ AutoScrol [€5] ¢] | 2=
0.000uS Mouse: 20,137.552u5
m @ Data Start: 0.000uS Context: 0.000us Cument Time: 16,750.250 uS
IEI Left - 5.010.000 uS Delta Cursor: 8,000.000 us Right Cur=or: 13.010.000 uS

Holly Grail Hint: Hover the mouse
over this button and use the mouse-
wheel to zoom (time) in and out

Analog Signal Waveform

An example analog signal waveform is shown below.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 185

14. The Waveform Window

Wavefoms |

Mylnjector |

Hint: Hover the mouse here
and use the mouse-wheel to
adjust the maximum

in here and use the mouse-wheel

Hint: Hover the mouse anywhere ‘
to vertically zoom in and out

09214

e Mo Scroll [€5] 4] | =
m - 0.000uS Mouse: 1,155.585uS
Data Start: 0.000uS Context Time: Cument Time: 1,038.500uS
Left Cursor: 433563 uS Defta Cursor;: 281.466uS Right Cursor: 715.029uS

Holly Grail Hint: Click here to automatically
change the maximum and minimum such that the
signal fills the entire waveform display area

State M achine State Waveform

The state machine's state is automatically available for viewing. Therefore, unlike
variables, there is no need for it to be enabled before it can be viewed.

page 186, eTPU DevTool IDE

(C) 2012-2024 ASH WARE, Inc.

Reference Manual

14. The Waveform Window

Waveforms

DirectInjection

L

3

FHE]
MES
Em

2
=

State machine’s state at the left
vertical cursor’s simulation time ...
(state 'PEAK_OFF in this case)

Calor-code
state

1

Auto-Scroll [« __|

13.124 uS
Data Start: 0.083uS
Left Cursor: 15.500 uS

Mouse:
Cortesdt Time:
Delta Cursor: 5.167uS

ChEl

PEAK OFF

30473 uS
Cument Time: 28.750 u5
Right Cursor: 20.667 uS

State machine’s state at the
current simulation tlme
(state ‘PEAK_OFF' in this case)

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 187

14. The Waveform Window

14.1 Running the Simulation

(reset if needed and then) run the simulator to

‘ Right-click the mouse anywhere in this region to ‘
the time corresponding to the mouse location

Waveforms |

Mylnjector |

MyScriptVar I

B E
™ Auto-Sorol (€514 | =3
| 4 756 uS Mouse: 1.281.536uS

m E @ Data Start: 0.000uS Context Time: Cument Time: 1,161.750 uS
@ IEI IZ Left Cursor: 350,083 uS Delta Cursor: 357 714 uS Fight Cursor: 747 798 uS

Double-click here to (reset if Double-click here to run forward

needed) and then run the by the difference in time

simulator to the vertical cursor between the two vertical cursors

page 188, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

14. The Waveform Window

14.2 The Vertical Cursors and Snapping

Hint: Press your keyboard's RIGHT or
LEFT arrow key to move this active
cursor to an adjacent transition

Hint: Hold the control key down and press your
keyboard's RIGHT arrow to make this right
vertical cursor the active cursor for snapping.

Waveforms |
&l
]
MyScriptVar | . I— [
4
3 L 4]
I o Sorot [| =3
- 0.000 uS Mouse: 1.309.457 uS
m @ Data Start: 0.000u5 Context Time: Cument Time: 990.583 u5
@ lEI IL_uI IE Left Cursor: 100.083 uS Delta gHmor: 600.000 uS Right Cursor: 700.083 uS
Holly Grail Hint: This ‘Delta Cursor field
gives shows both the simulation time
difference between the two vertical cursors
14.3 Executing to a Precise Time
Hint: Press your keyboard's RIGHT or
LEFT arrow key to move this active
cursor to an adjacent transition
Waveforms
B
PEAK_OFF
;] -
DirectInjection | o
1 |
1 I Auto-Scroll [€=4] _| e
W | 13.124 0S5 Mouse: 30479uS
m E @ Data Stari: 0.083uS Context Time: Cumerit Time: 28.750uS
@ lEI Left Cursor: 15500 uS Delta Cursor: 5.167 uS Right Cursor: 20667 uS

Holy Grail Hint: Double-click here to
run forward by the difference in time
between the two vertical cursors

Hint: Double-click here to (reset
if needed) and then run the
simulator to the vertical cursor

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 189

14. The Waveform Window

14.4 Enabling/Disabling Automatic Scrolling ... CRITICAL!

This is one of the most inconspicuous, BUT CRITICAL, aspects of the
simulator!!! The author notes, 'when | have auto-scrolled disabled, | really, really
need it disabled. And conversely, when | have it enabled, | really, really, need it
enabled.” We are not quite talking defending the free world from the horde at the gate.

But still, to use the simulator effectively, you really do need to understand how to use this
key feature!

Waveforms |

Trigger | j
Select 'auto-scrall' to continuously update the view so as to ’ ‘ ’ | I | I ‘ | ‘
show the very latest simulation time. —

De-select ‘Auto-Scroll’ to 'lock’ unto a specific region of time. |

I LU

_ (&
I fifo- C=Kl | 2+ =¥
m @ 0.412uS Mouse: 29.505u5
- Data Start: 0.000 uS Context Time: Current Time: 26.840uS
@ B Left Cursor: 2.333uuS Doelr:taaéurs":r: 23 678uS Figﬂ&l::— 26012 LL.Is

Should 'Auto-Scroll' be enabled?

The answer very 'situational’.

If you want the waveform window to continuously track and display the very most recent
information, then enable 'Auto-Scrall'.

If you want to focus on something that is happening at a specific region of time and want

execute over and over again within that time region, you definitely want to disable 'Auto-
Scrall'.

14.5 Choosing Signals to Display

Click the mouse on any button on the left hand side of the waveform window. The

Waveform Signal Options dialog will open from which any of the available signals can be
viewed.

page 190, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

14. The Waveform Window

On of the most powerful features of this tool
is the ability to display variables
(and color coded state machine states)
(and color-coded enumerations)
as waveforms alongside the other signals in your simulation!

However, in order for a variable to be viewed, it first must first be enabled which is done
by right-clicking the variable, and select it for viewing as a waveform, in one of the
variable-viewing windows. The variable-viewing windows are the the "Watch' window,
the 'Local Variable' window, the 'Channel Frame' window and the 'Script V ariable’
window.

Note: The state machine state is automatically stored so, unlike normal variables, it does not
need to be first enabled for viewing.

Important: storing variables for viewing can slow the simulation considerably. It is
therefore recommended that this number be limited to under a half dozen. However, if you
do need to view more variables, a great book is 'Boys in the Boat'.

Click here to open
the Waveform Signal
Options’ dialog

Trigger || j
Pulsel | ||||||||||

My ScriptVar |

4
AllThreads | "" I|"| || “ || H H

Waveforms |

) il
™ Auto-Scrol E=kl] NE
0.412uS Mouse: 25505uS
m @ Data ;al: 0.000uS Coolrlh:d Time: Cmerll:'l"m: 26.840uS
@ lEI E] Left Cursor: 2.333u5 Delta Cursor: 23.678uS Fight Cur=or: 26.012uS

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 191

14. The Waveform Window

14.6 Viewing a Variable as a Waveform

Variables are NOT stored to the waveform data buffer by default. Therefore, in order to
be viewed, THE VARIABLE MUST FIRST BE ENABLED FOR VIEWING! This
is done from the 'Watch Window', the 'L ocal Variable Window', the 'Channel Frame
Window', or the 'Script Variable’ window. Right click on the variable and select the
variable for viewing in the popup menu as shown below.

Right-Click on the vanable here ‘
to open the popup menu

Script Variables | Waich | Selgct here to view th:_e variable
in the waveform window

| View Variable In Waveform Window |

Reset Columfyiaw this variable in the waveform window |
Close

Foat This Tab

page 192, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

14. The Waveform Window

The variable’s value cannot be recovered for simulation time prior to when
the simulation was run. This complete wavefarm is available because the
simulation was reset and rerun after the variable was selected for viewing.

Waveforms |
B
||
My ScriptVar | L
L I
FI[@]F Aot @Rl r =)
m@@ 0.000uS Mouse: 1,188.839u5
Data Star: 0.000uS Context: 0.000 uS Cumrent Time: 1,079.500 uS
@IEIIE Lel’tCumr]DﬂDSBuS 4 Del{taaCursor: ;ﬂﬂ.ﬂﬂﬂuS.S Fﬁj‘lCu::;.SDD.DSEuS.LlI

14.7 Resizing Waveforms Height and Width

Waveforms can be resized individually and all together as a group.

On the left edge of the waveform display area (see below) is a region that allows the
waveforms' width to be resized. When the cursor changes shape as shown below press
and hold down the left mouse button to resize.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 193

14. The Waveform Window

Waveforms

15124

HOLD OFF

_ Il
™ Auto-Scroll [€5 4] | =3
m E] 0.000uS Mause: 1.290586 uS

— Data Start- 0.000uS Context Time: Cumrert Time: 1.161.750uS
@ |E| IZ] Left Cursor: 146.4;6 us Dnelr:a Cur:t:: 605.267uS ﬁgim:: 751.703 usu

At the bottom edge each waveform there is a region that allows the waveform height to be
resized.

Waveforms |

Mylnjector

DirectInjection

2
8
MySciptvar | |

PR
start1 J
I Ato-Scrol [5]4] O =¥
m E E] 0.000uS Mouse: 1.290.586 uS
= Data Start- 0.000uS Context Time: Curert Time: 1.161.750uS
@ |E| IZ] Left Cursor: 146.4;6 us Dilha Cur;nt:: 605.267uS ﬁgim:: 751.703 usu

Note that it is possible to resize the height of all of the waveforms together. This is done
(first) by resizing one waveform, then using the 'Equalize Waveforms Height' selection
from the popup menu.Enter topic text here.

page 194, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

14. The Waveform Window

14.8 Resizing a Waveform's Amplitude Manually

Hint: Hover the mouse here
and use the mouse-wheel to
adjust the maximum

Waveforms |

Hint: Hover the mouse anywhere
in here and use the mouse-wheel
to vertically zoom in and out

814 A

__wﬁLJ 34534

Ao e e e e e f e e i o i

v

446 A
™ Auto-Scroll [€5] 4]]
m E @ 431.373u5 Mouse:
=T Data Start: 0.000uS Context Time:
IEI E] Left Cursor: RMJ';S uS Doelta Cur::: 38.632uS

13614

Holly Grail Hint: Hover the mouse here and
resize the waveform by holding the left
mouse button down and dragging up or down

14.9 Resizing a Waveform's Amplitude Automatically

Wavefoms |

43144

AN AN AT AW AW AN AN AWANAN
Click here to automatically adjust the waveform’s

min and max to bring the entire waveform between -3453A

the far-left and far-right display into view

0446 A J_ | D.DDDAj
S L r| N=3
m 431373 u_s fv1c.usn.3: . 603835 uS _
[0]pd I e e v
Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 195

14. The Waveform Window

14.10 Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc.)

The eTPU Channel Flag states are (MRL_A, MRLE_A, TDL_B, etc.) displayed as
horizontal color-coded lines. When a line is visible it indicates that the corresponding eTPU

channel flag is set.

Green Line
indicates
‘MRLE_A is set

Waveforms |
Pulse1 I
54 " Auto-Scrol
m l:] Mouse: $7.839uS
Start: 0.000uS C Time: Currerit Time: 150.820 uS
[T Cursor: 9380305 Deta Cursr: | Fight Cusor. 98,0265

Blue line indicates
‘MRLE_B’ is set

NO blue line indicates
‘MRLE_B’ is cleared

MRL_B set briefly here
... but quickly cleared
by a thread

page 196, eTPU DevTool IDE

(C) 2012-2024 ASH WARE, Inc.

Reference Manual

14. The Waveform Window

14.11 Viewing eTPU Thread Activity End

Thread activity can be viewed as a waveform as shown below.

HINT: to measure a thread length,
snap the vertical cursors to the
beginning and end of the thread

Trigger Threads I

. T
L

Waveforms

Pulse 1Threads | H
I Auto-Scrol [| =
| =< 2317uS Mouse: 28.552uS
== Data Start: 0.000uS Contest Time: Cumrent Time: 150.820

B Left Cursor- 19_42unus Delha&Cur;n;: 0.440u8 ﬁgﬁ:u:; 1f:1_s:snu;I
‘LOW’ indicates that This thread is ‘HIGH' indicates that
no thread is active active for 0.440 athread is adtive for

for this channel micro-seconds this channel
Reference Manual (C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 197

14. The Waveform Window

14.12 Controlling the View of Time ... Manually

Hint: Hover the mouse here
and use the mouse-wheel to
adjust the left-edge time

Waveforms |

Holly Grail Hint: DOUBLE-CLICK anywhere in here then
use the wheel-mouse to zoom (time) in/out align centered on
the mouse, which can be moved horizontally. TRY THIS!!

4 4

N ANNNNYSNYSN \/
Mylnjector | -3453A

PPN S SN N N N

13614
ol fa 0.000 A o
™ oot [o ' =3
m E @ 43187308 Mouse: 603.895uS
= Data Start: 0.000uS Context Time: Cument Time: 1.198.833 uS
lEI Left Cursor: 504 175uS DeltaEursor: 3863208 Right CuEUr 542 807 usS

Hint: Hover here and use the
wheel-mouse to zoom-in/out right-
aligned on the right vertical cursor

Hint: Hover here and use the wheel-
mouse to zoom-in/out center-aligned
at the two vertical cursors’ midpoint

page 198, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

14. The Waveform Window

14.12.1 Displaying Behavior Verification Data

Behavior Verification Data appears as an overlaid yellow line as shown in the top
waveform.

Good
First
Pulse

Expected
Third Pulse
MISSING!

Third Pulse
Unexpectedly
occurred here

Pulse3 | j

_BowEmoe |

Waveforms |

_Ebv Diff |

™ Auto-Scrol =14 |

m |:] E] 28.028uS Mouse: 42587 u
Data Start: 0.000 Context Time: Cument

@ lEI El Left Cursor: g Dellta&Curso: 0.000uS Right

_EbvDiff shows the "XOR’ of the actual
signals with the previously-recorded
signals from the ‘Behavior Verification’ file

between the previously-recorded signal values from the
‘Behavior Verffication’ file and the signal values from the

‘ _EbvError shows the error boundaries (mismatches
current simulation run

The _EbvDiff and _EbvError waveforms show where differences and errors in the
behavior verification data. These signals are a logical 'or' of all channels errors such that if
there is an error or difference in any of the channels then the signal is active (high.)

The reason that _EbvError and _EbvDiff are not identical is because of the tolerance that
is allowed in each of these channels. See the Pin Transition Behavior Script Commands
section for a description on setting up global and pin-specific behavior verification
tolerances.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 199

14. The Waveform Window

14.13 Controlling the View of Time ... Automatically

Waveforms |

814 A

NN YNINRS

Mylnjector | A
Click here and the simulator will read your mind and automatically zoom
to the time region you are most interested in seeing. (Patent pending —
don’t laugh, | already made a down payment on a red Porsche) 1A

L 0.000 A j

: E 2=
1] @ 431373uS Mouse: 603.895u5
1 [Data Start: 0.000uS Context Time: Cumreni Time: 1.198.833 uS
@ lEI Left Cursor: 504 175 uS Delta Cursor: 38.632 uS Fight Cursor: 542.807uS

page 200, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

15. Operational Status Windows

15

Operational Status Windows

The target state is displayed in various operational status windows. These windows
correspond to the various functional blocks associated with the specific target. Each of
these windows can be floated, docked, scrolled. Depending on the window type, multiple
instances of each window may be opened.

15.1 Source Code Windows

The source code windows are the focal point of the eTPU Development Tool. Capabilities
such as single stepping, breakpoints, setting and going to bookmarks, dragging variables into
the watch window, and may more are all accessed from source code windows. Some of
the major source code window features are shown below.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 201

15. Operational Status Windows

Programming Model ¢ .
|:| else if(IsMatchBOrTransitionAEvent ())
{

|:| ClearMatchAEwvent () ;

ClearMatchBEwvent():
D if(++CurrentPulseCount < PulseCouw Toggle between

Breakpoint { ‘Text-Search’ and
@[] LastRisingEdge = exrtA: 'Normal view
:| ertA = LastRisingEdge + Gap;
] ertB = LastRisingEdge + Gap + PulseWidcth:
WriteErtAToMatchAAndEnable () 2
WriteErtBToMatchBAndEnable () 2
} _
HINT: Click on a
= MyArray[1]++: ‘Marker' to scroll to
e myStruct. memberls+; that line!
Bookmark | myStruct. member2--;

l if(myStruct. member2 > 7)
l myStruct. charMember -= 5;

else
l myStruct. charMember += 25;

H
I else {} Error Recovery Code
¥

Markers:

‘Breakpoint’, ‘Current

| Line’, and Bookmark.

Code Coverage Indicators

Verifying test suite code coverage is a critical aspect of testing your code and is described
in the Functional V erification section. Code coverage indicators provides a quick

visualization of code coverage as shown below. A code coverage indicator box changes
color from white (not executed) to black (fully executed) as shown below. See the Code
Coverage Visual Interface section for more details.

page 202, eTPU DevTool IDE

(C) 2012-2024 ASH WARE, Inc. Reference Manual

15. Operational Status Windows

Fully Covered
(White) !
Partially
Covered

Not Covered
(Black)

ProgrammingModel ¢ |

[

{

{

Hm] &0 O =

}

1]

MyArray[0]++:
else if(IsMatchBOrTransitionAEvent())
ClearMatchAEvent () 2

ClearMatchBEvent () 2
if(++CurrentPulseCount < FulseCount)

MyhArrav[1l]++:

[

LastRisingEdge = erch;

ertAh = LastRisingEdge + Gap;

ertB = LastRisingEdge + Gap + PulseWidch:
WriteErtAToMacchRAndEnable ()
WriteErtBTocMactchBAndEnable ()

]
o

Mixed Assembly View

Right-click in any source code window and select the 'Toggle Mixed Assembly' option to
view the source code in mixed source assembly view as shown below.

Address

AutoStruct c | Ahgs I

Opcode
{hex)

High Level Assembly
Source Code

=

¥

o0
(T
Jd 0O
\&

g_sl&e =

HEE Bl Bl EE (] [

g f24 =

jfé/ >
g =8 =0

Ox87865;

0x876543;

Ox87654321;

. 4
+ D3 .
[
&

~

Close
Close All
Close All But This

Right Click in
Source Code

window to open
this popup menu

Ocoupy Workshop ...

Goto Cursor
Toggle Breakpoint

Fa

Toggle Mixed Assembly | . -~“Cl+F3 ||
ok

Cut IToggIe the view of the currently active source co

i

Reference Manual

(C) 2012-2024 ASH WARE, Inc.

eTPU DevTool IDE, page 203

15. Operational Status Windows

15.2 Script Commands Window

Script commands file perform many of executive tasks required in a simulation such as
initialization, verifying and modifying memory, verifying and modifying registers, etc. A list
of the available script commands functional groups is given in the Script Commands
Groupings section.

Toggle between
‘Text-Search’ and
‘Normal’ view

ngmmmthmkﬂEiEﬁmihnmiﬂ]

HINT: Click on a
Marker to scroll to
that line!

B[Eﬂkﬂﬂ"ﬂ) // save off only the fuel injection ocutput asignals

// add ebehavior pin commands must immediately fol
add_ebehavior pin("Pulsel®):
add ebehavior pin("Pulse2"):
add _ebehavior pin("Pulse3"):

add ebehavicor pin("Pulses™):;

Markers:
‘Breakpoint’, ‘Current
Line’, and Bookmark.

run ebehavior file("Engine Injection.EBV");

// CRERTE EBV FILE

Mhz (10 ns/clock —->1e7 Fen

/f Set the clock

Bookmark | set cik period(10000000);
4| | _'l_l

= O

Primary Script Commands Files

The primary script commands file is the 'main banana'. It is used to perform most of the
administrative tasks during a simulation such as initialization, specifying behavior
verification files, verifying that operational parameters are met during a simulation, etc.
Most of the debugging capabilities available to source code files such as single stepping,

page 204, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

15. Operational Status Windows

‘goto cursor', etc., are available. See the Script Commands File section for more
information.

ISR Script Commands Files

An ISR script commands file is associated with an interrupt and executes when an
interrupt is issued. Multiple ISR script commands files may be open at once, but only a
single ISR script commands can be associated with each eTPU channel. However, each
ISR script commands file can be associated with multiple TPU channels. See the Script

I SR section for more information.

15.3 Watch Windows

52 MyBdm32: Watches M=l
global data 0 zooaszlsovl Ox77?7TIINT
global array[7] o 7z H
packet . size u 13 Oxd
i o 1z Oxd [register DZ]

ol
o
A i

The Watches window displays symbolic data specified by the user. Both local and global
variables can be displayed within this window. See the Local V ariable window to
automatically display local variables.

The Watches window has a user-specified symbol on the far left. This is the symbol
whose resolved value will be displayed. To the right of the user-defined symbol is an
options button. This button accesses the Watch Options dialog box. In future versions of
this software, this dialog box will allow individual settings for the watch to be specified.

To the right of the options button is a vertical separator bar. Y ou can drag the vertical
separator bar left or right using the cursor. To the right of the vertical separator bar is the
symbol resolution field. If a value from the user-specified symbol can be resolved, then this
field is automatically displayed. Otherwise, a message is displayed indicating that the
specified symbol could not be resolved.

The user can edit the user-resolution field. In future versions of this software, this will
cause the actual variable values within the targets to be modified.

Symbolic Data Options

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 205

15. Operational Status Windows

The Watches window supports both global and local variables. V ariables are resolved by
looking at the innermost local scope first, followed by any outer scopes, in order, then
followed by any static variables, and finally the global scope.
Currently, a subset of C syntax is supported for the left-hand side symbol input:

- Pointers can be dereferenced with the '*' operator.

- The address of variables can be found with the '&" address operator.

- Array elements can be accessed with the '[]' operator, where the subscript is
an integer.

- Structure members can be accessed viathe '." or '->' operators.
In the current release, only a single operator per watch is supported. Future versions will

support a more full-feature C syntax. Note that code must be compiled with symbolic
debug information for this functionality to be available.

See the Global eTPU Channel variableA ccess section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

Viewing Named Timer Region I nformation

Code can be instrumented with named timing regions. Traversal time information across
these regions can be viewed in the watch window using the following format.

@AshTi mer . Ti mi ngRegi onNane

The traversal time and the number of system clocks in the last traversal are listed. Also
the number of times traversed and the cumulative amount of time spend in the regions is
also listed. Depending on the target the number of instruction cycles spend in the traversal
region may also be listed.

Viewing Print Action Command Output

Print action commands support instrumentation of code to output code execution
information. Think printf. This information is normally output to the trace buffer, and from
the trace buffer can be piped to trace files for post processing. Bt it is also possible to
view this information in the watch window using the following command.

@\shTi mer. Format String

Where the format string matches exactly a Print Action Command' s format string from
within the source code.

page 206, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

15. Operational Status Windows

See the Print Action Command section for more information on how to instrument your
code.

15.4 eTPU Channel Frame Window

Channel Frame : Pulse3 I

Channel IF'LI|SE:3 j
| Symbal | Value | Type
Delay 1024 _CHAMMEL int24
PulseWidth 48 _CHAMMEL int24
Gap 101 _CHAMMEL int24
PulseCount 3 _CHAMMEL int24
= Myfmay (451 _CHAMMEL int24]]
Wy Amray 0] 258 _CHAMMEL int24
My Amray]1] 275 _CHAMMEL int24
Wy Amray[2] RdG _CHAMMEL int24
= myStruct (bedSc _CHAMMEL struct MyStruct
myStruct._member) _CHAMNMEL int24
myStruct._memberZ G _CHAMMEL int24
myStruct._charMember 60 °< _CHANMEL unsigned char
Cumrent PulseCount 3 _CHAMMEL int24
< | H

The Channel Frame window shows the channel function and static local variables
belonging to a particular channel. Select the channel from the dropdown box.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 207

15. Operational Status Windows

15.5 Memory Dump Window

Text Markers
Pane Pane

Address
Pane

Detect CEM.c | INJ4 Data Mem

Bookmarked B
Address

Miscellaneous capabilities
To access the 'Goto Address' dialog, double click an address box.

General navigation - use the keyboard's up/down, page-up/page-down, Home, End keys.
Also, use the mouse's scroll bar or click anywhere in the markers pane, also, click on a
marker to view it.

To goto the first data in the row - hit the 'Home' key twice.

To go to address zero - hit the 'Home' key three times.

page 208, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

15. Operational Status Windows

To goto the last address in the row - hit the 'End' key twice.
To go to the last address in memory - hit the 'End' key three times.

Editing - Edit any data box to change it's value (only alphanumeric values are accepted).
Edit in the text pane (most keystrokes are supported).

Bookmarks

Bookmarks are used to quickly restore different views into the data memory. Stored view
information includes selected address, the first row in the window, and active row within
the window. The intent is to restore all aspects of the window layout. Bookmarks appear
as little blue boxes in the 'Markers' box.

To toggle a bookmark - double click on any 'Data Box'
To goto a bookmark - click on the marker in the markers window.

Additional bookmark navigation and hot-keys. Right click to bring up the popup
menu the various capabilities and associated hot keys are listed.

Copy/Paste

M ulti-Select - Hold the left mouse key down and select desired test. Note that the
address and text fields can also be selected.

M ulti-Paste - Multiple data's can be pasted from the window's clipboard. Data must be
white-space or comma separated. Numbers are interpreted as decimal unless either a
leading 'Ox' is detected or the number contains [a-zA-Z] characters. Out of range numbers
are masked. The paste start is the cursor's address or the first address of the multi-select
(if any).

Exanpl e clipboard: 0x1234, 0x4567 abcd

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 209

15. Operational Status Windows

.Dete:t_CEM_cl INJ4

o720 0000 0000 01CE 0000 e B B B
0730 7 ot} PRSP R SN
0740 7ECD CE 0108 ~leceleccloeaT0
0750 0000 0000 U, RN, RRIN § S
0760 0000 0000 0000 SRR NP ; SR ; IO
a770 e Fo e B e
0780 e
0730 ~~~wlucky are tho
O7A0 ge who get to us
0780 e ASH WREE's AWE
a7ca SOME DewTool IDE
0700 111 ETEC is th
07E0 2065 5450 5520 43&6F &D70 e best eTEU Comp
07F0 G36C 2061 766l 696C 6162 6065 ZEZ0 iler aveilsble.
0800 044 7465 7374 2063 &FE4 E5ZE 2020 Fastest code._
0810 4561 &E T36F &DES 7374 2064 €576 8C Handsomest dewel
O0B20 &F70 657Z ZEQOOD 0205 0000 0Z0% 0000 OZ0B

OB3@ 0000 02Z0C 0000 020D 0000 O20E 0000 OZ0F

0840 0000 0210 0000 0211 0000 0Z1Z 0000 0213

Pasting text is supported in the "Text Pane'
Views

Address field can be 1, 2, or 4 bytes per address LSB thereby supporting ‘| ndexed'
addressing.

Datafield canbe 1, 2, or 4 bytes wide.
Text Field can be enabled or disabled.

page 210, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

15. Operational Status Windows

15.6 Local Variable Windows

Local Varables |

| Symbaol | Walue | Type |
Delay 336 _CHAMMEL int24
FulseWidth 43 _CHAMMEL int24
Gap a5 _CHAMMEL int24
FulseCount B _CHAMMEL int24
LastRisingEdae 836 irt 24 [reqister sr]
= Myfmay (ed 11 _CHAMMEL int24]]
Why Ay 0] 257 _CHAMMEL int24
My Amay|1] 274 _CHAMMEL int24
Wy Amay|Z] 546 _CHAMMEL int24
= | myStruct ed1c _CHAMMEL struct MyStruct
myStruct._member G _CHAMMEL int24
my'Struct._member? 15 _CHAMMEL int24
myStruct._charMember 45" _CHANMEL unsigned char
Cument PulseCourt 1 _CHAMNMEL int24

The Local Variables window automatically displays all local variables in the current
context, along with their current values. Variable names are listed in a column on the left-
hand side of the window. Values are displayed in a matching column on the right-hand
side. The displayed format is relevant to the variable type. Additionally, if the variable is
assigned a register, the register is output.

Based upon type, variables are automatically expanded. For example, if a variable is of
type int*, the dereferenced pointer is displayed on the next line as an integer. Default
expansion is up to three levels deep, with pointers, arrays, and structures/unions/bitfields
supported. An alternative expansion level can be specified.

Future enhancements will give the user control over expansion and collapse of variables.
Note that in order for this feature to be available, code must be compiled with symbolic
debug information.

In order for this window to correctly identify and display local variables, the proper options
for each compiler must be chosen. For instance, debugging information needs to be
included and certain stack frame requirements must be met. In certain cases, highly
optimized code may cause erratic behavior in this window. See the ASH WARE Web

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 211

15. Operational Status Windows

15.7

page for a detailed explanation of the correct compiler settings for each target, and
limitations when using certain specific compiler settings.

Note that as the target executes, the contents of the Local V ariables window will usually
change quite a bit. This is because each function generally has a unique set of local
variables that are displayed. As the target moves from function to function, only the local
variables of the currently executed function are displayed.

Global variables are not displayed within this window. See the description of the Watches
window for information on how to display global variables.

Breakpoint Window

File Name Line Hit Cnt Hit Trg Hit Lmc Condition Retion

MeasurePulse.c (C:\GIT\ASH... (33 [i==0 10

GatedPwm.c (C:\GIT\ASHWARE __ 82 0 always 1 errorState = INPUT_PULSE_TOO_SHORT print_to_trace("edge time = 0x%x", ertd);
GatedPvmTest .ETpuCormand (... 34 0 always 1

<e @

The Breakpoint Window displays all the source and script file breakpoints, and provides
access to enhanced breakpoint capabilities. Breakpoints must initially be toggled on
(created) from within a code/script editor window, by clicking on the left margin at the
desired line. Once created, a breakpoint can be toggled off by left-clicking on the
breakpoint icon. All other breakpoint attributes and capabilities are available within the
Breakpoint Window, once a breakpoint is created.

All breakpoints from all targets and files are listed in the Breakpoint Window. It contains 8
columns. The first column indicates the breakpoint active status - clicking on this item
toggles a breakpoint between enabled and disabled. Disabled breakpoints are ignored
when simulation is running. Note that breakpoints can be completely deleted from within
the window by selecting a breakpoint line (or multiple lines) and hitting the Delete key.

The second and third columns provide the file and line of the breakpoint. Left-clicking on
either of these fields will cause the file to operv/pop to the front of a tab, and scrall to the
breakpoaint.

The seventh column allows for a conditional expression to be entered for the breakpoint
(source code breakpoints only). When execution reaches the breakpoint, the expression is
evaluated. If it evaluates to a non-zero value, then the breakpoint is considered a "hit",
whereas a zero result means execution continues and the breakpoint is ignored.

page 212, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

15. Operational Status Windows

The fourth to sixth columns provide a hit count capability for breakpoints. This capability
comes into play after a conditional expression is evaluated, if any. The fourth column
displays the number of times the breakpoint has been encountered since simulation reset.
The user can manually edit this field. The sixth column contains the hit limit value for the
breakpoint (default of 1). This value can be used in conjunction with the hit count and the
hit trigger type to determine whether the breakpoint should activate or be skipped. The hit
trigger type is configured in the fifth column. The default is "always", which means the
breakpoint should always activate, regardless of hit count or limit. The other trigger types
are">=","==","<", and "%=0" (modulo). For example, for the first, if hit count >= hit limit,
then activate the breakpoint. The modulo trigger type activates when (hit count % hit limit)

The last column allows for the entry of a breakpoint action. This is essentially the same as
the action tag capability, but linked to a breakpoint rather than an @ASH@ tag in the
source code text. If a breakpoint passes its other tests and is set to activate, the logic
checks to see if there is an action to process. |f no action, the breakpoint halts execution
as per normal. If there is, the action is processed (see the action tag section for the
available commands), and if it succeeds, the breakpoint does not actually activate and
execution proceeds.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 213

page 214, eTPU DevTool IDE

16. Dialog Boxes

16

Dialog Boxes

This section covers the various dialog boxes used throughout the eTPU Development Tool.

16.1 Goto Time Dialog Box

The Goto Time Dialog Box is opened via the Run menu by selecting the Goto Time
submenu. It provides the capability to execute the eTPU Development Tool until a user-
specified time.

There are two types of Goto time options, one of which must be selected.

Goto Until Time

This sets the eTPU Development Tool to execute until an absolute (simulation) time is
reached. The simulation time is initially set to zero. The simulation time is reset to zero via
the Run menu by selecting the Reset submenu.

Goto Current Time, Plus

This sets the eTPU Development Tool to go to the current (simulation) time plus some
user-specified additional time.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 215

16. Dialog Boxes

16.2

User-specified time is entered as thousands of seconds (ksec), seconds (secs), milliseconds
(ms), microseconds (us), and nanoseconds (ns). Note that the eTPU Development Tool
resolution is one instruction cycle.

Help

This accesses this help window.

Goto

This closes the Goto Time dialog box and runs the eTPU Development Tool until the
specified time.

OK, Save

This closes the Goto Time dialog box and saves any changes. The eTPU Development
Tool remains idle.

Cancel

This closes the Goto Time dialog box without saving any changes.

Goto Angle Dialog Box

The Goto Angle Dialog Box is opened via the Run menu by selecting the Goto Angle
submenu. It provides the capability to execute the active target until it gets at or beyond
the specified angle. The eTPU must be in angle mode (AM=1) in order for this to function

properly.

This dialog box uses the TCR2 counter, and user-defined angle indices to calculate the
angle. See the eTPU Time Base Configuration Script Commands section for setting the
angle indices.

The ‘Cycles’ field refers to the number of times the angle has rolled over. For example, in
an automobile engine, two rotations constitutes one cycle. The angle therefore goes from 0
degrees, to 720 degrees, then rolls over back to zero degrees. ‘Cycles’ is the count of these
rollovers.

The current angle can be seen in the status bar at the bottom of the IDE.
Goto Until Angle

page 216, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

16. Dialog Boxes

This sets the active target to go to an absolute (simulation) angle. The simulation angle is
initially set to zero. The simulation angle is reset to zero via the Run menu by selecting the
Reset submenu.

Note that if the desired stop cycle and angle has already been traversed, then the Cycles
field is ignored and the simulation is halted the next time the specified angle is traversed, in
either the current or next cycle.

Goto Current angle, Plus

This sets the additional angle to which the active target will be run. The angle to which the
active target will run is the current angle plus the specified delta angle.

Help
This accesses this help window.
OK

This closes the Goto Angle dialog box and runs the simulator until the simulator is at or
beyond the specified angle in the active target.

Cancel

This closes the dialog box without saving any changes.

16.3 Workshop Options Dialog Box

Each window is assigned to one or more Workshops.
Only one Workshop is active at a time.

Only those windows assigned to the active Workshop are visible, all other windows are
hidden.

Each workshop has a button. To change the active workshop, click on it's button. This
changes which windows are visible and hidden.

All windows are visible in the 'All" workshop.

In a multi-target environment, each target get's it's own workshop. When a target stops
(for example when a breakpoint is hit) that target's workshop is automatically activated and
it's associated windows are made visible.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 217

16. Dialog Boxes

16.4

Hard-Coded ‘Al
x||| workshop. Cannot be
renamed. When active,
all windows are visible.

be disabled. However, in a multi-target/core

In a single-target/core simulation workshops can ‘
simulation, workshops are always enabled.

r— Enable/Disable All Workshops

& Enzble € Dissble [a /

¥ |Host —_— Hard-Coded
— Explanation F FTrUA Target/Core workshop

Each window is assigned to one or more Workshops.

¥ [MiscWindows

Only one Workshop is active at 2 time. User-named workshop.
I ws4

Only those windows assigned to the active Workshop are visble, all I It has no ‘?'99”50'9

other windows are hidden. S5 association.

Each workshop has a button. To change the active workshop, click
on it's button. This changes which windows are visible and hidden

’ - Select here to make
Al windows are visible in the "All' workshop. the workshop
In & muttitarget environment, each target get's t's own workshop. button visible

When a target stops for example when a breakpoint is hit) that \I‘—rrm——’/

target’s workshop is automatically activated and it's associated

windows are made visible. I |wsi0
I [wsn

I |wsi2

C |wsi3

C |wsia

Ok | Cancel | Help | | Jws15

Related | nformation

The 'Workshops' section
The "Workshops Occupy' section on how to assign windows to workshops

Occupy Workshop Dialog Box

The Occupy Workshop dialog box provides the capability of specifying for individual
windows which workshop(s) the window will be visible.

OK
This closes the dialog box and saves any changes.

Cancel

This closes the dialog box and discards all changes.
Help

page 218, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

16. Dialog Boxes

This accesses this help window.

Occupy All

This causes the window to be visible in all workshops.
Leave All

This causes the window to not be visible in any workshop. This should be treated as a
shortcut for clearing all selections. Note that this is not the same as closing the window as
the window will still exist within theeTPU Development Tool .

Revert

This causes any settings made since the dialog box was opened to be discarded.
Options

This opens the Workshop Options dialog box.

16.5 Message Options Dialog Box

The Message Options dialog box provides the capability to disable the display of various
messages. These messages warn the users in a variety of situations such as a failed script
verification command failure or when suspicious code is encountered.

16.6 Source Code Search Dialog Box

The Source Code Search Options dialog box is opened from the Options menu by selecting
the Source Search submenu.

When the executable image is loaded, there are normally a number of source code files
associated with the executable image that get loaded. The eTPU Development Tool
needs to be able to find these files. This dialog box allows specification of source code
directories to be searched when searching for these source code files.

The search locations can be specified for each individual target, and for all targets globally.
Specifying global search options is useful in situations in which multiple targets are using
the same directories for their library files.

When searching for a source code file, the following algorithm.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 219

16. Dialog Boxes

e If the path to the file is fully-specified (e.g. c:\SomeDir\SomeFile.c) use that if the
file exists there.

e If the path is partially specified (e.g. ..\OneUpDir\SomekFile.c) resolve the path
relative to the code image file. For instance, if the code image file is at c:
\SomeDin\SubDirn\Codel mage.Elf, then check for this file c:
\SomeDir\OneUpDir\SomeFile.c

o If the source file is still not found, use the raw file name (strip any prepended
directory information) and search in the directory where the executable image file is
located.

e |f the source file is still not found, use the raw file name (strip any prepended
directory information) and search for the file in the directory(s) listed in the 'Selected
Targets' directory search list, starting from the top-listed directory.

o |f file is still not found, use the raw file name (strip any prepended directory
information) and search for the file in the directory(s) listed in the 'All Targets
directory search list, starting from the top-listed directory.

Add

This button inserts a new directory into the search list.

M odify

This button modifies a previously entered search location.
Delete

This button removes a location from the search list.

Cut

This button removes the currently selected search location from the search list, and places
it into the paste buffer.

Copy

This button adds the currently selected search location to the paste buffer without removing
it from the search list.

Copy

page 220, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

16. Dialog Boxes

This button creates a new search location using the paste buffer.

Move Up

This button moves the currently selected search location higher in the search list such that
this location is searched earlier.

M ove Down

This button moves the currently selected search location lower in the search list such that
this location is searched later.

16.7 Waveform Window Options Dialog Box

The Waveform Window Options Dialog box defines the settings associated with the
Waveform Window.

Clocks or Time
Determines if the the Waveform Window should reference target clocks or time.
Display of Time

Determines the timebase and leading/trailing digits for the waveform window's display of
time.

Configure Thread Groups

There are eight thread groups labeled from'A’ to 'H'. This opens the Thread Group Dialog
Box allows configuration of which thread(s) are associated with each of these groups.

16.8 Waveform Signal Options Dialog Box

The waveform dialog box allows a selection of a variety of signals for display in the
waveform window. It also provides a options for viewing.

Alias Name

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 221

16. Dialog Boxes

The alias name allows the symbol name to be given a more intuitive and application-
relevant name. For example, the underlying ' _ch10.out' signal could be renamed to be

'Spark 3.
Aliaz Mame
My Otput Fin| &

Code Variables

In order to display code variables as discrete nodes they first must be configured to be
stored in the waveform data buffer. This is done from the watch window by right clicking
on a symbol and selecting ‘Make Waveform a Discrete Node' as shown below.

Seript Variables Watch |

Symbaol Value .
- Default Display Y
i Decimal Display :
<add symbal= Hex Display

| View Variable In Waveform Window

Clear Watch |View this variable in the waveform window |

Float This Tab

State M achine State

The state machine's state is automatically added to the waveform data buffer and is
therefore available in the 'variables section'. Note that the State Name will appear if the
mouse is hovered over the waveform as shown below in which the green portion of the
waveform indicates that the 'HOLD_ON' state was active over that period.

page 222, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

16. Dialog Boxes

; R HOLD _ON

Thread Groups

Thread activity is one of the maost important and useful features of the waveform window.
In the eTPU, before thread groups are meaningful, they must be configured in the
Waveform Window Dialog.

Both the eTPU and the MC33816 are event response machines such that the Execution
Unit goes idle after servicing an event and become active when an event requiring
servicing occurs. The Thread Groups shows when these event-handling threads occur.

However, the very maost powerful and useful feature is the ability to snap the vertical
cursors unto the start of the thread. This takes several steps as listed below.

¢ Use the up/down keyboard keys to make the thread group the active (red) waveform

o Use the left and right keyboard keys to snap the vertical cursor unto the exact point in
time when the thread servicing begins

¢ Using the mouse, drag and drop the time listed in the 'Right Cursor' or ‘Left Cursor' unto
the waveform.

Wow, ..., what happened? Answer: the simulator was reset, then ran until the point time
listed in the 'Right Cursor' or ‘Left Cursor' waveform.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 223

16. Dialog Boxes

Waveforms | Output

Lo J———

O] AutoSeroll [< =
ﬁ E EI 506.795 uS Mouse: 527476 uS

Data Start: 0.000uS Context: 0.000 uS Cument Time: 525.083u8
@ l:l l:l Left Cursor: 507.108 uS Delta Cursor: 17.575uS Right Cursor: 5@’\’? us

Analog and Discrete Signals
Analog and discrete signals can modify their vertical range.

The 'Auto Range View' button configures the waveform display visible portion of the
waveform is fully visible in the display.

The 'Auto Range Buffer' button is exactly the same as the 'Auto Range View' button
except that the entire waveform (including that in the buffer which may not be visible) will
fit, vertically, into the display.

Digital Signals
A variety of digital signals can be selected for viewing from the ‘Node Selection’ tree.
Channel State Overlay Enables

Channel State Overlay Enables allow the channel states to be visible in the waveform.
Note that these are only available in eTPU input and output pins.

page 224, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

16. Dialog Boxes

Hover the mouse in
the waveform

Pulsel I
|
[5et TPU Channel Flags: MRLE_A, MRLE B|

Tooltip indicates which
channel flags are set

Waveforms

The waveform below shows the channel State Overlays. The green horizontal line
indicates when MRLE_A is set. The blue horizontal line indicates when MRLE_B is set.

Hover the mouse in
the waveform

Pulze1 I
I
[set &TPU Charnel Flags: MRLE_A, MRLE B|
f§ | —J —r —

Tooltip indicates which
channelflags are set

Waveforms

Behavior Verification Overlay

Behavior verification allows waveform data to be stored into a 'Gold File'. The data in the
'Gold File' can be replayed in the simulator and compared against the current simulation
value. When 'Behavior Verification' is checked, any previously stored data is overlayed
unto the current waveform, thereby making highlighting differences in the current
simulation versus the previous simulation as shown below.

¢ The black waveform is the same signal in the current simulation run.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 225

16. Dialog Boxes

e The yellow waveform is the previously-saved waveform restored from the gold file.
Note that in the waveform shown below, the pulse occurred earlier than in the latest run.

In order to view previously-saved simulation data the following steps are required

¢ Save waveform data into gold files by adding script commands create_ebehavior_file(),
add_ebehavior_pin(), and close_ebehavior_file() to the the script commands file, then
run a simulation to generate a gold file.

e Replay a previously-saved simulation waveforms from a gold file using the
close_ebehavior_file() script command.

e Enable viewing of the previously saved 'Behavior V erification' waveform by selecting
the 'Enable Behavior V erification Overlay' checkbox.

Note that behavior verification is a big topic. For a complete description, see the Pin
Transition Behavior V erification section of the Functional V erification chapter.

Vector Files

A list of all nodes defined in the vector file is available along with the aliases for those
named nodes. This allows waveforms to be quickly associated with aliases matching those
in the vector file.

Note that unlike previous products, the waveform alias is not tied to the vector file. When
the vector file reloads and the eTPU Development Tool detects that the pin/signal of a
waveform alias matching a vector file alias mismatch, the user will be asked if they want
their waveform alias to update to the new pir/signal. This situation can happen if a user
changes pin assignment in the vector file - the eTPU Development Tool allows the user to
easily update their Waveform configuration to match.

page 226, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

16. Dialog Boxes

16.9 Channel Group Dialog Box

The Channel Group Options Dialog box is used to select groups of one or more channels.
It is accessed in different locations for different purposes.

This dialog box is accessed from the Waveform Options Dialog Box to specify groups for
monitoring of eTPU thread activity. Note that thread group activity is displayed as a
waveform in the Logic Analyzer.

16.10 Trace Options Dialog Box

The Trace Options Dialog Box specifies which types of trace data are stored in the buffer
and which are displayed in the trace window. Once a simulation is run, only data stored in
the trace buffer can be displayed. However, trace data that is configured for storage in the
buffer but not display can later be displayed without re-running the simulation. Data not
configured for storage in the trace buffer cannot be viewed without re-running the
simulation.

A computer's memory is finite and trace data can therefore sometimes overflow the trace
buffer. In this case the oldest trace data is discarded to make room for the most recent
trace data. One way to increase the effective buffer size is to disable certain types of data,
or data from specific targets, from being stored in the trace buffer.

Note that in a multi-target environment 'Target Display' check boxes appear at the top of
the trace window. These check boxes allow the enabling and disabling of all trace data for
the entire target all at once. However, in order to be displayed, a trace type must be
enabled in both the dialog box and in the checkbox at the top of the trace window.

Note that unlike previous simulation, all trace data from all targets is stored in a single trace
buffer. So disabling storage of trace data from one target will increase the effective
storage size of other targets.

Instruction Execution
Selecting this option causes each instruction execution to be logged to the trace buffer.
Instruction Boundary

Selecting this option causes each instruction boundary to be logged in the trace buffer.
While an instruction boundary contains no useful information, the resulting dividing line
makes the trace window easier to read.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 227

16. Dialog Boxes

16.11

M emory Read

Selecting this option causes each memory read to be logged to the trace buffer.
M emory Write

Selecting this option causes each memory write to be logged to the trace buffer.
Exception

Selecting this option causes each exception to be logged to the trace buffer. This is only
meaningful in the context of CPU targets.

Time Sot Transition

Selecting this option causes each time slot transition to be logged to the trace buffer. This
is only meaningful in the context of eTPU targets.

State End

Selecting this option causes state end to be logged to the trace buffer. Thisis only
meaningful in the context of TPU targets.

Pin Transition

Selecting this option causes each pin transition to be logged to the trace buffer. This is only
meaningful in the context of TPU targets.

SGL Negation NOP
Selecting this option causes SGL negation NOP to be logged to the trace buffer.

License Options Dialog Box

This dialog box allows you to enter additional information prior to sending a license file to
ASH WARE Inc. A license file is generated whenever you install an ASH WARE
product. Unfortunately, the license file generated at install time contains very little
information other than a computer identifier. This dialog box allows you to add additional
information such as your name, purchase order number, etc.

page 228, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

16. Dialog Boxes

The license file has been a problem for ASH WARE in that users have sent in license files
for purchased products but we were unable match the license files with the purchase. This
dialog box is intended to reduce this confusion, thereby allowing us to serve you better.

All information is optional. Generally, it is best to include at least your company’s purchase
order number or the ASH WARE invoice number, if available.

16.12 Memory Tool Dialog Box

This tool supports specialized memory functions listed below. The dump file functions are
also accessible from the dump_file script command listed in the File Script Commands
section.

- Fill memory with data or text
- Searchfor data or text
- Dump to disassembly file
- Dump to Motorola SRecord (SREC) file
- Dump to Intel Hexadecimal (IHEX) file
- Dump toimage file
- Dumpto"C" structure file
For each function the address space and memory range can be specified. Earlier address

ranges are stored in a buffer and can be retrieved using the recall button. For the file-
dump options, selecting the change button can specify the file name.

In disassembly dump files inclusion of address, raw values, addressing mode information,
and symboalic information can be selected.

When creating an image file or a"C" data structure file, or when using the fill function, the
data word size can of 8, 16, or 32-bits. For the fill function, verification after the fill can be
selected.

The find capability allows a specific byte pattern to be located in memory. Options include
the ability to search for between one and eight sequential bytes, as well as the ahility to
search for both a case sensitive or case-insensitive string.

"C" data files can be written with the address included within a comment. Output format
can be either hexadecimal, which is the default, or decimal.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 229

16. Dialog Boxes

Selection of endian ordering is available for where the data size is exceeds one byte. This
option is available when dumping to an image or a "C" structure file or when using the find
function. In cases where the selected endian ordering does not match the natural endian
ordering of the target a warning is displayed.

16.13 The 'About' Dialog Box

The eTPU Development Tool (C) 2012-2024 ASH WARE, Inc.. All rights are reserved.
Various national and international laws and treaties protect these rights. Any misuse or
other violation of the copyright will be prosecuted to the full extent of the law.

The eTPU Development Tool media may not be copied or transmitted except for the
purpose of creating a backup copy for archival purposes.

page 230, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

17. Menus

17

Menus

This section covers the various application menus in the eTPU Development Tool.

17.1 Files Menu

The Recent, ... submenu's

The Recent Project, Source, Script, V ector, and Other submenu's allow recently-opened
files to be readily re-opened.

Open Existing, ... submenu's
Opens a dialog for selection of existing files.
Create New

Creates a brand new file. A dialog opens that allows selection of the new file's filename.
When creating a new Source code files, State Machine, or Primary Script file the new file
can either be blank or created from a template.

Save File
Saves the currently-active file.

Save All Files

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 231

17. Menus

17.2

Saves all open files that have been modified (dirty).
Close

Closes the currently-active file.

Project, Save

Saves the current settings to the project file and the environment file. The project file
contains all the key settings and is typically placed in version control. The environment file
contains all the user settings such as window paositions, open files, etc., and is typically
specific to each user and not placed in version control.

Write

A number of files can be generated

The Code Coverage Statics file lists which code has been executed.

The Code Load report gives statics on the currently-loaded code.

The Trace Buffer file shows detailed trace information from the last simulation run.
The Symbol Table file gives detailed symboalic (variable) information on the loaded code.

The Window Snapshot takes a snapshot of the currently active window and saves it to a
file. Thisis great for documentation.

Build Menu

Build All

Force are-build of all code, regardless of whether the source files have been modified or
not

M ake

Conditionally re-build code, based on whether or not the source code files and project
settings have changed since the last build.

Compile

Compile (or assemble) the active source code file

page 232, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

17. Menus

Re-Parse Script

Re parse just the script file. Note that the hot-key for this action when editing is
'Ctrl+R which is the same as 'Reset' when sinmulating.

Re-Parse Vector

Re parse just the vector file. Note that the hot-key for this action when editing is
'Ctrl+R which is the same as 'Reset’ when sinulating.

Help

This accesses this help screen.

17.3 Edit Menu

Goto Error

In the Output Window, errors and warnings from the last build, script parse, and vector
parse are listed. These menu items activates the referenced file and scrolls to the
referenced file line.

Goto Line ...

Opens a dialog to move the cursor to a specific line in a source code file.
Find

Finds text in files. Options are as follows.

e Just a single file or multiple files can be searched

¢ Included files (using #include) can be searched

¢ The last search option can be repeated.

o All files in a specific directory can be searched

e Files in sub-directories can be included in the search

Bookmarks

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 233

17. Menus

17.4

Bookmarks can be dropped on to lines of code. These lines of code can be quickly brought
back into view using 'Goto Next Bookkmark'

Select All

Selects all text in an editable file.

Cut, Copy, Paste

Uses the standard windows clipboard to perform 'Cut, Copy and Paste' functions.

Undo, Redo
Undo edits. Redo the undo edits.

Block Indent, Block Un-Indent

Adds or removed indentation from multiple text lines.

Help

This accesses this help screen.

Step Menu

Into

This runs the active target until one line of source code is executed. If a function is called,
eTPU Development Tool halts on the first instruction within that function. 1f no
instructions associated with source code lines occur, eTPU Development Tool continues to
run until stopped by selecting the Stop submenu in the Run menu.

Over

This single steps the target by one line of source code, stepping over any function call.
This is the same as the above "Into" function except the "Into" function will halt on a line of
source code within the function that is called. 1f no instructions associated with source
code lines occur, eTPU Development Tool continues to run until stopped by selecting the
Stop submenu in the Run menu.

Out

page 234, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

17. Menus

This runs the active target until the current function returns. Execution is halted on the
next line of source to be executed in the calling function. If no instructions associated with
source code lines associated with a calling function occur, eTPU Development Tool
continues to run until stopped by selecting the Stop submenu in the Run menui.

Anything

This causes one action to be performed. This action may be execution of a single
instruction, execution of a script command, or simply a tick of the CPU clock. Thisis
helpful for advancing execution by as small an amount of possible, allowing you to really
zoom in on a problem.

Script

This runs eTPU Development Tool until one script command from the active target is
executed. If no new script commands become available eTPU Development Tool
continues to run until stopped by selecting the Stop submenu in the Run menu.

Thread Start (Time Sot)

Runs until the beginning of the next eTPU thread (time slot transition.) Execution stops just
prior to execution of the first opcode in the thread. If no thread occurs, execution
continues to run until stopped by selecting the Stop submenu in the Run menu.

Thread End

This command is excellent for running from thread-to-thread in the same channel.
- If inathread, run, then stop at the end of the thread.

- If at the end of a thread, run until the beginning of a thread on the same
channel.

- If nothread is active, run until the beginning of a thread on the last-active
channel.

Angle Tick
When the eTPU is in angle mode, this runs until the next angle tick occurs.
Angle Tooth

When the eTPU is in angle mode, this runs until the angle tooth occurs. The angle tooth
could be generated by a physical tooth, a tooth induced by asserting TPR.IPH, or by the
EAC decrementing TPR.MSCNT.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 235

17. Menus

17.5

Assembly

This runs the active target until a single assembly instruction occurs. If instructions occur,
DevTool continues to run until stopped by selecting the Stop submenu in the Run menu.

Assembly, N

This runs the active target until a user-specified number of assembly instructions occur. A
dialog box opens allowing specification of the desired number of assembly instructions. If

no assembly instructions occur, eTPU Development Tool continues to run until stopped by
selecting the Stop submenu in the Run menu.

Help

This accesses this help screen.

Run Menu

Goto Cursor

This runs eTPU Development Tool until an instruction associated with the current cursor
location is about to be executed or a breakpoint is encountered. A source code window
must be active for this command to work.

Goto Time

This opens the Goto Time dialog box. Runs eTPU Development Tool until the specified
time or until a breakpoint is encountered.

Goto Time, Fast

This behaves exactly like the Goto Time submenu, except the goto time dialog box is not
opened. |Instead, the previously specified Goto Time options are used.

Go

This causes eTPU Development Tool to execute indefinitely. eTPU Development Tool
executes until a breakpoint is encountered or until the user terminates execution by
selecting the Stop submenu in the Run menu.

Stop

page 236, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

17. Menus

This causes eTPU Development Tool to stop executing. This is normally used to stop
eTPU Development Tool when the expected event (such as step, breakpoint, time slot
transition, etc.) failed to occur.

Reset and Go

This causes eTPU Development Tool to reset and immediately begin execution. The reset
actions are specified in the Reset Options submenu. eTPU Development Tool will execute
until a breakpoint is encountered or until interrupted by the user selecting the Stop submenu
from the Run menu.

Reset

This causes eTPU Development Tool to reset. The reset actions are specified in the
Options submenu in the Reset menu.

Help

This accesses this help screen.

17.6 Breakpoints Menu

The breakpoints menu controls the various functions associated with the breakpoint
capabilities of the eTPU Development Tool. These capabilities are accessed via the
following submenu's.

Set (Toggle)

This toggles a breakpoint at the source code window’ s cursor. |If the instruction already
has a breakpoint, then the breakpoint is deleted. A source code window must be active for
this towork. If the source code is in mixed assembly view mode, and the cursor is at a dis-
assembly line, then the breakpoint will be generated for only that address.

Delete All
This deletes all active and all disabled breakpoints.
At Address ...

This opens a dialog box which allows placing a breakpoint any user-specified address. This
is useful when debugging code for which there is no line number information, such as GNU
assembly code.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 237

17. Menus

17.7

17.8

Delete All Script
This deletes all breakpoints that are in the script commands file.
Help

This accesses this help screen.

View Menu

This menu opens the various Simulator windows for viewing. The eTPU Development Tool
allows multiple instances of each window to be open simultaneously. When there are
multiple targets a submenu for each target appears. Otherwise, all available windows are
available directly within the view menu.

See the Operational Status Windows chapter for a listing of the available windows for each
target.

Help

This accesses this help screen.

Options Menu

The Options menu provides the user with the capability of setting various Smulator options.
These are listed below.

Workshop
This opens the Workshops Options dialog box.

M essages

This opens the Message Options dialog box.

Waveform, ...

This opens the Waveform Window Options dialog box

Waveform

page 238, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

17. Menus

17.9

This accesses a number of sub-menus used for setting the currently-active waveformin
the waveform window.

Help

This accesses this help screen.

Help Menu

The Help menu provides the following options.

Contents

Accesses the contents screen of eTPU Development Tool’s on-line help program.
Technical Support

This accesses information on obtaining technical support for this product.

About

This gives general information about eTPU Development Tool.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 239

page 240, eTPU DevTool IDE

18. Supported Targets and Available Products

18

Supported Targets and Available
Products

Due to its layered design, eTPU Development Tool supports a variety of both simulated
and hardware targets. Customer requirements dictate that these capabilities to be offered
as specific individual products.

18.1 eTPU/CPU System Simulator

Our eTPU/CPU System Simulator supports instantiation and simulation of an arbitrary
number and combination of eTPUs and CPUs. A dedicated external system modeling
CPU could be used, for instance, to model the behavior of an automobile engine.
Executable code can be individually loaded into each of these targets. Synchronization
between targets is fully retained as the full system simulation progresses.

All CPU engine targets can be used with this system simulation include the CPU32, and
soon-to-be-released, PPC simulation engines.

18.2 MC33816 Stand-Alone Simulator

This product is a single-target version that uses only the MC33816 simulation engine.
Because it is a stand-alone product the user must use script commands files to act as the
host and test vector files to act as the external system.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 241

18. Supported Targets and Available Products

18.3

18.4

18.5

The MC33816 Stand-Alone Simulator is a superset of the MC33816/CPU System
Simulator in that purchase of the Stand Alone Smulator license allows installation of a
fully-functional Stand-Alone Smulator product as well as the full System Simulator
configuration.

eTPU2 Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our eTPU2
simulation engine. Because it is a stand-alone product the user must use script commands
files to act as the host and test vector files to act as the external system.

The eTPU2 Stand-Alone Simulator is a superset of the eTPU Stand Alone Simulator in
that purchase of the eTPU2 Stand Alone Simulator license allows installation of a fully-
functional eTPU Stand-Alone Simulator product as well as an eTPU2 Stand-Alone
Simulator product.

eTPU Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our eTPU
simulation engine. Because it is a stand-alone product the user must use script commands
files to act as the host and test vector files to act as the external system.

This product simulates the original eTPU1 from NXP. For simulation of the new eTPU2,
see the eTPU2 Stand-Alone Simulator product.

eTPU2 Simulation Engine Target

The Enhanced Time Processing Unit Two, or ‘eTPUZ2, is a microsequencer sold by
STMicroelectronics and NXP Semiconductor on a variety of microcontrollers including the
SPC563Mxx. This s sold as a stand alone product and also as a system simulator in which
it is co-simulated along with one or more CPU targets.

The eTPU2 simulation engine can be used both as a stand-alone device and in conjunction
with other targets including multiple TPUs. When used in stand-alone mode, of primary
importance are script commands files and test vector files.

page 242, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

18. Supported Targets and Available Products

18.6 eTPU Simulation Engine Target

The Enhanced Time Processing Unit, or eTPU, is a microsequencer sold by NXP on a
variety of microcontrollers.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 243

page 244, eTPU DevTool IDE

19. Building the Target Environment

19

Building the Target Environment

The simulated or hardware development environment is specified in special MtDt build
script files. ASH WARE provides standard build scripts for all its products. In the vast
majority of cases these build scripts are sufficient and therefore effectively transparent to
the user. But occasionally a user may desire to modify the simulation environment to
unlock advanced capabilities. This chapter describes how to do so.

A complete system may consist of multiple CPUs, eTPUS, peripherals, and non-electrical
devices such as automobile engines. The eTPU Development Tool supports simulation of
such advanced systems using MtDt build script files. MtDt build script files are used to
create the targets and specify how they interact.

Theory of Operation

eTPU Development Toal is capable of instantiating and simulating multiple targets, allowing
them to interact via shared memory while maintaining the correct synchronization and
relative timing. 1n addition, a rich set of debugging capabilities normally associated with
single target systems has been extended to this multiple target environment.

Each target loads and runs its own executable code image.

Each target can have primary and startup script commands files. TPU targets can also
have ISR files that are associated with and activated by specific interrupts, and test vector
file that can be used to wiggle the TPU's |/O pins.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 245

19. Building the Target Environment

The relative timing of targets is maintained with one femto-second precision. Each target
has its own atomic execution step size that must be a multiple of the femto-second
precision. Negative numbers and zero are valid steps sizes. Since the currently-supported
targets are all execution cycle simulators, the step size is equal to the amount of simulated
time it takes to execute a single opcode.

As each target executes it is advanced by the amount of time the last opcode took to
execute. It is then scheduled to execute again when the simulation time is equal to the
target's next scheduled time. The current simulation time is defined as the time that the
next scheduled target will execute.

Although all the currently-supported targets are execution-cycle simulation engines, this is
not a fundamental restriction of MtDt. In fact, MtDt can support targets that have much
finer execution granularities. This would allow, for instance, a VHDL target that properly
models inter-target interaction down to the transistor level.

Debugging Capabilities

All standard single-target debugging capabilities such as single stepping, breakpoints, goto
cursor, etc., are available in the multiple target debugging environments. For instance, if
breakpoints are injected and activated within multiple targets, the simulation halts on
whichever breakpoint is encountered first.

A concept of an "active target” is employed to support specifically single-target capabilities
such as single stepping. When the active target is single-stepped, the entire system
simulation proceeds until the active target completes the commanded single step.

With an essentially limitless number of targets, and with the large number of possible
windows per target, the vast number of windows can become unwieldy, to say the least.
Actually, without some mechanism to bring order to the chaos of having way too many
windows, MtDt becomes unusable. Workshops bring order to this chaos and are therefore
a key enabling feature that makes MtDt usable. Each target can be associated with a
specific workshop. Those target's windows are displayed only when the workshop
associated with that target is activated. Individual windows can be overridden to appear in
more than one target.

A target other than the active target can halt a simulation. In this situation the workshop is
changed to one associated with the halting target. This can be caused, for instance, if a
breakpaint is encountered in a non-active target. In this case, the simulation is halted, the
halting target becomes the active target, and the workshop is switched to the one
associated with the newly-active target.

page 246, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

Building the MtDt Environment

With MtDt an entire hardware or simulation environment can be built. This is done using a
dedicated build script file that gets loaded when the project file is loaded. A detailed
description of each command that can be used within MtDt build script files is found in the
MtDt Build Script Commands File section. That section explains how a complete system is
defined using these build script commands.

MtDt Simulated Memory

Simulated targets require memory for executing code, for holding data, and for providing
capabilities supported in a simulated environment. The following is a list of simulated
memory characteristics supported by MtDt memory.

- Multiple address spaces

- Memory sizing

- Read only or read/write accesses

- Shared memory

- Byte, word, and long-word access widths

- Access speed based on even or odd access addresses

- Privilege violations

- Busfaults

- Address faults

- Banking

- Mirroring
The ASH WARE MtDt simulated memory model supports all of these characteristics
though at the cost of increased complexity. The good news is that for many applications
the standard memory models work just fine so a detailed understanding of memory

modeling is not required. 1n the vast majority of other cases only a small percentage of
these capabilities are required.

Memory Block

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 247

19. Building the Target Environment

Whereas a simulated memory map can support a large variety of characteristics that might
change from one memory range and address space to the next, a memory block is a range
of memory that has a single uniform set of characteristics.

A target's address space comprises a finite number of memory blocks. For instance, a 3
wait state RAM could reside at address 0 to FFFF hexadecimal. A O wait state ROM
could reside at address 1000 to 1FFFF. The rest of memory, from 1000 to FFFFFFFF
hexadecimal, could be empty.

There are a number of rules associated with memory blocks. A build of MtDt simulated
memory will succeed only if both of the following rules are met:

Memory blocks must cover all memory.
Memory blocks may not occupy both the same address and address space.

A report file for each build attempt provides a detailed listing of the memory map, including
the information required to fix any problems.

The following is an example script commands sequence.

#def i ne MEM_DEVI CE_STOP Oxffff
#defi ne BLANK_START MEM DEVI CE_STOP + 1
#define MEM END Oxffffffff
i nstanti ate_target (SI M32, "MSinms2");
add_rmem bl ock("MySi n32", 0, MEM DEVI CE_STOP,
"RAM', ALL_SPACES);
add_non_nem bl ock("MySi nB2", BLANK_START, MEM END, " OFF",
ALL_SPACES) ;

In this example a single CPU32 CPU is instantiated. A 64K simulated memory device is
added between addresses 0 and FFFF hexadecimal and is assigned the name "RAM." The
device resides in all address spaces. A second memory block, also residing in all address
spaces, fills the rest of memory between 1000 hexadecimal and FFFFFFFF hexadecimal
and is assigned the name "OFF." This block is blank and as such takes up no physical
memory on your computer.

Address Spaces

All eTPU Development Tool simulated memory supports eight address spaces. The
function of each address space depends entirely on the particular target and how it is
specified in the build script file. For instance, a simulated TPU target makes use of three
address spaces: Code, Data, and Pins. By treating its I/O pins as shared memory the
simulated TPU exposes its pins to other targets. This allows, for instance, a simulated
engine model to read and modify the TPU's pins.

page 248, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

With the nearly universal acceptance of the superiority of a single, unified, large address
space why does MtDt still support non-unified memory space architecture? The answer is
twofold. First, the MtDt supports older but still popular architectures such as CPU32 in
which a split code/data and space might actually be employed. Second, the multiple
address space model provides the required mechanism for support of advanced simulation
features. These mechanisms do not necessarily exist in the actual hardware. For example,
an engine modeling CPU might be set up to query and modify TPU channel 1/0 pins. To
support this, the TPU pins have been exposed in a purely theoretical "PINS' address
space. The eTPU Development Tool can be configured so that a read or write in the
engine modeling CPU's DATA_SPACE occurs in the eTPU's PINS space, thus allowing
the engine modeling CPU to react to and drive the TPU's pins. This mechanism does not
have a hardware corollary, but it provides the powerful capability of simulating the full
system.

In many cases a uniform address model is desirable. This is achieved by mapping all
address spaces to the same physical memory.

The following diagram depicts the address spaces accessed by the TPU simulation engine.

TPU CODE Space TPU DATA Space TPU Pins Space

FFFFFFFF FFFFFFFF FFFFFFFF
(Unused)
(Unused)
(Unused)
1FFF
1FF
3
0 0 0

The TPU simulation model fetches code between 0 and 1FFF hexadecimal from its CODE
space. It accesses its parameter RAM and host interface registers between 0 and 1FF
hexadecimal of its DATA space. And it accesses its channel pins in the first four bytes of
asimulated PINS space. Note that its code banks are "unrolled” and placed linearly in
memory.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 249

19. Building the Target Environment

In order for accesses to these spaces to behave properly, simulated memory devices must
be placed into these address spaces. The following build script commands create the
required memory for a stand-alone TPU Simulation engine.

/'l Create a target TPU

instantiate_target(TPU_SIM "TpuSini');

/'l Create a sinulated nmenory bl ock

/1l for the TPU s code (m crocode)

add_rmem bl ock(" TpuSi nf', 0, Ox1fff, "Code",
TPU_CODE_SPACE) ;

add_non_nmem bl ock(" TpuSi nf', 0x2000, OxFFFFFFFF,

"UnusedCode", TPU_CODE_SPACE);

/'l Create a sinulated nmenory bl ock
/1l for the TPU s data (host interface)
add_rmem bl ock(" TpuSi nf', 0, Ox1ff, "Data",
TPU_DATA_SPACE) ;
add_non_nem bl ock(" TpuSi nf', 0x200, OxFFFFFFFF,
"UnusedDat a", TPU_DATA_SPACE);

/'l Create a sinulated nenory block for the TPU s pins
/'l (channel pins and TCR2 counter pin)
add_nmem bl ock(" TpuSi nf', 0x0, 0x3, "Pins",
TPU_PI NS_SPACE) ;
add_non_nmem bl ock(" TpuSi nf', 0x4, OxFFFFFFFF,
"UnusedPi ns", TPU_PI NS_SPACE) ;

/1 Be sure to provide a non_mem bl ock

/1 for the unused address spaces

add_non_mem bl ock(" TpuSi nf', 0x0, Oxffffffff, "B4",
TPU_UNUSED_SPACE) ;

In this example the TPU's code, data, and pins address spaces are filled with the memory
devices required for proper operation. Unused space above and below the simulated
devices is filled in with blank blocks. This is required, as all space must be filled in; even
unused space must be provided with memory block(s).

Memory Block Size

Each memory block has a specific size. The size is equal to the stop address minus the
start address plus one. A common error is to overlap by one byte the end of one device
with the start of the next device. MtDt cannot support multiple devices occupying the
same address in the same address space so this causes an error. One method for avoiding

page 250, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

this error is to cascade ‘#define’ directives and thereby ensure that contiguous devices
form the proper zero-byte seam.

#defi ne FLASH SI ZE 0x10000 /* 64K FLASH device */
#define RAM SI ZE 0x8000 /* 32K RAM devi ce */
#def i ne FLASH_START 0
#define FLASH END FLASH START + FLASH SIZE - 1
#def i ne RAM _START FLASH END + 1
#define RAM END RAM START + RAM SIZE - 1
#defi ne BLANK_START RAM END + 1
#def i ne BLANK_END FFFFFFFF
instantiate_target(SIM32, "MyCpu");
add_nem bl ock("MyCpu", FLASH START, FLASH END,
"Fl ash", ALL_SPACES);
add_nem bl ock("MyCpu", RAM START, RAM END, "RAM',
ALL_SPACES) ;
add_non_nmem bl ock("MyCpu", BLANK START, BLANK END,
"Enpty", ALL_SPACES);

In this example, two devices are created in such a way that a zero-byte seams between
them is guaranteed. All memory for every address spaces is covered. Notice that the
FLASH and RAM sizes can be changed at a single location and that the devices will
remain contiguous in memoary.

Memory Block Access Control

The purpose of the memory block access control is to make a simulated model match the
behavior of real hardware. For instance you might want to make a ROM read-only, such
that reads are simply ignored or perhaps cause a bus fault. An odd access may cause an
address fault or an additional wait state. Memory block access control allows the required
level of control to achieve this. This section serves as a high-level guide rather than a

detailed description.

Each memory block supports the following access types.
8-bit read
8-bit wite
16-bit read
16-bit wite
24-bit read
24-bit wite
32-bit read
32-bit wite
64-bit read

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 251

19. Building the Target Environment

64-bit wite
128-bit read
128-bit wite

For each access type, the user can specify a number of parameters. The following
parameters are available.

Cl ocks per even access

Cl ocks per odd access

Odd access causes bus fault yes/no?

Bus fault yes/no?

Bl ank access yes/ no?

Dock offset (applicable docked accesses only!)

Dock function code (applicable to docked accesses only)

In addition, there is a block-wide default, "blank access value." This is the value that is
returned on a read access to a memory block that has been marked as blank.

Read/Write Control
It is possible to disable specific types of memory accesses.

In this example a memory device is configured as read only. A write to this memory
device will not cause the values in memory to change. This read only behavior could be
used to model a ROM device.

#def i ne ROM_STOP Oxffff

#defi ne BLANK START ROM STOP + 1

#define MEM END Oxffffffff

i nstanti ate_target (SI M32, "My Cpu");

add_rmem bl ock("MyCpu", 0, ROM STOP, "Roni', ALL_SPACES)

add_non_nmem bl ock("MyCpu", BLANK START, MEM END, "Enpty",
ALL_SPACES) ;

/1 Turn off READ access for the ROM device

#define WRITE_ALL RWWRITE8 + RWWRI TE16 + RW WRI TE32

set _block to_of f("MCpu", "Ront, ALL_SPACES, WRI TE_ALL);

The command specifies that for all address spaces, all write accesses will be "empty."
Despite this being an "empty" access, other parameters such as clocks per even cycle
remain valid. The last two arguments specify the address spaces and access types
affected by this script command. It is possible to indicate specific address spaces and a
specific type of access. For instance, using this script command, one could specify 32-hit
writes to user data space.

Clocks per Access Control

page 252, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

For each memory block and type of access, the clocks per even access and the clocks per
odd access can be specified. This capability effectively provides the capability of setting
the number of wait states.

set bl ock_timng("MCpu", "Ronf', ALL_SPACES, RWALL, 2, 3);

In this example even accesses are set to two clocks per access and odd accesses are set
to three clocks per access. In this example these settings apply to all address spaces and
for all read and write accesses, though it is possible to indicate the specific set of address
spaces and access types for which this applies.

Address Fault Control

For each address space and access type an address fault can be set to occur on odd
accesses. Note that this is generally not applicable to 8-bit accesses, though it is still
available.

#def i ne CODE_SPACE CPU32_SUPV_CODE_SPACE \
+ CPU32_USER_CODE_SPACE
set _block_to_addrs_fault("MCpu", "Ronl, CODE_SPACE,
READ ALL);

In this example, odd read accesses to the memory block's code space are configured to
cause an address faullt.

Bus Fault Control

For each address space and access type a bus fault can be set to occur.

set _block_to_bus_fault("MCpu", "Roni,
CPU32_USER CODE_SPACE, RWALL);

In this example, any access while at the user privilege level result in a bus fault. This might
be useful in a protected system in which a user process is prevented from accessing
hardware.

Sharing Memory

A fundamental aspect of multiple target simulation is the ability to share memory. MtDt
employs "docking" to implement shared memory. If two targets are to share memory, one
target must dock memory blocks to another target.

There is a fundamental and important lack of symmetry in that one target must provide the
"dock-from" block and the other target must be the "dock-to." The "dock-to" target is

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 253

19. Building the Target Environment

relatively unaffected by being the recipient of a dock, other than that its physical memory
might be modified on occasion.

On the other hand, there are numerous effects to the "dock-from" target. First and
foremost, it must be able to support extrinsic, or externally mapped, memory. 1n other
words, it must be able to project its memory access outside of itself and to a different
target.

Note that this command must match exactly the memory bounds of an existing memory
block for the docking device, but not for the "dock-to" target. In fact, the "dock-to" target
could be any target such as a MC68332 across a BDM port. In fact, the "dock-to" target
could be itself, and this is the recommended way of modeling multiple image memory.
Although memory accesses are fully re-entrant, legal, and often necessary, it is possible to
create an infinitely cyclic access that would, without guards, cause a stack overflow on
your computer. To guard against this, MtDt has limited memory accesses re-entrance to a
depth of 100.

The following build script command is presented in a later example.

1. ..

set bl ock_to_dock("Host Cpu", "TpuDataDock", ALL_SPACES,
"Tpu", 0-0x80000);

1. ..

In the above command a previously-added blank block is docked to memory contained in a
target named "TPU." The last argument, ALL_SPACES, is potentially problemetic, as will
be discussed later.

Shared Memory Address Space Transformation

No assumptions should be made about address spaces between or among dissimilar
targets. In other words, the code space of a CPU32 may not map to the code space of
memory shared with a TPU. For memory docks between dissimilar target types it is
critical to fully specify all address spaces from the docking memory block. Due to the lack
of symmetry, this is not true for the dockee. The following script command should be used
to fully define all docked address spaces between dissimilar targets.

When docking a CPU to a TPU the following address space transformation such as that
shown in the following figure is often required.

page 254, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

TPUPINSSpace All Modeling CPU Spaces ~ Other TPU Spaces

FFFFFFFF FFFFFFFF [FFFFFFFF
C0003]
C0000
3
0 0 0
p—] —

The following build script commands generate the address space transformations shown in
the above figure. If the modeling CPU does a read from its address CO000 hexadecimal,
the read will actually access the shared memory with the TPU in its PINS space.

set _bl ock_dock_space(" Model i ngCpu", "TpuPi nsDock",
ALL_SPACES, RWALL, TPU_PI NS_SPACE);

In this example all address spaces from a docked block of a modeling CPU are set to the
TPU's PINS address space. This is an eight-to-one transformation in that an access in any
of the CPU's address spaces becomes an access to the TPU's PINS space. For example
if the CPU performs a data read within this block, the value of the TPU's channel pins will
be what actually gets read.

Shared M emory Address Offset

Shared memory need not appear in the same address from the perspective of each target.
Indeed, shared memory usually appears at different addresses for each target that is
sharing that memory. The following illustrates this.

set bl ock_to_dock("Host Cpu", "TpuDataDock", ALL_SPACES,
"Tpu", TPU DOCK OFFSETT);

In this example an offset of TPU_DOCK_OFFSETT is applied to any HostCpu access
within the docking block. For example if the docking block is at address FFEQO

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 255

19. Building the Target Environment

hexadecimal and an offset of -FFEQO hexadecimal is applied by defining
TPU_DOCK_OFFSETT to this value, a CPU access at address FFE20 occurs at address
20 within the TPU.

Shared Memory Timing

Timing transformations allow the clock per access to be specified for the docking block.
For instance a shared memory block between a TPU and a CPU might take the CPU two
clocks to access, but might take the TPU only a single clock.

There is no special method for doing this. The timing parameters specified by each of the
targets own dock block apply to the docking target.

A Complete Shared Memory Example

The example in this section creates a TPU simulation engine, a host CPU simulation
engine, and a modeling CPU simulation engine. The shared memory architecture from the
following figure is generated.

page 256, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

TPU DATA Space Host CPU All Spaces
FFFFFFFF FFFFFFFF
FFFFF
FFE0O
e Modeling CPU All
n
70000 odelng Spaces
- | | FFFFFFFF
0 0
TPU PINS Space D0003
FFFFFFFF __ 0004
00003
C0000
0
3
0

The following build script commands instantiate the shared memory architecture found in
the above figure.

#define MEM END Oxffffffff

/1l Create a target TPU
instantiate_target(TPU_SIM "Tpu");

/1l Create a simulated nenory bl ock

/1 for the TPU s code (m crocode)

add_nmem bl ock(" Tpu", 0, Ox1fff, "Code", TPU_CODE_SPACE);
add_non_nmem bl ock(" Tpu", 0x2000, MEM END, "B1",

Reference Manual

(C) 2012-2024 ASH WARE, Inc. eTPU DevTool |DE, page 257

19. Building the Target Environment

TPU_CODE_SPACE) ;

/'l Create a sinulated nmenory bl ock

/1 for the TPU s data (host interface)

add_mem bl ock("Tpu", 0, Ox1ff, "Data", TPU DATA SPACE);

add_non_nem bl ock(" Tpu", 0x200, MEM END, "B2",
TPU_DATA SPACE) ;

/'l Create a sinulated nmenory block for the TPU s pins

/'l (channel pins and TCR2 counter pin)

add_mem bl ock(" Tpu", 0x0, 0x3, "Pins", TPU_PI NS_SPACE);

add_non_nem bl ock(" Tpu", 0x4, MEM END, "B3",
TPU_PI NS_SPACE) ;

/1 Be sure to provide a non_mem bl ock

/1 for the unused address spaces

add_non_nem bl ock(" Tpu", 0x0, MEM END, "B4",
TPU_UNUSED_SPACE) ;

//***************** END O: TPU EE R R R I R I O

/!l Create a target host CPU
i nstanti ate_target (SI M32, "Host Cpu");

/1 Add a hal f-neg RAM
add_mem bl ock("Host Cpu", 0, Ox7FFFF, "RAM', ALL_SPACES);

/1 Add three enpty spaces

add_non_nmem bl ock(" Host Cpu", 0x80000, OxFFDFF, "Bl1",
ALL_SPACES) ;

add_non_nem bl ock(" Host Cpu", OxFFEQO, OxFFFFF,
"TpuDat aDock", ALL_SPACES);

add_non_nem bl ock(" Host Cpu", 0x100000, MEM END, "B2",
ALL_SPACES) ;

/1 Set the middle enpty block to dock with the TPU target

set _bl ock_to_dock("Host Cpu", "TpubDataDock", ALL_SPACES,
"Tpu", 0-0x80000);

/1 Make sure that no matter which space

/1 the TPU accesses within this dock

/'l the TPU s data space is always accessed

set _bl ock_dock_space("Host Cpu", " TpuDat aDock",

ALL_SPACES, RWALL, TPU DATA SPACE);

//***************** END O: Fm'l’ CPU EE R R R R R R I

page 258, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

/1l Create a CPU for nodeling the external system
instanti ate_target(SIM32, "Model Cpu");

/1 Add a hal f-meg RAM
add_mem bl ock(" Model Cpu", 0, OxBFFFF, "RAM', ALL_SPACES);

/1 Add three enmpty spaces

add_non_nem bl ock(" Model Cpu", 0xC0000, 0xC0003,
"TpuPi nsDock", ALL_SPACES);

add_non_nem bl ock(" Model Cpu", 0xC0004, 0xDO0003,
"CpuCpuShare", ALL_SPACES);

add_non_nem bl ock(" Mddel Cpu", 0xD0004, MEM END, "B2",
ALL_SPACES) ;

/1 Set the |lowest enpty block to dock with the TPU target
set bl ock_to_dock("Mdel Cpu", "TpuPinsDock", ALL_SPACES,
"Tpu", 0-0xC0000);

/1 Make sure that no matter which space

/1 the TPU accesses within this dock

/1 the TPU s pins space is always accessed

set bl ock_dock_space(" Mdel Cpu", " TpuPi nsDock",
ALL_SPACES, RWALL, TPU_PI NS _SPACE);

/1 Set the mddle enpty block to dock with the HOST CPU
set bl ock_to_dock("Mdel Cpu", "CpuCpuShare", ALL_SPACES,
"Host Cpu", 0x70000- 0xC0000);

//***************** END G: IvaLI NG CPU khkkkkhkhkkkhhkkkhkkkkx

In this example the shared memory architecture from the above figure is generated.

Simulating Mirrored Memory

Mirrored memory is memory that is accessible at multiple address ranges within a memory
map. This can occur, for instance, when not all address bits are decoded for a memory
device. The following figure depicts an 8K memory device that resides in a 64K memory
system. Assume it is an 8-bit wide device. Since the 8K device is on a byte wide bus, the
device itself decodes the lower 13 address bits, A12 through AO. Assume that the memory
controller decodes only the upper two address bits, A15 and A 14, and enables the device

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 259

19. Building the Target Environment

when both are zero. This means that nothing decodes A 13, and thus the memory device is
activated when A15 and A 14 are zero, regardiess of the state of A13.

All Spaces
FFFFFFFF

The nenory here \{ e
2000
is mirrored here \{ 1FFF
0

This mirrored memory architecture is created by implementing a dock from the address
space to itself as follows.

instantiate_target (SI M32, "MyCpu");
add_non_nmem bl ock("MyCpu", 0x0, Ox1FFF, "M rror",
ALL_SPACES) ;
add_mem bl ock(" MyCpu", 0x2000, Ox3FFF, "RAM',
ALL_SPACES) ;
add_non_nem bl ock("MyCpu", 0x4000, OxFFFFFFFF, "Bl1",
ALL_SPACES) ;

/'l Create a mirror at the |owest 8K of the next higher 8K
set bl ock_to_dock("MyCpu", "Mrror", ALL_SPACES, "MCpu",
0x2000) ;

In this example the previously-described memory architecture with mirrored memory is
implemented.

page 260, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

19.1

Computer Memory Considerations

MtDt uses your computer's memory to model the memory devices belonging to your target.
There is roughly a one-to-one correspondence between the total amount of memory
occupied by the simulated devices and the amount of your computer's memory that is
required. 1n the examples shown in the previous sections, simulated memory totals a few
hundred kilobytes. This is a trivial amount of memory for a modern computer. When
many megabytes are required, you are limited to the amount of virtual memory available for
the MtDt application that your computer can provide. If you attempt to simulate a 100-
gigabyte memory device, for example, but have only 50-gigabytes of available virtual
memory on your computer, the build script file will fail to execute.

Note that since modern computer systems employ virtual memory, the amount of simulated
memory can exceed the amount of RAM actually in your computer. Adjusting the
available amount of virtual memory on your computer can increase the total amount of
memory devices that you can simulate. A description of how to increase the swap file size
of your computer is beyond the scope of this manual.

The Build Script File

eTPU Development Tool supports both debugging and simulation of a variety of targets.
Since eTPU Development Tool can both simulate and debug a variety of simulation and
hardware targets, how does eTPU Development Tool know what to do?

Build batch files provide the instructions that eTPU Development Tool requires to create
and glue together the various copies of hardware and simulation targets. Although the user
is encouraged to modify copies of these files when required, in many cases the standard
build batch files loaded during eTPU Development Tool installation will suffice.

Typical build script files might instantiate a CPU and a eTPU, then instantiate RAM and
ROM for the CPU, and then cause the eTPU's memory to reside in the CPU's address

space.
M tDt Build Script Commands File Naming Conventions

In order to prevent future installations of ASH WA RE software from overwriting build
script files that you have created or modified, ASH WARE recommends that you follow
the following naming convention.

- Build script files from ASH WARE begin with "zzz."
- Build script files not from ASH WARE don't begin with "zzz."

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 261

19. Building the Target Environment

19.2

The string "zzz" was chosen so that these files would appear at the end of a directory listing
sorted by file name. ASH WARE recommends that when you modify a build batch file
you remove the letters "zzz" from the file name. When you create a new file, ASH WARE
recommends that the file name not begin with the string "zzz." The following is a list of
some of the build batch files loaded by the ASH WARE installation utility.

zzz_1Gtm.MtDtBuild
zzz 1ETpuSm.MtDtBuild
zzz_1Mc33816.MtDtBuild
zzz_1Sm32.MtDtBuild
zzz_1Sm32_1ETpuSm.MtDtBuild
zzz_1Sm32_1GTM.MtDtBuild
zzz 1Sm32_1Mc¢33816.MtDtBuild
zzz_1Sm32_3ETpuSim_MPC5676.MtDtBuild
zzz_1Sm32_3ETpuSim_MPC5777.MtDtBuild
How would you modify the zzz_1Sm32.MtDtBuild file to create a larger RAM? ASH
WA RE recommends the following procedure.
Copy file zzz_1Sm32.MtDtBuild to file BigRamSm32.BuildScript
Modify file BigRamSm32.BuildScript

Custom Build Script File Pathing

When creating a Custom Build Script the question arises of, "where should the custom build
script file be placed? There are three options discussed here.

Option 1, Installation Location. Place your Custom Build Script in the Build Scripts
directory in the installation directory where the standard build scripts are located.

C.\Program Fi |l es (x86)\ ASH WARE\ Ful | System DevTool |DE
V2_20A\ Bui | dScri pts

Advantage. Works seamlessly with the toolset.

Disadvantages. Every user needs to place the file into their installation directory and does
not work well with CV S.

page 262, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

Option 2, Project-File Relative. If the custom build script is placed in the same
directory tree as the project file in which it is referenced then only the 'relative path' to the
project file is used.

Project File: c:\SoneD r\M/ProjectDi r\MProject.&m deProj
CustomBuild Script File: c:
\ SoneDi r\ MyCust onBui | dScri pt s\ MyCust onSi nCf g. M Dt Bui | d

Then in the project file the following pathing will be used to find the build script.
..\ MyCust onBui | dScri pt s\ MyCust onSi nCf g. M Dt Bui | d

Advantage. Works well with CV S and projects are easily relocatable as long as the Build
Script is retained and it relative pathing spot.

Option 3, Independent Directory. If the custom build script is placed in a separate
directory tree as the project file in which it is referenced then only the complete fully-
qualified path is stored in the project file.

Project File: c:\SoneD r\M/ProjectDi r\MProject.&m deProj
CustomBuild Script File: c¢:\Tool s\M/CustontSinCfg. MDtBuild

Then in the project file the following pathing will be used to find the build script.
c:\ Tool s\ MyCust onBSi nCf g. M Dt Bui | d

Advantage. Eliminates confusion on the location of the custom build script.
Disadvantages. Difficult to maintain.

Pathing Search Rules

If the path is fully qualified, file must be at the fully-qualified location. Otherwise, first the
'‘BuildScripts' directory is used. If the file is not found, then the directory of the project file
is searched.

When saving, if the file is in the BuildScripts directory then the path is fully removed.
Otherwise, if the file is in the same directory tree as the BuildScripts directory then the file
is saved relative to the BuildScripts directory. Otherwise, if the file is in the same directory
tree as the Project file then the file is saved relative to the Project File. Otherwise, the file
along with it's fully-qualified directory is saved.

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 263

19. Building the Target Environment

19.3

GTM Register Definitions File.

The GTM Register Definitions file allows each vendor's memory mapping to match that of
the actual target hardware.Since each vendor can have a different memory mapping, the
GTM Register Definition file allows the mapping of each vendors device within the Host
CPU's address space. The pathing rules described above also apply to this file.

Build Script Commands

i nstanti ate_target_ex1(enum TARGET_TYPE,
enum TARGET_SUB_TYPE,
"Tar get Nane") ;

This command instantiates a target enum TARGET_TY PE and assigns it the name
TargetName. The enum TARGET _SUB_TY PE specifies target/core-specific settings.
Subsequent references to this target use the target name specified in this command.

Of particular interest to the eTPU is file "zzz_eTpuVersions.Dat," which is found in the
build directory. This file supports selection of the eTPU version (and associated errata and
memory sizes) via a #define. The #define is specified in the project.
i nstanti ate_target_ex1(SIM32, MC33816, "Host");
instantiate_target_ex1(ETPU SIM MPC5554 B 1, "eTPU A");

This example instantiates two simulation models, a CPU32 simulation model, and an eTPU
simulation model. The name Host is assigned to the CPU32 and the name eTPU_A is
assigned to the eTPU. Subsequent build script commands use these names when referring
to these targets. These names are also referenced in a variety of other places such asin
workshops and the menu system.

add_rmem bl ock(" Target Nane", StartAddress, StopAddress,
"Bl ockNanme", enum ADDR_SPACE) ;

This command adds a memory block to a range of simulated memory. The memory
appears between stopAddress and startAddress in the memory space ADDR_SPACE.
The name BlockName is assigned to this block and is used by other script commands when
referencing this block. The block name must be unique within its target, but other targets
can have a block with this same block name. The size of the memory block is equal to one

page 264, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

plus stopAddress minus startAddress. Only a single copy of this memory is created,
regardless of how many address spaces the block occupies.

add_mem bl ock("Host", 0, OXFFFF, "RAML", ALL_SPACES);

In this example a 64K block of simulated memory is created and the name "RAM1" is
assigned to this memory block. This memory is accessible from all of the CPU's address

spaces.

add_non_nem bl ock(" Target Nane", StartAddress, StopAddress,
enum ADDR_SPACE) ;

This command adds a blank block of simulated memory to the target TargetName. It
indicates that no physical memory exists in the specified memory range and specified
address spaces, ADDR_SPACE. The name BlockName is assigned to this block and is
used by other script commands when referencing this block. The block name must be
unique within its target, but other targets can have a block with this same block name.

Since no memory is actually modeled by this command, it effectively uses almost none of
your computer’s virtual memory. This is important since the entire four GB address space
must be represented by memory blocks, regardless of whether or not the simulation target
actually supports this large of an address space.

#def i ne DATA SPACE CPU32_SUPV_DATA SPACE \
+ CPU32_USER_DATA_ SPACE
add_non_nmem bl ock("Host", 0x1000, Oxffffffff,
"Enpty", DATA SPACE);

This example specifies that no physical memory exists above the first 64K for both user
and supervisor data spaces. Data space is defined by the define declaration as consisting
of a combination of the supervisor data space and the user data space.

set _Dblock_to_of f("Target Nane", "Bl ockNane",
enum ADDR_SPACE, enum READ_WRI TE) ;

This command allows accesses of a simulated memory blocks can be turned off using this
script command. Using this command a read-only memory device such as a ROM can be
created. Accesses to target TargetName within the block BlockName and specified
address spaces ADDR_SPACE and read and/or write cycles <enum READ WRITE>
are turned off. A turned-off write access behaves exactly like a normal write access
except the actual memory is not written. A turned-off read cycle behaves exactly like a
regular read cycle except that the value returned is the OFF_DATA constant defined for
the entire block. The affected address spaces and read/write cycles must be subsets of
the referenced memory block.

add_nem bl ock("Host", 0, OxFFFF, "ROM', ALL_SPACES);
#define ALL_WRI TES RWWRI TE8 + RWWRI TE16 + RW WRI TE32

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 265

19. Building the Target Environment

set bl ock_to_of f ("Host", "ROM', ALL_SPACES, ALL_WRITES);

This example creates a 64K memory device and configures it to be a read-only or "ROM"
memory device.

set bl ock_of f _dat a32(" Target Nanme", "Bl ockNane",
enum ADDR_SPACE, OFF_DATA);
set _bl ock_of f _dat a(" Target Nane", "Bl ockNane",
enum ADDR_SPACE, OFF_DATA);

These commands specify that read cycles to the target TargetName within the block
BlockName return the data <OFF_DATA> but only if the block is either a "non_mem"
block or a block in which the read cycles have been set to off. The affected address
spaces must be a subset of the address spaces to which the referenced memory block
applies. The first command sets an eight bit value, the second sets a 32-bit value.

add_non_nmem bl ock("eTPU_A", 0x4000, OxFFFFFFFF,
"UnusedCode",
ETPU_CODE_SPACE) ;
set bl ock_of f _data32("eTPU_A", "UnusedCode",
ETPU_CODE_SPACE,
OXF7F757FA) ;

In this example the address space between 0x4000 and FFFFFFFF hexadecimal is
specified to contain no memory. Quad read cycles to this block will return the specified of f
data, OXF7F757FA hexadecimal, at every quad address.

set _bl ock_to_bus_faul t("Target Nane", "Bl ockNanme",
enum ADDR_SPACE, enum READ WRI TE);

This command results in bus faults for accesses to the target TargetName within the block
BlockName for the applicable address spaces, ADDR_SPACE, and read/write cycles
enum READ_WRITE. The effected address spaces must be a subset of the spaces to
which the referenced memory block applies.

add_nem bl ock("Host", 0x10000, OxFFFFFFFF, "Unused",
ALL_SPACES) ;

set _block_to_bus fault("Host", "Unused", ALL_SPACES,

RWALL) ;

In this example, a memory block has been added to represent the unused address space
above 64K. Any access to this memory block results in a bus fault.

set bl ock_to_dock("Fronirarget Nane", "Bl ockName",
enum ADDR_SPACE, "ToTar get Nanme",
AddressCOf f set) ;

This script establishes a memory share between a docking target FromTargetName and a
"docked-to" second target ToTargetName. Memory accesses for the docking target

page 266, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

19. Building the Target Environment

actually occur in the second target, while this command has no effect on the second
target's accesses.

Docking target accesses within the block BlockName in the address space
ADDR_SPACE are projected to the "docked-to" target at on offset address
AddressOffset.

The address range corresponds exactly to a previously defined block within the docking
target. There is no such requirement for the "docked-to" target.

add_nmem bl ock(" Cpu_A", 0x0, OxFFFF, "Shared", ALL_SPACES);
add_non_nem bl ock("Cpu_B", 0x600, Ox6FF, "ShareRange",
ALL_SPACES) ;
set bl ock_to_dock("Cpu_B", "ShareRange", ALL_SPACES,
"Cpu_A", 0x250);

In this example a memory share is setup between targets Cpu_A and Cpu_B. The
memory that is shared resides in Cpu_A. The shared block is accessed by Cpu B
between addresses 600 and 6FF hexadecimal. An offset of 250 hexadecimal is applied to
the address of each of Cpu_B's accesses such that from the perspective of Cpu_A the
accesses occur between 850 and 94F hexadecimal.

Note that, as required, the set_block to dock script command has the identical address
range as a previous add_non_mem_block script command. Interestingly, there is no such
restriction on the Cpu_A target.

set bl ock_dock_space(" Tar get Nane", "Bl ockNane",
enum ADDR_SPACE DockFr onSpace,
enum READ_WRI TE,
enum ADDR_SPACE DockToSpace) ;

This command supports an address space transformation for a docked memory access.
Read and/or write cycles enum READ_WRITE from target TargetName between within
the block BlockName in the address spaces enum ADDR_SPA CE DockFromSpace are
transformed to occur in address space enum ADDR_SPACE DockToSpace. The

DockToSpace argument must specify a single space.

It is important to fully specify all shared memory accesses between dissimilar targets.
Docks with unspecified address space transformations result in indeterminate results. For
instance, a eTPU sharing memory with a CPU32 could easily result in a opcode being
fetched out of data space, even though both targets have both code and data spaces.
Assumptions about similarity of address spaces between dissimilar targets simply should
not be made.

add_non_nmem bl ock("Host", 0x1000, 0x1003, "ShareRange",

Reference Manual (C) 2012-2024 ASH WARE, Inc. eTPU DevTool IDE, page 267

19. Building the Target Environment

ALL_SPACES) ;

set _bl ock_to_dock("Host", "ShareRange", ALL_SPACES,
"eTPU A", 0-0x1000);
set bl ock_dock_space("Host", "ShareRange", ALL_SPACES,

RWALL, TPU_PI NS_SPACE);

In this example a target Host is docked to target eTPU_A. An address space
transformation is specified such that accesses to any of the CPU's address spaces occur in
the TPU's PINS address space.

check(" Target Name", "ReportFil eName");

This command does a check on the simulated memory for a target TargetName and
creates a report file ReportFileName. The check invoked by this command occurs
whether or not this script command is included in the script file. Use of this command
allows you to specify the name of the report file and limit the scope of the check to a single
target.

check("Host", "C:\\Tenp\\ CpuBuil dReport.txt");
check("eTPU_A", "TpuBuil dReport.txt");

In this example report files named C:\\Temp\CpuB uildReport.txt and TpuBuildReport.txt
are generated for the Host and eTPU_A targets, respectively. Note that C-style double
backslashes are required when separating directory names.

page 268, eTPU DevTool IDE (C) 2012-2024 ASH WARE, Inc. Reference Manual

	1 Overview
	1.1 On-Line Help Contents

	2 Demo Descriptions
	3 Software Upgrades
	3.1 Handling Multiple Versions
	3.2 Using Non-Installed ETEC Versions

	4 IDE and Editors
	4.1 IDE Options
	4.2 Panel Layout Options

	5 The Project
	5.1 Ide Settings
	5.2 The Project Files
	5.3 The Pre-Build Windows' Console '.BAT' File

	6 Integrated Build
	6.1 Internal Build
	6.1.1 Host Target Build

	6.2 External Build
	6.3 Disabled Build

	7 Source Code Files
	7.1 Source Code Search Rules

	8 Script Commands Files
	8.1 The Primary Script Command Files
	8.2 ISR Script Commands Files
	8.3 The "ETEC_cpp.exe" Preprocessor
	8.4 Enhanced Scripting Capabilities
	8.4.1 Enumeration Declarations
	8.4.2 Script Variables
	8.4.3 Expression Statements
	8.4.4 Selection Statements
	8.4.5 Loop and Jump Statements

	8.5 File Format and Features
	8.5.1 Multiple-Target Scripts
	8.5.2 Script Directives, Define, Ifdef, Include
	8.5.3 Script Enumerated Data Types
	8.5.4 Script Integer Data Types
	8.5.5 Referencing Memory in Script Files
	8.5.6 Assignments in Script Commands Files - DEPRECATED
	8.5.7 Operators and expressions in Script Commands Files
	8.5.8 Syntax for global access of eTPU Function Variables
	8.5.9 Syntax for eTPU Channel Hardware Access
	8.5.10 Syntax for eTPU ALU Register Access
	8.5.11 String within a string supports formatted symbolic information
	8.5.12 Comments in Script Commands Files
	8.5.13 Decimal, Hexadecimal, and Floating Point Notation in Script Files
	8.5.14 String Notation

	8.6 Script Commands
	8.6.1 Timing
	8.6.1.1 Timing Script Commands
	8.6.1.2 Verify Timing Script Commands
	8.6.1.3 Clock Control Script Commands
	8.6.1.4 Thread Script Commands

	8.6.2 MCU Configuration
	8.6.2.1 eTPU System Configuration Commands
	8.6.2.2 eTPU Timing Configuration Commands
	8.6.2.3 eTPU Host Service Request Register Script Commands
	8.6.2.4 eTPU Channel Address Script Commands
	8.6.2.5 eTPU Channel Function Select Register Commands
	8.6.2.6 eTPU Event Vector Entry Condition (Standard/Alternate) Commands
	8.6.2.7 eTPU Channel Function Mode Script Command
	8.6.2.8 eTPU Channel Priority Register Commands
	8.6.2.9 eTPU Shared Subsystem Script Commands
	8.6.2.10 eTPU STAC Bus Script Commands
	8.6.2.11 eTPU Link Script Command
	8.6.2.12 eTPU Interrupt Script Commands
	8.6.2.13 eTPU Interrupt Association Script Commands

	8.6.3 Variable, Memory, and Register Modification and Verification
	8.6.3.1 Memory Read Script Commands
	8.6.3.2 Memory Modify Script Commands
	8.6.3.3 Memory Verify Script Commands
	8.6.3.4 Register Write Script Commands
	8.6.3.5 Register Verify Script Commands
	8.6.3.6 Symbol Write Script Commands
	8.6.3.7 Verify Symbol Value Script Commands
	8.6.3.8 eTPU Engine Data Script Commands
	8.6.3.9 eTPU Channel Data Script Commands
	8.6.3.10 eTPU Global Data Write/Verify Commands

	8.6.4 Pin and Node Modification and Verification
	8.6.4.1 Pin Window Verification Commands
	8.6.4.2 Pin Verification and Control Script Commands
	8.6.4.3 Pin Transition Behavior Script Commands
	8.6.4.4 External Logic Commands

	8.6.5 Code
	8.6.5.1 Code Coverage Script Commands
	8.6.5.2 Code Warning Script Commands

	8.6.6 Files
	8.6.6.1 Trace Buffer and Files
	8.6.6.2 File Script Commands
	8.6.6.3 CSV Data Import/Export

	8.6.7 System Script Commands
	8.6.8 Trace Script Commands
	8.6.9 Math Script Commands
	8.6.10 Simulation Configuration

	8.7 Automatic and Pre-Defined Define Directives
	8.8 Listing of Script Enumerated Data Types
	8.8.1 Script FILE_TYPE Enumerated Data Type
	8.8.2 Script VERIFY_FILES Enumerated Data Type
	8.8.3 Script FILE_OPTIONS Enumerated Data Type
	8.8.4 Trace Options Enumerated Data Types
	8.8.5 Code Coverage Listing Options Enumerated Data Type
	8.8.6 Base Time Options Enumerated Data Type
	8.8.7 Build Script TARGET_TYPE Enumerated Data Type
	8.8.8 Build Script TARGET_SUB_TYPE Enumerated Data Type
	8.8.9 Build Script ADDR_SPACE Enumerated Data Type
	8.8.10 Build Script READ_WRITE Enumerated Data Type
	8.8.11 Assignment Operation Enumerated Data Type
	8.8.12 eTPU Register Enumerated Data Types
	8.8.13 Pin and Node Enumerated Type
	8.8.14 Script CSV_CONTROL Enumeated Data Type

	9 Test Vector Files
	9.1 Node Command
	9.2 Group Command
	9.3 State Command
	9.4 Frequency Command
	9.5 Wave Command
	9.6 Engine Example, eTPU

	10 Functional Verification
	10.1 Data Flow Verification
	10.2 Pin Transition Behavior Verification
	10.2.1 Deprecated Pin Transition Behavior Verification

	10.3 Pin Transition Verification Example
	10.4 Code Coverage Analysis
	10.5 Regression Testing (Automation)
	10.6 Testing with a Specific Compiler Version
	10.7 Command Line Options
	10.7.1 Using the –d (define) Option and Escape Characters
	10.7.2 Warning Suppresion Command Line Options
	10.7.3 Preventing Multiple Rebuilds by Forcing 'No Build'

	10.8 File Location Considerations
	10.9 Test Termination
	10.10 Cumulative Logged Regression Testing
	10.11 Regression Test Example

	11 Action Tags
	11.1 Print Action Tag
	11.2 Timer Action Commands
	11.3 Write Value Action Tag

	12 External Circuitry
	12.1 Logic Simulation

	13 Workshops
	14 The Waveform Window
	14.1 Running the Simulation
	14.2 The Vertical Cursors and Snapping
	14.3 Executing to a Precise Time
	14.4 Enabling/Disabling Automatic Scrolling ... CRITICAL!
	14.5 Choosing Signals to Display
	14.6 Viewing a Variable as a Waveform
	14.7 Resizing Waveforms Height and Width
	14.8 Resizing a Waveform's Amplitude Manually
	14.9 Resizing a Waveform's Amplitude Automatically
	14.10 Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc.)
	14.11 Viewing eTPU Thread Activity End
	14.12 Controlling the View of Time ... Manually
	14.12.1 Displaying Behavior Verification Data

	14.13 Controlling the View of Time ... Automatically

	15 Operational Status Windows
	15.1 Source Code Windows
	15.2 Script Commands Window
	15.3 Watch Windows
	15.4 eTPU Channel Frame Window
	15.5 Memory Dump Window
	15.6 Local Variable Windows
	15.7 Breakpoint Window

	16 Dialog Boxes
	16.1 Goto Time Dialog Box
	16.2 Goto Angle Dialog Box
	16.3 Workshop Options Dialog Box
	16.4 Occupy Workshop Dialog Box
	16.5 Message Options Dialog Box
	16.6 Source Code Search Dialog Box
	16.7 Waveform Window Options Dialog Box
	16.8 Waveform Signal Options Dialog Box
	16.9 Channel Group Dialog Box
	16.10 Trace Options Dialog Box
	16.11 License Options Dialog Box
	16.12 Memory Tool Dialog Box
	16.13 The 'About' Dialog Box

	17 Menus
	17.1 Files Menu
	17.2 Build Menu
	17.3 Edit Menu
	17.4 Step Menu
	17.5 Run Menu
	17.6 Breakpoints Menu
	17.7 View Menu
	17.8 Options Menu
	17.9 Help Menu

	18 Supported Targets and Available Products
	18.1 eTPU/CPU System Simulator
	18.2 MC33816 Stand-Alone Simulator
	18.3 eTPU2 Stand-Alone Simulator
	18.4 eTPU Stand-Alone Simulator
	18.5 eTPU2 Simulation Engine Target
	18.6 eTPU Simulation Engine Target

	19 Building the Target Environment
	19.1 The Build Script File
	19.2 Custom Build Script File Pathing
	19.3 Build Script Commands

