
ASH WARE, Inc.

by

Version 2.75

6/8/2024

(C) 2012-2024 ASH WARE, Inc.

Full System DevTool IDE

John Diener and Andy Klumpp

Reference Manual

page 2, Full System DevTool IDE

Full System DevTool IDE, page 3

Full System DevTool IDE

Table of Contents

Foreword 11

Part 1 Overview 13

.. 151.1 On-Line Help Contents

Part 2 Demo Descriptions 17

Part 3 Software Upgrades 23

.. 253.1 Handling Multiple Versions

.. 273.2 Using Non-Installed ETEC Versions

Part 4 IDE and Editors 29

.. 294.1 IDE Options

.. 294.2 Panel Layout Options

.. 304.3 Code Auto-Completion

Part 5 The Project 31

.. 325.1 Ide Settings

.. 325.2 The Project Files

.. 335.3 The Pre-Build Windows' Console '.BAT' File

Part 6 Integrated Build 35

.. 356.1 Internal Build

... 37Building MC33816 Assembly

... 41Host Target Build

.. 416.2 External Build

.. 436.3 Disabled Build

Part 7 Source Code Files 45

Full System DevTool IDE

page 4, Full System DevTool IDE

.. 467.1 Source Code Search Rules

.. 477.2 Supported Compilers and Assemblers

Part 8 Script Commands Files 49

.. 508.1 The Primary Script Command Files

.. 518.2 ISR Script Commands Files

.. 538.3 The Startup Script Commands File

.. 538.4 The "ETEC_cpp.exe" Preprocessor

.. 548.5 Enhanced Scripting Capabilities

... 54Enumeration Declarations

... 55Script Variables

... 56Expression Statements

... 57Selection Statements

... 58Loop and Jump Statements

.. 598.6 File Format and Features

... 60Multiple-Target Scripts

... 60Script Directives, Define, Ifdef, Include

... 61Script Enumerated Data Types

... 62Script Integer Data Types

... 63Referencing Memory in Script Files

... 63Assignments in Script Commands Files - DEPRECATED

... 64Operators and expressions in Script Commands Files

... 65Syntax for global access of eTPU Function Variables

... 65Syntax for eTPU Channel Hardware Access

... 67Syntax for eTPU ALU Register Access

... 69String w ithin a string supports formatted symbolic information

... 69Comments in Script Commands Files

... 70Decimal, Hexadecimal, and Floating Point Notation in Script Files

... 70String Notation

.. 718.7 Script Commands

... 72Timing

... 72Timing Script Commands

... 74Verify Timing Script Commands

... 75Clock Control Script Commands

... 76Thread Script Commands

... 77MCU Configuration

... 77eTPU System Configuration Commands

... 78eTPU Timing Configuration Commands

... 79eTPU Host Service Request Register Script Commands

... 79eTPU Channel Address Script Commands

Full System DevTool IDE, page 5

Full System DevTool IDE

... 80eTPU Channel Function Select Register Commands

... 80eTPU Event Vector Entry Condition (Standard/Alternate) Commands

... 81eTPU Channel Function Mode Script Command

... 82eTPU Channel Priority Register Commands

... 82eTPU Shared Subsystem Script Commands

... 83eTPU STAC Bus Script Commands

... 83eTPU Link Script Command

... 84eTPU Interrupt Script Commands

... 85eTPU Interrupt Association Script Commands

... 86MC33816 Hardw are Commands

... 93Variable, Memory, and Register Modification and Verification

... 93Memory Read Script Commands

... 94Memory Modify Script Commands

... 95Memory Verify Script Commands

... 96Register Write Script Commands

... 96Register Verify Script Commands

... 97Symbol Write Script Commands

... 98Verify Symbol Value Script Commands

... 100eTPU Engine Data Script Commands

... 101eTPU Channel Data Script Commands

... 103eTPU Global Data Write/Verify Commands

... 104MC33816 SPI Data Write/Verify Commands

... 105MC33816 Register Script Commands

... 105Pin and Node Modification and Verification

... 106Pin Window Verif ication Commands

... 109Pin Verif ication and Control Script Commands

... 110Pin Transition Behavior Script Commands

... 114External Logic Commands

... 116MC33816 Verif ication Script Commands

... 117Code

... 117Code Coverage Script Commands

... 122Code Warning Script Commands

... 123Files

... 123Trace Buffer and Files

... 124File Script Commands

... 125MC33816 SPI and Configuration File Creation Script Commands

... 126CSV Data Import/Export

... 127System Script Commands

... 129Trace Script Commands

... 131Math Script Commands

... 133Simulation Configuration

.. 1338.8 Automatic and Pre-Defined Define Directives

.. 1378.9 Listing of Script Enumerated Data Types

... 137Script FILE_TYPE Enumerated Data Type

Full System DevTool IDE

page 6, Full System DevTool IDE

... 137Script VERIFY_FILES Enumerated Data Type

... 137Script FILE_OPTIONS Enumerated Data Type

... 138Trace Options Enumerated Data Types

... 139Code Coverage Listing Options Enumerated Data Type

... 140Base Time Options Enumerated Data Type

... 140Build Script TARGET_TYPE Enumerated Data Type

... 140Build Script TARGET_SUB_TYPE Enumerated Data Type

... 141Build Script ADDR_SPACE Enumerated Data Type

... 143Build Script READ_WRITE Enumerated Data Type

... 143Assignment Operation Enumerated Data Type

... 144eTPU Register Enumerated Data Types

... 145Pin and Node Enumerated Type

... 146MC33816 Reset Source Enumerated Type

... 146CPU32 Register Enumerated Data Types

... 147MC33816 Register Enumerated Data Types

... 147Script CSV_CONTROL Enumeated Data Type

Part 9 Test Vector Files 149

.. 1519.1 Node Command

.. 1539.2 Group Command

.. 1539.3 State Command

.. 1549.4 Frequency Command

.. 1549.5 Wave Command

.. 1559.6 Engine Example, eTPU

.. 1579.7 Direct Injection Example, MC33816

Part 10 Functional Verification 159

.. 16010.1 Data Flow Verification

.. 16110.2 Pin Transition Behavior Verification

... 165Deprecated Pin Transition Behavior Verification

.. 16610.3 Pin Transition Verification Example

.. 16810.4 Code Coverage Analysis

.. 17210.5 Regression Testing (Automation)

.. 17310.6 Testing with a Specific Compiler Version

.. 17310.7 Command Line Options

... 179Using the –d (define) Option and Escape Characters

... 180Warning Suppresion Command Line Options

... 184Preventing Multiple Rebuilds by Forcing 'No Build'

Full System DevTool IDE, page 7

Full System DevTool IDE

.. 18510.8 File Location Considerations

.. 18610.9 Test Termination

.. 18610.10 Cumulative Logged Regression Testing

.. 18710.11 Regression Test Example

Part 11 Action Tags 189

.. 19011.1 Print Action Tag

.. 19111.2 Timer Action Commands

.. 19211.3 Write Value Action Tag

Part 12 External Circuitry 193

.. 19312.1 Logic Simulation

.. 19512.2 Built-in Injector

.. 19612.3 Built-in DC to DC Boost Converter

.. 19712.4 Built-in HBridge

.. 19912.5 Built-in Load

Part 13 Workshops 203

Part 14 The Waveform Window 207

.. 21214.1 Running the Simulation

.. 21314.2 The Vertical Cursors and Snapping

.. 21314.3 Executing to a Precise Time

.. 21414.4 Enabling/Disabling Automatic Scrolling ... CRITICAL!

.. 21414.5 Choosing Signals to Display

.. 21614.6 Viewing a Variable as a Waveform

.. 21714.7 Resizing Waveforms Height and Width

.. 21914.8 Resizing a Waveform's Amplitude Manually

.. 21914.9 Resizing a Waveform's Amplitude Automatically

.. 22014.10 Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc.)

.. 22114.11 Viewing eTPU Thread Activity End

.. 22214.12 Controlling the View of Time ... Manually

Full System DevTool IDE

page 8, Full System DevTool IDE

... 223Displaying Behavior Verification Data

.. 22414.13 Controlling the View of Time ... Automatically

Part 15 Operational Status Windows 225

.. 22515.1 Source Code Windows

.. 22815.2 Script Commands Window

.. 22915.3 Watch Windows

.. 23115.4 eTPU Channel Frame Window

.. 23215.5 Memory Dump Window

.. 23515.6 Local Variable Windows

.. 23615.7 Breakpoint Window

Part 16 Dialog Boxes 239

.. 23916.1 Goto Time Dialog Box

.. 24016.2 Goto Angle Dialog Box

.. 24116.3 Workshop Options Dialog Box

.. 24216.4 Occupy Workshop Dialog Box

.. 24316.5 Message Options Dialog Box

.. 24316.6 Source Code Search Dialog Box

.. 24516.7 Waveform Window Options Dialog Box

.. 24516.8 Waveform Signal Options Dialog Box

.. 25116.9 Channel Group Dialog Box

.. 25116.10 Trace Options Dialog Box

.. 25216.11 License Options Dialog Box

.. 25316.12 Memory Tool Dialog Box

.. 25416.13 The 'About' Dialog Box

.. 25416.14 GTM Configuration Dialog Box

Part 17 Menus 257

.. 25717.1 Files Menu

.. 25817.2 Build Menu

.. 25917.3 Edit Menu

Full System DevTool IDE, page 9

Full System DevTool IDE

.. 26017.4 Step Menu

.. 26217.5 Run Menu

.. 26317.6 Breakpoints Menu

.. 26417.7 View Menu

.. 26417.8 Options Menu

.. 26517.9 Help Menu

Part 18 Supported Targets and Available
Products 267

.. 26718.1 MC33816/CPU System Simulator

.. 26718.2 eTPU/CPU System Simulator

.. 26818.3 MC33816 Stand-Alone Simulator

.. 26818.4 eTPU2 Stand-Alone Simulator

.. 26818.5 eTPU Stand-Alone Simulator

.. 26918.6 CPU32 Stand-Alone Simulator

.. 26918.7 MC33816 Simulation Engine Target

.. 26918.8 eTPU2 Simulation Engine Target

.. 26918.9 eTPU Simulation Engine Target

.. 27018.10 CPU32 Simulation Engine Target

Part 19 Building the Target Environment 271

.. 28719.1 The Build Script File

.. 28819.2 Custom Build Script File Pathing

.. 29019.3 Build Script Commands

page 10, Full System DevTool IDE

Full System DevTool IDE, page 11

Full System DevTool IDE

page 12, Full System DevTool IDE

1. Overview

Full System DevTool IDE, page 13Reference Manual (C) 2012-2024 ASH WARE, Inc.

1
Overview

This introductory section provides a high level overview of some of the key aspects of the
Full System IDE. More detail is provided in the remainder of this manual.

Source Code Files

Source code files are built using a compiler or an assembler and the resulting executable
image is loaded into the target/core code space. When executing code, it is actually the
executable image that gets executed. Source level debugging information cross references
the source code files' line numbers and variables with the underlying executable image
thereby supporting key debugging capabilities such as breakpoints, single stepping,
viewing/modifying variables in watch windows, etc. Source code files can be edited directly
within the IDE. Once edited, the source code is considered 'dirty' and will be rebuilt prior
to resuming execution. The process of rebuilding and loading of the executable image is
done automatically and largely transparently to the user.

Script Commands Files

Script commands files have several purposes. The primary script file used to automate
things like loading code, initialization, and functional verification. ISR script files can be
associated with specific interrupts and execute only when that interrupt is activated.
Startup script commands files (available to the MC33816 and CPU) are executed following

1. Overview

page 14, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

a reset or when the Full System IDE is initially launched. The purposes of the startup
script commands file is initialization and getting the target/core into the correct state for
loading code when Full System IDE is launched.

Test Vector Files

Test vector files provide the user with one means of exercising input and I/O pins with
complex test patterns. While a script commands file functionally represents the CPU or
Host-MCU interface, a test vector file represents the external interface. And whereas a
script commands file provides a broad range of functions, the test vector file provides the
narrow but powerful capability of driving nodes to "high" or "low" states.

Concurrently Developing Code for Multiple Targets/Cores

Code for multiple targets/cores can be developed, and debugged, concurrently.
Interactions between and among multiple targets/cores are modeled precisely and
accurately. All the normal debugging techniques such as single stepping, setting
breakpoints, stepping into functions, etc., are available for each target/core. The IDE
supports instantaneous target/core switching such that it is possible in the system simulator,
for example, to run to a CPU breakpoint, and then switch to a eTPU or MC33816 core and
single step it. All the while, all targets/cores are kept fully synchronized.

The NXP eTPU

Of special interest are the Enhanced Time Processor Unit (eTPU) from NXP. For this
wishing to develop their own eTPU Code, it is highly recommended that you obtain the
book "eTPU Programming Made Easy" from AMT Publishing. Do not be misled by the
title. This book is essential for beginners and experts alike. The eTPU training seminars
are also highly recommended.

Miscellaneous Capabilities

The Full System IDE has a number of additional features not yet mentioned. These include
project sessions, source code files, functional verification, external logic simulation, multiple
workshops, a rich set of dialog boxes, a menu system, and an IDE with hot keys, a toolbar,
and target status indicators.

1. Overview

Full System DevTool IDE, page 15Reference Manual (C) 2012-2024 ASH WARE, Inc.

1.1 On-Line Help Contents

The following help topics are available.

Overview
Software Deployment, Upgrades, and Technical Support
Supported Targets and Available Products
Project Sessions
Source Code Files
Script Commands Files
Script Commands Groups
Test Vector Files
Functional Verification
External Logic Simulation
Workshops
Operational Status Windows
Dialog Boxes
Menus

page 16, Full System DevTool IDE

2. Demo Descriptions

Full System DevTool IDE, page 17Reference Manual (C) 2012-2024 ASH WARE, Inc.

2
Demo Descriptions

Note that YouTube videos covering several of these demos as well as feature tutorial
demos are available on our website at www.ashware.com/product_videos.htm.

The following eTPU demos install by default with Full System IDE. Several of these
demos will also build using the ETEC compiler/linker toolset run from the command line.

NXP Set 1 - UART Demo

· Use of the NXP's Set12 UART function..

· Use of header file, 'etec_to_etpuc_uart_conv.h' to convert between the
automatically generated 'MyCode_defines.h' and the standard NXP API interface
file.

NXP Set 2 - Engine Demo - AN4907 (NEW)

· Use of the NXP's latest Set2, Cam, Crank, Fuel, Spark, Knock functions.

· Note that this is the NEW SET2 function, often referred as 'AN4907'.

NXP Set 2 - Engine Demo (OLD)

http://www.ashware.com/product_videos.htm

2. Demo Descriptions

page 18, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

· Use of the NXP's Set2, Cam, Crank, Fuel, Spark, Knock functions.

· Note that this is the original SET2 function, a more recent version is available.

NXP Set 3 - ASDC Demo

· Use of the NXP's Set3 ASDC, PWMF, and PWMMDC functions.

· Use of the identical auto-generated headers that NXP uses for it's host-side API

NXP Set 4 - ASAC Demo

· Use of the NXP's Set12 ASAC, PWMF, and PWMMAC functions.

· Use of ASH WARE's auto-defines file, 'MyCode_defines.h'.

SD32 Evaluation Board Demo

· A basic S32DS eTPU project that runs on an MPC5777C Evaluation Board
(EVB.)

· Configured to use a PEmicro Multilink Universal JTAG debugger

· TWO projects: one is built for the eTPU-AB module, the other is built for the
eTPU-C module.

· ETPU Engine A, Channel 1: continuous "SOS" QOM output with dot time unit of
0.333s

· ETPU Engine C, Channel 2: 10Hz active low PWM output at 50% duty

Data Types Demo

· A variety of data types and data scopes commonly used in the eTPU.

· Run-time initialization of data using the ETEC-generated initialization file,
'DataTypes_idata.h'.

2. Demo Descriptions

Full System DevTool IDE, page 19Reference Manual (C) 2012-2024 ASH WARE, Inc.

Auto-Defines Demo

· Use of file the ETEC Compiler auto-generated file, 'MyCode_defines.h', to write
& verify eTPU settings such as channel settings, variables, etc.

Auto-Struct Demo

· Each channel's variables are accessed using an automatically-generated structure.
The structure is automatically generated by the ETEC Compiler

· Use of a generic CPU to build and simulate generic host-side code.

· CPU code build is controlled by DevTool ('internal' build'.)

Templates Demo

· A variety of templates (empty code) which and are excellent starting point when
developing new eTPU functions.

· Legacy and ETEC mode functions.

· Standard and Alternate entry tables.

Worst Case Latency Demo

· An (optional) 'System Configuration' file sets the system parameters such as clock
frequency, processor family, which functions run on which channels, channel
priority, etc.

· The maximum allowed worst case latency (WCL) for each channel is specified in
the System Configuration file

· Build fails if WCL requirements are not met.

· Analysis file shows resulting system behaviors such as WCL and WCTL for each
channel.

2. Demo Descriptions

page 20, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Stepper Motor System Simulator Demo

· System simulator demo (both CPU and dual-eTPU are simulated)

· NXP's host-side API on a simulated CPU.

· The ASH WARE <>_defines file used in the host-side API.

· NXP's Set 1 Stepper Motor (SM) function.

· CPU code is built by calling an external batch file ('external' build.)

UART ETEC Mode System Simulator Demo

· System simulator demo (both eTPU are simulated and a 'Generic CPU' that
generically simulates your host-side code are simulated.)

· Use of the superior ETEC mode style of programming.

· Conversion of NXP's UART function to ETEC mode.

· NXP's host-side API used on a simulated CPU.

· The Auto-generated header files similar to those used in the NXP standard
functions.

· The ASH WARE generated '<>_idata.h' file for initializing DATA memory.

· The ASH WARE generated '<>_scm.h' file for initializing CODE memory.

Byte Craft ETPU_C

· External Build using a Console Build Batch file (.BAT)

· Building code using the Byte Craft compiler

· Using a channel's output pin in the entry table.

Dual-eTPU STAC Bus Demo

2. Demo Descriptions

Full System DevTool IDE, page 21Reference Manual (C) 2012-2024 ASH WARE, Inc.

· Simulating both eTPU Engines (64 channels total)

· TCR1/TCR2 export/import using the STAC bus.

eTPU/GTM, Four-Injectors, Two-Banks Demo

· A demo is available at the following link. www.ashware.com/product_videos.htm

· Co-simulation of the eTPU and the GTM.

· Banked injection, four injectors in organized into two banks. Each bank controlled by
an GTM core.

· eTPU responding to an input 'CAM' signal to generate four injection pulses at the
GTM's 'START1'-START4' pins.

· GTM responding to four START events to generate injection pulses on four
injectors.

· eTPU channel output pins are drive to the GTM 'start' pins thereby generating
precisely-timed injection pulses.

· Script command variables used to programmatically control and verify injection firing
timing via the CAM signal.

The following GTM demos install by default with Full System IDE.

Direct Injection Demo

· A simple 'starting point' injector demo.

· Implemented as a graphical state machine.

DC DC Converter Demo

· Use of the NXP DC/DC Converter function.

· A simple implementation of the DC to DC Converter function

http://www.ashware.com/product_videos.htm

2. Demo Descriptions

page 22, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

· Script command variables used programmatically to inject Battery droop and
overload conditions while verifying VBoost voltage

H-Bridge Demo

· A simple 'starting point' H-Bridge demo.

· Advanced scripting including use of a two-dimensional array to hold test cases and
expected behavor as well as looping and inner-scope variable declarations.

Direct Injection 'Diagnostics Faults' Demo

· Use of the diagnostics to detect and isolate various injector faults.

· Use of script commands to inject fault test cases.

Direct Injection 'Moving to Hardware' Demo

· A demo is available at the following link. www.ashware.com/product_videos.htm

· GTM is controlled by 'C' code compiled for, and running in, a simulated CPU

· Implements the required steps to interface to the GTM from a Host CPU Across a
SPI Bus

· Data RAM initialization by using the initialization macros auto-generated by the
assembler to perform a block write across the SPI bus

· Code RAM initialization by doing a block write across the SPI Bus of the ciphered
code image

· Registers initialization by compiling the startup script and performing SPI block
writes using the resulting initialized array data

· Run time control of the GTM by controlling the start pins to fire the injector and
updating of data RAM variables to affect operational parameters.

http://www.ashware.com/product_videos.htm

3. Software Upgrades

Full System DevTool IDE, page 23Reference Manual (C) 2012-2024 ASH WARE, Inc.

3
Software Upgrades

World Wide Web Software Deployment

All ASH WARE software is now deployed directly from the World Wide Web. This is
done using the following procedure.

- Download and install a demo version of the desired software product. All
software products are available at a demonstration level.

- Purchase the software product(s) either from ASH WARE or one of our
distributors.

- E-mail to ASH WARE the license file, named "AshWareComputerKey.ack",
found in the installation directory.

- Wait until you receive an e-mail notification that the information from your
license file has been added to the installation utility.

- Download and re-install again. The software product(s) you purchased are
now fully functional. All other software products are still available at a
demonstration level.

World Wide Web Software Upgrades

3. Software Upgrades

page 24, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

All versions since 2.1 can be upgraded directly through the World Wide Web. The
following procedure is required when performing this upgrade. Note that versions prior to
2.1 cannot be upgraded via the World Wide Web.

- Upon receiving notification from ASH WARE that a new version of the Full
System IDE is available, download and re-install.

After the initial software upgrade, ASH WARE no longer requires a new software key.

Network Floating Licenses

Version 4.30 and above support a floating license capability. A central License Server has
a pool of one or more licenses. Client computers request floating licenses from the License
Server. The License Server issues licenses until its pool of licenses has been depleted.
When a client computer no longer needs a license it becomes available for the License
Server to distribute to a different client.

When a client requests a license it normally exits if no license is available. However, it
may choose instead to wait a certain user-defined amount of time for a license to become
available. If a license does become available the software is able to operate. If, after the
user-specified amount of time is exceeded, no license becomes available then the software
exits. This is especially useful in automated testing where the test would otherwise fail if
no floating license were available. The amount of time to wait for a floating license to
become available is specified by the -NetworkRetry parameter passed on the command
line. See the Command Line Parameters section for specifying this parameter.

Dongle Licensing

A dongle is a physical device that attaches to a USB port on your computer. With a dongle
license you can run the software in a fully-functional mode as long as the dongle is
connected to your computer. If you unplug the dongle, then the software will run only in a
demo-limited mode.

A dongle effectively replaces the license file in that you can move the software and dongle
to a different computer and it will run in fully-functional mode without any interaction with
ASH WARE. This is particularly valuable in (say) aerospace in which the software must
be functional for many decades. Since the software can be moved between computers
with no interaction with ASH WARE, this constitutes a stable long-term development and
maintenance scenario.

3. Software Upgrades

Full System DevTool IDE, page 25Reference Manual (C) 2012-2024 ASH WARE, Inc.

Hearing about Software Releases

In order to be notified about ASH WARE's software releases, be sure to provide your e-
mail address to ASH WARE. This will ensure that you are automatically alerted to
production and beta software releases. Otherwise you will have to periodically check the
ASH WARE Web site to find out about new software releases. Note that your e-mail
address and other contact information will never be released outside of ASH WARE.
Further, ASH WARE will only add you to our e-mail list if you specifically request us to do
so.

The Full System IDE automatically displays an informational message when your software
subscription is close to expiration. Note that the software license has no expiration so it is
legal to use the Full System IDE beyond the software subscription expiration date. The
software subscription entitles you to free technical support and Web-based software
upgrades.

Technical Support Contact Information

With the purchase of this product comes a one-year software subscription and free
technical support. This technical support is available through Email, the World Wide Web,
and telephone. Contact information is listed below.

- (503) 533-0271 (phone)

- www.ashware.com

- support@ashware.com

3.1 Handling Multiple Versions

Each software version is installed (by default) into a unique installation directory by
concatenating the program name with the version, as follows:

c:\Program Files (x86)\ASH WARE\eTPU2p DevTool IDE V1_01C

c:\Program Files (x86)\ASH WARE\eTPU Compiler V2_30C

Note that this differs from the way earlier ASH WARE Simulators and Debuggers were
installed.

C:\Program Files (x86)\ASH WARE\MC33816 DevTool IDE V1_01A

3. Software Upgrades

page 26, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Note that the default installation directory can be overridden during the installation.

Although it is great to be able to have multiple software versions installed at once, this can
lead to problems when trying to run regression tests and the version changes. How can the
regression test 'find' the latest version? To solve this problem, during installation an
environment variable is updated to reflect the last-installed version, as follows.

DEV_TOOL_ETPU_BIN="C:\Program Files (x86)\ASH WARE\eTPU2p DevTool IDE

V1_01C\"

ETEC_BIN="C:\Program Files (x86)\ASH WARE\eTPU Compiler V2_30C\"

Automated regression tests can find the software version using the following Console
.BAT command sequence. Note that this is from the AutoStruct DevTool IDE Demo.

set DEV_TOOL_ETPU_EXE=%DEV_TOOL_ETPU_BIN%\ETpuDevTool.exe

echo Running "eTPU IDE Auto-Struct Demo" Test ...

%DEV_TOOL_ETPU_EXE% -p=AutoStructDemo.FullSysIdeProj -AutoBuild -AutoRun

if %ERRORLEVEL% NEQ 0 (goto errors)

DEV_TOOL_MC33816_BIN="C:\Program Files (x86)\ASH WARE\MC33816 DevTool IDE

V1_01D\"

Automated regression tests can find the software version using the following Console
.BAT command sequence. Note that this is from the 'Direct Injection' demo.

set DEVTOOL=%DEV_TOOL_MC33816_BIN%\Mc33816DevTool.exe

%DEVTOOL% -p=DirectInjectionDemo.Spd816IdeProj -AutoBuild -AutoRun -

lf5=Sim.Log -q

if %ERRORLEVEL% NEQ 0 (goto errors)

goto end

:errors

echo ***

echo YIKES, WE GOT ERRORS!!

echo ***

exit /b 1

:end

Note that the ETEC compiler has a similar mechanism for finding the
compiler/assembler/linker, etc., executables in their (uniquely named by version) installation
directory. See below for an example.

set CC=%ETEC_BIN%"\ETEC_cc.exe"

%CC% -version

%CC% AutoStruct.c

3. Software Upgrades

Full System DevTool IDE, page 27Reference Manual (C) 2012-2024 ASH WARE, Inc.

3.2 Using Non-Installed ETEC Versions

Certain customers may desire to deploy the ETEC Compiler Toolset on multiple users
computers (often in conjunction with the network license capability) and in this type of
situation it can be onerous to install ETEC on every computer. The following describes the
process for accessing ETEC from the Full System IDE when ETEC has not actually been
installed.

1. Copy the ETEC directory on to the users machine at the same location on every
machine. For example, to c:\Tools\eTPU Compiler V2_31B\.

2. Set the System Environment Variable as shown below. The Variable Name's format
must follow this pattern:
COMPILER_ASH_<VersionHigh><VersionLow><BuildLetter>.

3. That's it except you might need to reboot the computer before the environment variable
takes effect. Open the settings window and then click on a target as shown below, In
the options for the ETEC compilers you will now see the ETEC version as an option but
with the word 'System' prepended as shown below.

3. Software Upgrades

page 28, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

4. IDE and Editors

Full System DevTool IDE, page 29Reference Manual (C) 2012-2024 ASH WARE, Inc.

4
IDE and Editors

This section covers some of the basic features of the Full System IDE and editor windows.

4.1 IDE Options

The IDE Options are accessed through the Project window - right-click on the "IDE
Options" tree node to open the settings. Settings allow control over how the editor handles
tabs and spaces, the font type and size, and several global simulation options.

4.2 Panel Layout Options

The Full System IDE window framework is highly configurable. By default there are 5
panels - three side-by-side above a horizontal divider, and two side-by-side below. All
dividers can be adjusted as needed. Right-clicking in the tab area of these panels gives
users the options of dividing the panel vertically or horizontally into sub-panels - this can be
done to any depth desired. Right-clicking in the tab area of a child panel provides the
option of closing the panel. The default 5 panels cannot be closed.

In addition to the panel layout controls, individual windows (non-editor windows only) can
be "floated". This is accomplished by right-clicking on the desired window and selecting
"Float This Tab". Doing so moves the tab into its own modeless dialog, which can be
minimized or moved wherever desired. This is a particularly powerful feature for users

4. IDE and Editors

page 30, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

with multiple displays. Tabs that have been floated can be re-docked with right-clicking on
the window and selecting "Dock This Tab".

4.3 Code Auto-Completion

When writing script files or MC33816 assembly code, the editor provides code auto-
completion tips. When a new instruction is started with any letter keystroke, a listbox
appears with all instruction possibilities, with the closest alphabetically selected. The user
can select the desired instruction (mouse, up/down, page up/down) and then hit the enter,
space or tab key to have the instruction automatically placed into the code. Each
parameter with its options follows in the listbox. For MC33816 assembly, when the last
parameter is entered a semi-colon is automatically added to end the instruction. Hitting the
'escape' key or clicking outside the auto-complete box exits auto-complete mode. Double-
clicking on a list item auto-completes the word similar to space/tab/enter.

5. The Project

Full System DevTool IDE, page 31Reference Manual (C) 2012-2024 ASH WARE, Inc.

5
The Project

The project is the glue that holds the Full System IDE together.

5. The Project

page 32, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

5.1 Ide Settings

To modify the IDE settings, right-click on the 'IDE Options project node and select
'Settings'. The following will appear. From this settings window an number of settings can
be modified such as the user of tabs (or spaces) the font, enabling of auto-completions, and
various other options.

5.2 The Project Files

The project settings are saved in two files; the 'Project File' and he 'Environment File'.

The 'Project File' contains the key settings that are generally put under a versioning system
such as CVS. It contains key filenames such as the primary script filename, source code
filenames (if the build is controlled by the Full System IDE) build options such as the
memory model, etc.

The 'Environment file' contains settings that are generally specific to the user such as
window sizes and positions, the font, etc. Most users will NOT keep this file in a
versioning systems such as CVS. The environment file has the same name as the project
file except that the user-name is appended to the base file name and has a different file
suffix.

5. The Project

Full System DevTool IDE, page 33Reference Manual (C) 2012-2024 ASH WARE, Inc.

5.3 The Pre-Build Windows' Console '.BAT' File

A pre-build Windows' console '.BAT' file can be specified from within the project window
by right-clicking on the Build Folder (pointed to in the picture seen below by the green
arrow) and selecting 'Settings. The Settings windows then becomes visible and the '.BAT'
file can be entered as seen by the blue arrow. Text which is echoed from the '.Bat' file is
displayed in DevTool's Output Window as shown by the lower red arrow. Note that the
'.BAT' file can return a pass by exiting with a '0' exit code thereby allowing the build to
proceed. However in the example shown below, the '.BAT' file's exit code is '-1' thereby
preventing the build or make from proceeding.

page 34, Full System DevTool IDE

6. Integrated Build

Full System DevTool IDE, page 35Reference Manual (C) 2012-2024 ASH WARE, Inc.

6
Integrated Build

The Development Tool supports an internal and an external integrated build.

6.1 Internal Build

An 'Internal Build' is controlled by the Full System IDE. A target is set to perform an
'Internal Build' within the Project by right-clicking the target's on the target node.

6. Integrated Build

page 36, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The source code files to be compiled or assembled are added to the target's 'Build Folder'
as shown below.

The executable image filename is set in the target's 'Link' node, as shown below.

6. Integrated Build

Full System DevTool IDE, page 37Reference Manual (C) 2012-2024 ASH WARE, Inc.

6.1.1 Building MC33816 Assembly

The ASH WARE Assembler

The ASH WARE MC33816 Assembler is the default. The ASH WARE MC33816
Assembler is used when 'Default' is chosen in the 'Settings' window (when the project's
Target is active) as shown below.

The '816 Development Studio' Assembler

The NXP MC33816 Assembler gets installed as part of NXP's '816 Development Studio'.
This assembler installation will show up as the following option in the Assembler Tools
Directory setting.

The Default NXP Assembler

The NXP assembler does not provide a location mechanism for other programs such as the
Full System IDE to find the installation location. So an the environment variable approach
explained in this section has been employed to provide the Full System IDE with a trace to
the installed program. Once the Environment variable has been setup, and the computer
has been restarted, the following Assembler Tools Directory setting will appear.

System (Env=AUSY_SPD816_ASM_DIR)

The NXP assembler installation location within the computers directory system is defined
by the AUSY_SPD816_ASM_DIR environment variable. For instance, if the this variable is
set as show below to look in the 'c:\Tools\Mc33816\ directory for the NXP assembler.

AUSY_SPD816_ASM_DIR=c:\tools\Mc33816Assembler

From the command line, set this variable using the following command

set AUSY_SPD816_ASM_DIR=c:\tools\Mc33816Assembler

6. Integrated Build

page 38, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Note that the command listed above is active only for the console window in which it is
entered. To permanently add or change this option, from 'Files Explorer' right-click to get
the popup menu shown below and select 'Properties.'

From the 'System Options' dialog select the 'Advanced' tab an click on the 'Environment
Variables' button as shown below.

6. Integrated Build

Full System DevTool IDE, page 39Reference Manual (C) 2012-2024 ASH WARE, Inc.

Then click on the LOWER 'new' button as shown below. Note that the environment
variable can also be changed using the top 'New' button, however then if the computer is
used under a different login name, the assembler will not be available.

6. Integrated Build

page 40, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The enter the variable name and value as show below.

Note that computer must be restarted for the newly-added or changed environment
variable to take affect.

6. Integrated Build

Full System DevTool IDE, page 41Reference Manual (C) 2012-2024 ASH WARE, Inc.

6.1.2 Host Target Build

The "generic" host target available in System DevTool now supports internal builds of C
code. Startup code and a few basic libraries are automatically linked. The user code must
contain an entry point function called "user_main" that has a return type of "int" and takes
no parameters.

Users can enable interrupt handling from other targets (e.g. eTPU) during system
simulation by taking the following steps:

- run "isrLibInit()" at the start of the entry function, and call "isrEnableAllInterrupts()" to
enable interrupt handling. Then use "isrConnect" to set up handlers for the expected
(eTPU) interrupts of the application. See isrLib.h in the "Include" directory under the
DevTool installation directory.

- from the script environment of the host target, run the "enable_target_interrupts()" script
command for each target from which to enable interrupts.

The host target code can also access the scripting environment through a provided API.
See "scriptLib.h" in the "Include" directory for more details on what is available. The
"at_time", "wait_time" and "read_time" calls can be particularly useful for synchronizing
with .

6.2 External Build

Normally, a software build is done using an 'Internal Build.' However, there are occasions
when it is preferable to call an external batch file (.BAT) to perform the build process. For
instance, this is the way to build software using the Byte Craft ETPU_C compiler.

To specify an external build, right-click on the project's Target node and select 'Build using
Console Bat.'

One significant issue is retrieving the exit code from the batch file. The batch file must be
terminated using the following console batch command

exit <ID>

The 'ID' indicates to the Full System IDE if there was an error or not. If the build was
successful then the ID should be zero, otherwise the ID should be non-zero.

One common mistake is to terminate just the batch command using the /b option.

exit /b <ID> DO NOT DO THIS!!!

6. Integrated Build

page 42, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

So this can be a problem because if the batch file is also used as a part of a regression test
suite then the /b might be needed to prevent the console window from closing. To address
this conundrum, the Full System IDE passes the console batch file the following parameter.

EXIT_CMD_PROCESSOR

This can be used to differentiate between a Full System IDE external build and a
regression test suite, as follows.

set EXIT_CMD=%1
if not defined EXIT_CMD goto do_exit_batch
if %EXIT_CMD% EQU EXIT_CMD_PROCESSOR exit -1

:do_exit_batch
exit /b -1
:end

It is also a good idea to delete the executable image file before doing the build. This
prevents a stale executable image file from being deleted and improves the Full System
IDE's ability to detect external build errors.

del HiLo.cod
%ETPUC_EXE% HiLo.c +l +e +q n=..\..\DemosMpc55xx\Lib

Here is a complete listing of a build batch file that can be used in the Full System IDE's
external build and as part of a separate regression test.

echo off
setlocal

if exist %ETPUC_EXE% goto DoneCheckBC_EXE
echo .
echo
!!!
!!!!!!!!!!!!!!!!!!!!!!!!
echo !!! Set the environment variable, ETPUC_EXE, to the
eTPU_C Compiler's location !!!
echo !!! Such as:
 !!!
echo !!! SET ETPUC_EXE="c:\program files\byte
craft\etpuc\etpu_c.exe" !!!
echo
!!!
!!!!!!!!!!!!!!!!!!!!!!!!
echo .
goto :errors
:DoneCheckBC_EXE

6. Integrated Build

Full System DevTool IDE, page 43Reference Manual (C) 2012-2024 ASH WARE, Inc.

if not exist HiLo.cod goto no_pre_delete
del HiLo.cod
:no_pre_delete

%ETPUC_EXE% HiLo.c +l +e +q n=..\..\DemosMpc55xx\Lib
if %ERRORLEVEL% NEQ 0 (goto errors)

echo COMPILATION PASSES
goto end

:errors
type HiLo.err
echo ***
echo YIKES, WE GOT ERRORS!!
echo ***

set EXIT_CMD=%1
if not defined EXIT_CMD goto do_exit_batch
if %EXIT_CMD% EQU EXIT_CMD_PROCESSOR exit -1

:do_exit_batch
exit /b -1
:end

6.3 Disabled Build

It is often desirable to disable a build such that the Full System IDE does not rebuild the
executable image file. This is particularly helpful when two cores share a code memory
such that a single executable code image file is used by both cores.

6. Integrated Build

page 44, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

7. Source Code Files

Full System DevTool IDE, page 45Reference Manual (C) 2012-2024 ASH WARE, Inc.

7
Source Code Files

Source code files is built using code build tools. For the MC33816 code is built using the
ASH WARE MC33816 assembler. For CPU32 targets, industry standard compilers such
as Introl, Diab-Data, or GNU can be used. For the eTPU the ASH WARE ETEC
compiler or the Byte Craft compiler is used to build the code.

These executable files are loaded into the target/core's memory space. The Full System
IDE also loads the associated source code files and displays them in source code windows,
highlighting the line associated with the instruction being executed. Several hot keys allow
the user to set breakpoints, execute to a specific line of code, or execute until a point in
time.

Source code files can be edited directly within the IDE. Once edited, the source code is
considered 'dirty' and will be rebuilt prior to resuming execution. The process of rebuilding
and loading of the executable image is done automatically and largely transparently to the
user.

Editing of source code files outside the IDE is also supported. When file is saved by the
external editor, Full System IDE automatically recognizes that the file is 'dirty' and will both
reload the file and rebuild the code prior to resuming execution.

7. Source Code Files

page 46, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

7.1 Source Code Search Rules

Source code files may be contained in multiple directories. In order to provide source-level
debugging, the Full System IDE must be able to locate these files. Source code search
rules provide the mechanism for these files to be located.

The search rules are as shown below. These rules are performed in the order listed. If
multiple files with the same name are located in different directories the first encountered
instance of that file, per the search rules, will be used.

- Search relative to the directory where the main build file, such as A.OUT is
located.

- Search relative to the directories established for the specific target associated
with the source code.

- Search relative to the global directories established for all targets.

In the search rules listed above the phrase "search relative to the directory . . ." is used.
What does this mean? It means that if the file is specified as "..\Dir1\Dir2\FileName.xyz",
start at the base directory and go up one, then look down in directory "Dir2" and search in
this directory for the file, "FileName.xyz".

Note that the search rules apply only to source code files in which an exact path is not
available. If an exact path is available, the source code file will be searched only at that
exact path. If an exact path is provided and the file is not located at that exact path, the
search will fail.

The Source Code Search Options dialog box allows the user to specify the global
directories search list as well as the search lists associated with each individual target.

Absolute and Relative Paths

The Full System IDE accepts both absolute and relative paths.

An absolute path is one in which the file can be precisely located based solely that path.
The following is an absolute path.

C:\Compiler\Libary\

A relative path is one in which the resolution of the full path requires a starting point. The
following is an example of a relative path.

..\ControlLaws\

7. Source Code Files

Full System DevTool IDE, page 47Reference Manual (C) 2012-2024 ASH WARE, Inc.

Relative paths are internally converted to absolute paths using the main build file as the
starting point. As an example, suppose the main build file named A.OUT is located at the
following location.

C:\MainBuild\TopLevel\A.out

Now assume that in the search rules the following relative path has been established.

..\ControlLaws\

Now assume that file Spark.C is referenced from the build file A.OUT. Where would the
Full System IDE search for this file? The following location would be searched first
because this is where the main build file, A.OUT, is located.

C:\MainBuild\TopLevel\

If file Spark.C were not located at the above location, then the following location would be
searched. This location is established by using the location of the main build file as the
starting location for the ..\ControlLaws\ relative path.

C:\MainBuild\ControlLaws\

7.2 Supported Compilers and Assemblers

We will be adding support for compilers and assemblers based on customer demand. A list
of these can be found on our Web site.

page 48, Full System DevTool IDE

8. Script Commands Files

Full System DevTool IDE, page 49Reference Manual (C) 2012-2024 ASH WARE, Inc.

8
Script Commands Files

Overview

Script commands files provide a number of important capabilities. Script commands files
provide a mechanism whereby actions available within the GUI can be automated. In the
eTPU Simulator, Script commands can be used in place of the host CPU.In the MC33816
simulator, script commands can take the place of the HOST MCU.

Each script commands file is arranged as a sequential array of commands, i.e., the Full
System IDE executes the script commands in sequential order. This allows the Full
System IDE to know when to execute the commands. Timing commands cause the Full
System IDE to cease executing commands until a particular point in time. At that point in
time, the Full System IDE begins executing subsequent script commands until it reaches the
next timing script command. Timing commands are not allowed in startup script files.

The following script help topics are found later in this section.

- Script Commands File Format

- Script Command Groups

- Multiple Target Scripts

- Automatic and Predefined #define Directives

- Predefined Enumerated Data Types

8. Script Commands Files

page 50, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

- Enhanced Scripting capabilities (variables, loops, etc)

Types of Script Commands Files

The different types of script commands files are as follows.

- The Primary Script Commands Files

- ISR Script Commands Files

- The Startup Script Commands File

It is best to just have a single primary script command associated with just one target/core.
 Alternatively, in a multi-target/core simulation, each target/core can have it's own primary
script commands file. ISR script commands files are associated with interrupts. Although
each interrupt may have only a single associated ISR script commands file, it is important
to note that each script commands file may be associated with multiple interrupts. The Full
System IDE can have only a single active MtDt build batch file.

Similarities to the C Programming Language

The script commands files are intended to be a subset of the "C" programming language.
In fact, with very little modification these files will compile under C.

8.1 The Primary Script Command Files

The Full System IDE automatically executes a primary script commands file if one is open.
 A new or alternate script commands file must be opened before it is available to the Full
System IDE for execution. The script command file can be changed within the project
window. Right click on the script commands file node and select 'Change Script
Commands File. The Full System IDE displays the open or active script commands file in
the target's configuration window. Only one primary script commands file may be active at
one time. Help is available for this window when it is active and can be accessed by
depressing the <F1> function key.

8. Script Commands Files

Full System DevTool IDE, page 51Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.2 ISR Script Commands Files

Currently, the ability to associate a script commands file with an interrupt is limited to the
eTPU and simulation target.

Script commands files can be associated with interrupts. When the interrupt associated
with a particular eTPU channel becomes asserted the ISR script commands file associated
with that channel gets executed.

In the eTPU, ISR script commands files can be associated with channel and data interrupts
as well as with the global exceptions.

There are some differences between the primary script commands file and ISR script
commands files. Some important considerations are listed below.

- ISR script commands files are associated with channels using the load_isr,
and similar script commands.

- The primary script commands file begins execution after a Full System IDE
reset whereas ISR script commands files execute when the associated
interrupt becomes both asserted and enabled.

- The primary script commands file is preempted by the ISR script commands
files.

- ISR script commands files are not preempted, even by other ISR script
commands files and even if the (discouraged) use of timing commands with
these ISR script commands files is adapted.

- Only a single primary script commands file can be active at any given time.
Each interrupt source can have only a single ISR script commands file
associated with it.

- Within the eTPU's interrupt service routine the ISR script commands file
should clear the interrupt. This is accomplished using the clear_chan_intr(X),
the clear_this_intr(), or similar script command. Failure to clear the interrupt
request causes an infinite loop.

- A single ISR script commands file can be associated with multiple interrupt
sources such as eTPU channels. To make the ISR script commands file
portable across multiple channels be sure to use the clear_this_intr() or similar
script command.

- Do not use the clear_this_intr() script command in the primary script
commands file because the primary script commands file does not have an
eTPU channel context.

8. Script Commands Files

page 52, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

- Use of timing commands within an ISR script commands file is discouraged.
This would be analogous to putting delays in a CPU’s ISR routine. Such a
delay would have a detrimental effect on CPU latency and in the case of the
eTPU Simulator would be considered somewhat poor form.

- eTPU channels need not have an association with an ISR script commands
file.

There is an automatic define that can be used to determine which channel the script
command is associated with. This script command appears as follows.

#define _ASH_WARE_<TargetName>_ISR_ X

Where TargetName is the name of the target (generally TpuSim, eTPU_A, or eTPU_B),
and X is the number of the channel associated with the executing script. The following
shows a couple examples of its use.

#ifdef _ASH_WARE_TPUSIM_ISR_
print("this is an ISR script running on a target TPUSIM");
#else
print("this is not an ISR running on TPUSIM");
#endif

write_par_ram(_ASH_WARE_TPUSIM_ISR_,2,0x41);
write_par_ram(_ASH_WARE_TPUSIM_ISR_,3,8);
clear_this_cisr();

Critical Change in Version 3.70 and Later!

Beginning with MtDt Version 3.70, support for the NXP and ST Microelectronics eTPU2
forced a change in the eTPU engine naming convention that affects the ISR auto #define.
NXP originally referred to the two eTPU engines as eTPU1 and eTPU2. Unfortunately,
this naming convention clashes with the name of the new eTPU derivative, ‘eTPU2.’ The
original eTPU is referred to as ‘eTPU’ and the new eTPU2 is referred to as ‘eTPU2.’

Automatically-defined #defines within ISR script commands running on eTPU ‘Engine A’
and ‘Engine B’ are now as follows.

Is:

#define _ASH_WARE_ETPU_A_ISR_ <ChanNum>
#define _ASH_WARE_ETPU_B_ISR_ <ChanNum>

Was:

#define _ASH_WARE_ETPU1_ISR_ <ChanNum>

8. Script Commands Files

Full System DevTool IDE, page 53Reference Manual (C) 2012-2024 ASH WARE, Inc.

#define _ASH_WARE_ETPU2_ISR_ <ChanNum>

8.3 The Startup Script Commands File

Startup scripts provide the capability to get the target into a known state following the Full
System IDE controlled reset. It is particularly useful for the case in which the Full System
IDE is configured to load an executable image when launched. In the 683xx Hardware
Debugger, for instance, startup scripts can be used to configure the SIM registers so that
the executable image can be immediately loaded when it is launched.

Each target can have an associated startup script. Make sure the desired target is active.
From the Files menu select the Scripts, Startup submenu.

A report file is generated each time the startup script is executed. This file has the same
name as the startup script; its extension is "report."

There are some restrictions to startup scripts. These are listed below.

- No windows are supported.

- Flow control, such as breakpoints and single step, is not supported.

- Certain script commands are not supported. Restricted commands are noted
as such in the reference section.

8.4 The "ETEC_cpp.exe" Preprocessor

The ETEC C Pre-Processor (ETEC_cpp.exe) provides enhanced preprocessing
capabilities that significantly increase the power of the scripting language. In most cases
this capability is transparent to the user, though one side affect is that the preprocessing
stage is case sensitive.

One application of the preprocessor is to support initialization of global variables in the
eTPU. This is done as follows. The Byte Craft compiler supports a macro capability that
results in a series of macros as shown below for global variable initialization.

__etpu_globalinit32(0x0000,0x70123456)
__etpu_globalinit32(0x0004,0x71ABCDEF)
__etpu_globalinit32(0x0008,0x72000000)

The example above was output into the auto-generated header files by the following Byte
Craft command:

#pragma write h, (::ETPUglobalinit32);

8. Script Commands Files

page 54, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Using the following macro expansion, it is possible change the above macros into a form
supported by ASH WARE.

#define __etpu_globalinit32(address, value) \
 write_global_data32(address, value);

8.5 Enhanced Scripting Capabilities

The ASH WARE scripting syntax has always been based upon the C language, and
enhanced scripting continues that tradition. In some cases it may be possible to share the
same code between the scripting environment and host code. Enhanced scripting support
includes

- ability to declare enumerated types and use enumeration literals in place of constants in
expressions

- variables (called "script variables") can be declared, assigned to, used in expressions and
used as inputs to script commands in places wherein previously a numeric constant was
required.

- most C statements are supported: if-else, switch, for loops, while and do-while loops, and
goto/labels.

More information on each of the above is found in the ensuing sections. A script file is
treated like the contents of a C function from a scoping perspective, with the exception that
variables defined in the outermost scope are treated as "global" and can thus be seen from
ISR scripts. Inner scopes can be created with pairs of '{' and '}' tokens.

8.5.1 Enumeration Declarations

C Enumeration declarations are supported in the scripting language. The enumeration
literals may be used in place of constants in expressions or as numerical arguments to
script commands. Enumeration literals are treated as S32 type - signed 32-bit integers.
Below is an example of supported syntax.

enum I2C_SLAVE_MODE
{

I2C_SLAVE_MODE_FIND_IDLE,
I2C_SLAVE_MODE_IDLE,

8. Script Commands Files

Full System DevTool IDE, page 55Reference Manual (C) 2012-2024 ASH WARE, Inc.

I2C_SLAVE_MODE_START_SDA_LOW,
I2C_SLAVE_MODE_WRITE_HEADER,
I2C_SLAVE_MODE_WRITE_BYTE,
I2C_SLAVE_MODE_WRITE_BYTE_CHECK_STOP,
I2C_SLAVE_MODE_READ_BYTE,
I2C_SLAVE_MODE_READ_FIND_STOP,
I2C_SLAVE_MODE_ACK_OUT,
I2C_SLAVE_MODE_ACK_IN,
I2C_SLAVE_MODE_ACK_COMPLETE = I2C_SLAVE_MODE_ACK_IN +

1,
I2C_SLAVE_MODE_IGNORE = -1,

};

If the script file has been parsed, when hovering the mouse over an enumeration literal its
value will be displayed in the tooltip. Currently declaration of script variables of
enumerated type is not supported.

8.5.2 Script Variables

Use of script variables in the scripting environment allows for true closed-loop feedback
control, allowing scripts to do essentially anything a host CPU or MCU would do. Script
variables follow C scoping rules with a few small exceptions, (1) you cannot re-use the
same name in an inner scope, hiding the outer scope variable, and (2) variables defined at
the outermost scope of the first target's primary script file are treated as "global" and can
be referenced in ISR script files. Three basic variable types are supported - S32 (32-bit
signed int), U32 (32-bit unsigned int), and F64 (64-bit floating point). Declaration lists and
initializers are supported.

S32 a;
S32 b = -33, c, d = 0;
U32 e = 0xfebc, f = ENUM_LITERAL;
F64 g = 1.25e9, h = 0.0, i = 0x11;

Multi-dimensional arrays of the basic types are supported, including initializers.

S32 x[20];
U32 y[10][3] = { {1,2,3}, {4,5}, {6} };
F64 z[4][4][2] = { { {1.11, 2.22, } } };

Array element access is supported, but not incomplete de-referencing as pointers are not
supported in the scripting environment.

x[5] = (S32)(y[c][d] * z[3][2][1]); // valid
y[3] = read_dim_length("z", 1); // error, y not fully de-
referenced

8. Script Commands Files

page 56, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Script variables lifetime ends when their scope ends. Note that C99-style late declarations
are allowed.

{
// code...
S32 myVar;
myVar = read_chan_data_u24(5, 0x11);
if (myVar == 0x34)
{

// do something...
}
// code...

}
myVar += 10; // ERROR!!

Script variable values can be viewed in the tooltip by hovering the mouse over the variable
name, or all in-scope script variables can be viewed in the Script Variable window. Script
variables can additionally be configured as discrete nodes to be viewed in the Waveform
window.

8.5.3 Expression Statements

All C operators are supported except the following:

- array and pointer operators (unary *, unary &, [], ->, '.' struct member de-reference)

- expression comma operator

From an implicit type conversion precedence standpoint, type precedence is S32 -> U32 ->
F64. Note that for historical reasons constant expressions are computed in U32.

while (1)
{

F64 rpm;
F64 tooth_period;
U32 tooth_per_sync;
tooth_period = read_chan_data_u24(CRANK_CHAN,

FS_ETPU_CRANK_OFFSET_LAST_TOOTH_PERIOD);
tooth_per_sync = read_chan_data_u8 (CRANK_CHAN,

FS_ETPU_CRANK_OFFSET_TEETH_PER_SYNC);
 rpm = (1.0 / (tooth_period * tooth_per_sync /
TCR1_FREQ_HZ)) * 60;
 // done if RPM has gone above 2000

if (rpm > 2000.0)

8. Script Commands Files

Full System DevTool IDE, page 57Reference Manual (C) 2012-2024 ASH WARE, Inc.

break;
wait_time(1);

}

Explicit typecasts are supported.

write_chan_data_u24(PWM_CHAN, PERIOD_OFFSET, (U24)(1333.33
* SOME_SCALAR));
write_chan_data_u24(CRANK_CHAN, WINDOW_RATIO_OFFSET,
(UFRACT24)0.45);

Along with the 3 basic script types, the S32 and U32 base types have several supported
sub-types available just for cast:

S32 subtypes (result of all these casts are stored as an S32)

· S24

· S16

· S8

· SFRACT24

· SFRACT16

· SFRACT8

U32 subtypes (result of all these casts are stored as an U32)

· U24

· U16

· U8

· UFRACT24

· UFRACT16

· UFRACT8

8.5.4 Selection Statements

The C if-else syntax is fully supported by the Full System IDE script parser/interpreter.

if (<expression>)
c_statement

[else

c_statement]

Where c_statement can be any single C statement or script command (but not declaration),
or it can be a compound statement enclosed by scope '{' '}' tokens.

8. Script Commands Files

page 58, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The C switch statement is also available in the script environment, along with the
associated case and default statements. The syntax for these statements is:

switch (<expression>)
c_statement

case <constant expression>:

default:

The only difference with the C spec is that case constant expressions with floating point
are allowed.

8.5.5 Loop and Jump Statements

All types of C looping are supported by the enhanced scripting environment. For loops:

for ([expression];[expression];[expression])
c_statement

Where c_statement can be any single C statement or script command (but not declaration),
or it can be a compound statement enclosed by scope '{' '}' tokens. Each of the
[expression] terms in the for statement are optional. At the current time variable
declarations are not allowed in the first term.

While and do-while loops:

while (<expression>)
c_statement

and

do
c_statement
while (<expression>) ;

In all of theses loop types the 'break' and 'continue' statements are fully supported.

C labels and the goto statement are supported by the scripting environment.

label:
// code...
goto label;

Since the script is like the contents of a C function, any label in the script is accessible to a
goto statement.

8. Script Commands Files

Full System DevTool IDE, page 59Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.6 File Format and Features

The script commands file must be ASCII text. It may be generated using any editor or
word processor (such as WordPerfect or Microsoft Word) that supports an ASCII file
storage and retrieval capability.

The following is a list of script command features.

- Multiple-target scripts

- Directives

- Enumerated data types

- Integer data types

- Referenced memory

- Assignment operators

- Operators and expressions

- Comments

- Numeric Notation

- String notation

Script Commands Format

The command is case sensitive (though this is currently not enforced) and, in general, has
the following format:

command([data1,][data2,][data3]);

The contents within the parenthesis, data1, data2, and data3, are command parameters.
The actual number of such data parameters varies with each particular command. Data
parameters may be integers, floating point numbers, or strings. Integers are specified using
either hexadecimal or decimal notation. Floating point parameters are specified using
floating point notation, and strings are specified using string notation. Hexadecimal and
decimal are fully interchangeable.

8. Script Commands Files

page 60, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

8.6.1 Multiple-Target Scripts

In a multiple target environment it is generally best to have just a single script file in the first
target/core found in the project.

Script commands executed in this target/core affect specifically that core. For example, the
following script command will affect just this first target/core.

write_reg32(0x400,REG_PC);
write_chan_hsrr(TEST_CHAN, 7);
Ch1_Core0.write_spi_data16(CkPerAddr, 1);

So how can scripts control other targets/cores besides the (default) one with which the
script file is associated? For a script to operate on a specific target/core the target name is
prepended to the script as follows.

<TargetName>.<ScriptCommand>

The specific target for which a script command will run is specified as shown above.

eTPU_B.write_chan_hsrr (LAST_CHAN, 1);
wait_time(10);
verify_global_data32(SLAVE_SIGNATURE_ADDR,
 DATA_TRANSFER_INTR_SIGNATURE);
eTPU_B.verify_data_intr(LAST_CHAN, 1);
eTPU_A.verify_data_intr(LAST_CHAN, 0);

In this example, a host service request is applied to target eTPU_B. Ten microseconds
later script commands verify that the host service request generated a data interrupt on
eTPU_A but not eTPU_B.

The following example illustrates co-simulation of an eTPU and a MC33816

write_chan_hsrr (TEST_CHAN, 1);
Ch1_Core0.write_spi_bit (CH1_FlashEnableAddr, 3, 1);

8.6.2 Script Directives, Define, Ifdef, Include

The #define directive

Script commands files may contain the C-style define directive. The define directive starts
with the pound character "#" followed by the word "define" followed by an identifier and
optional replacement text. When the identifier is encountered subsequently in the script
file, the identifier text is replaced by the replacement text. The following example shows
the define directive in use.

#define THIS_CHANNEL 8
#define THIS_FUNC 4

8. Script Commands Files

Full System DevTool IDE, page 61Reference Manual (C) 2012-2024 ASH WARE, Inc.

set_chan_func(THIS_CHANNEL, THIS_FUNC);

Since the define directive uses a straight text replacement, more complicated replacements
are also possible as follows.

#define THIS_SETUP 8,4
set_chan_func(THIS_SETUP);

There are a number of automatic and predefined define directive as described in the like-
named section.

The #include <FileName.h> directive

Allows inclusion of multiple files within a single script file. Note that included files do not
support things like script breakpoints, script stepping, etc.

#include "AngleMode.h"

In this example, file AngleMode.h is included into the script commands file that included it.

The #ifdef, #ifndef, #else, #endif directives

These directives support conditional parsing of the text between the directives.

//========== That is all she wrote!!
#ifdef _ASH_WARE_AUTO_RUN_
exit();
print else
 ("All tests are done!!");
#endif // _ASH_WARE_AUTO_RUN_

The above directive is commonly found at the very end of a script commands file that is
part of an automated test suite. It allows behavior dependent on the test conditions. Note
that _ASH_WARE_AUTO_RUN_ is automatically defined when the Full System IDE is
launched in such a way that it runs without user input. In this case, upon reaching the end
of the script file the Full System IDE is closed when it is part of an automated test suite
and otherwise a message is issued to the user.

8.6.3 Script Enumerated Data Types

Many defined functions have arguments that require specific enumerated data as
arguments. Internally enumerated data types are defined for many script commands and
the tighter checking and version independence provided by enumerated data types make
them an important aspect of script files.

8. Script Commands Files

page 62, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In general, the enumerated data types are defined for each specific target or script file
application. The following is an example of an internally defined enumeration.

enum TARGET_TYPE {
ETPU_SIM,
SIM32
SIM33816,
};

Note that in C++ it would be possible to pass an integer as the first argument and at worst
a warning would be generated. In fact, in C++, even the warning could be avoided by
casting the integer as the proper enumerated data type. This is not possible in a script file
because of tighter checking and because casting is not supported.

8.6.4 Script Integer Data Types

In order to maximize load-time checking, script command files support a large number of
integer data types. This allows "constant overflow" warnings to be identified at load-time
rather than at run-time. In addition, since the scripting language supports a variety of
CPUs with different fundamental data sizes, the script command data types are designed to
be target independent. This allows use of the same script files on any target without the
possibility of data type errors related to different data sizes.

The following is a list of the supported data types along with the minimum and maximum
value.

- U1 valid range is 0 to 1

- U2 valid range is 0 to 3

- U3 valid range is 0 to 7

- U4 valid range is 0 to 15

- U5A valid range is 0 to 16

- U5B valid range is 0 to 31

- U8 valid range is 0 to 0xFF

- U16 valid range is 0 to 0xFFFF

- U32 valid range is 0 to 0xFFFFFFFF

- U64 valid range is 0 to 0xFFFFFFFFFFFFFFFF

8. Script Commands Files

Full System DevTool IDE, page 63Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.6.5 Referencing Memory in Script Files

Memory can be directly accessed by referencing an address. Two parameters must be
available for this construct: an address and a memory access size. In addition, there is an
implied address space, which for most targets is supervisor data. For some targets the
address space may be explicitly overridden.

- (U8 *) ADDRESS // References an 8-bit memory location

- (U16 *) ADDRESS // References a 16-bit memory location

- (U32 *) ADDRESS // References a 32-bit memory location

- (U64 *) ADDRESS // References a 64-bit memory location

- (U128 *) ADDRESS // References a 128-bit memory location

The following are examples of referenced memory constructs. Note that these examples
do not form complete script commands and therefore in this form would cause load errors.

*((U8 *) 0x20 // Refers to an 8-bit byte at addr 0x20
*((U24 *) 0x17) // Refers to a 24-bit word at addr 0x17
*((U32 *) 0x40 // Refers to a 32-bit word at addr 0x40

8.6.6 Assignments in Script Commands Files - DEPRECATED

Note: it is now possible to declare and manipulate variables in script commands. Therefore
use of variables such as the following should now be used instead of those listed farther
down in this section.

S32 val;
val = read_mem_u32(ETPU_DATA_SPACE,0x200);
val |= ((1<<12) | (1<<28));
write_global_data32(0x200, val);

DEPRECATED

Assignments can be used to modify the value of referenced memory, a practice commonly
referred to as "bit wiggling." Using this it is possible to set, clear, and toggle specific groups
of bits at referenced memory. The following is a list of supported assignment operators.

- = Assignment

- +=, -= Arithmetic addition and subtraction

- *=, /=, %= Arithmetic multiply, divide, and remainder

- <<=, >>= Bitwise shift right and shift left

8. Script Commands Files

page 64, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

- &=, |=, ^= Bitwise "and," "or," and "exclusive or"

- <<=, >>= Bitwise "shift left" and "shift right"

The following examples perform assignments on memory.

// Writes a 44 decimal to the 8 bit byte at address 17
*((U8 *) 0x17) = 44;
// Writes a 0xAABBCC to the 24 bit word at address 0x31
*((U24 *) 0x31) = 0xAABBCC;
// Sets bits 31 and 15 of the 32-bit word at addr 0x200
*((U32 *) 0x200) |= 0x10001000;
// Increments by one the 16-bit word at address 0x3300
*((U16 *) 0x3300) += 1;

Using an optional memory space qualifier, memory from a specific address space can be
modified. See the Build Script ADDR_SPACE Enumerated Data Type section for a
listing of the various available address spaces.

// Sets the eTPU I/O pins for channel 15 and channel 3
*((ETPU_PINS_SPACE U32 *) 0x0) |= ((1<<15) + (1<<3));
// Injects a new opcode into the eTPU’s code space
*((ETPU_CODE_SPACE U32 *) 0x20) = 0x12345678;

NOTE: Because the use of the ADDR_SPACE Enumerated Data Type as in the above
expressions is not legal C syntax, the use of such in a script commands file disables
the code reference capability. It is recommended that the
write_global_data[8/16/24/32]() and write_global_bits[8/16/24/32]() script
commands be used instead whenever possible.

8.6.7 Operators and expressions in Script Commands Files

Operators can be used to create simple expressions in script commands files. Note that
these simple expressions must be fully resolved at load time. The precedence and ordering
is the same as in the C language. The following is a list of the supported operators.

- +, - Arithmetic addition and subtraction

- *, /, % Arithmetic multiply, divide and remainder

- &, |, ,̂~ Bitwise AND, OR, and EXCLUSIVE OR

- <<, >> Bitwise shift left and shift right

The following example makes use of simple expressions to specify the channel base.

#define PARAMETER_RAM 0x100
#define BYTES_PER_CHAN 16

8. Script Commands Files

Full System DevTool IDE, page 65Reference Manual (C) 2012-2024 ASH WARE, Inc.

#define SPARK_CHAN_ADDR PARAMETER_RAM + BYTES_PER_CHAN * 5
// Write a 77 (hex) byte to address 150 (hex)
*((U8 *) SPARK_CHAN_ADDR) = 0x22+0x55;

The normal C precedence rules can be overridden using brackets as follows.

write_chan_func(1, 3+4*2); // Set chan 1 to function 11
write_chan_func(1, (3+4)*2); // Set chan 1 to function 14

8.6.8 Syntax for global access of eTPU Function Variables

Although eTPU channel variables reside in statically allocated memory, scope-wise within
eTPU-C they are treated more like local variables. The syntax covered in this section
allows developers to. access channel variables at any time, for debug or verification
purposes, not just when within function scope.

The following syntax supports global reference of channel variables by symbolic name.
The syntax has the form @<channel # / name>.<function var name>. Either a raw
channel number can be used, or the name assigned to the channel in the Vector file works
to reference channel variables on a channel.

@PWM3.DutyCycle
@5.Period
verify_val("@PWM2.DutyCycle", "==", "3500");
// @ASH@print_to_trace("PPWA channel 3 high time = 0x%x\n",
@3.HighTime);

This syntax can be used with the symbolic script commands such as verify_val();, in the
Watch window, as well as in the @ASH@print_to_trace(); action command.

8.6.9 Syntax for eTPU Channel Hardware Access

eTPU-C provides a built-in type called chan_struct that allows access to such channel-
specific settings as IPAC, OPAC, PDCM, TBS, etc. This symbolic access to channel
settings has now been exposed in the eTPU Simulator. Typically, a chan_struct variable is
defined in a standard header file (etpuc.h), e.g.

chan_struct channel;

This variable channel can then be used to access channel settings in the watch window, or
script command such as print_to_trace() and verify_val(), with the syntax:

channel.OPACA
channel.PDCM

8. Script Commands Files

page 66, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In addition to any chan_struct variables explicitly defined in the code, the Simulator always
predefines a variable called ASHchannel of type chan_struct. Thus this special access is
available even when the predefined headers are not used. This is shown in the watch
window, below.

When a chan_struct variable is accessed as described above, e.g.,

print_to_trace("\"Current channel PDCM is %d\",
ASHchannel.PDCM");

the value accessed is always from the current channel, as indicated by the chan register.
There are times where it is useful to access channel fields for other than the active
channel. The following script commands could be used to help test thread handling when
both TDLA and a link service request (LSR) are set:

write_val("ASHchannel.TDLA", "1");
write_val("ASHchannel.LSR", "1");

As written above, they only apply to the current channel, or whatever the chan register is
currently set to if no thread is active. Similar to channel variables, the channel relative
syntax can be applied to chan_struct type variables -

@<channel number / channel vector name>;. Setting TDLA and LSR on channel 5, which
for example we assume is named "P_IN" in the vector file, the script should be something
like as follows:

write_val("@5.ASHchannel.TDLA", "1");
write_val("@P_IN.ASHchannel.LSR", "1");

Note that when writing channel settings, great care must be taken. For example, setting
TDLB without setting TDLA may result in undefined behavior. Not all channel fields
described in the chan_struct type definition are supported, and several additional ones have
been added - the supported list is as follows:

IPACA
IPACB
LSR
MRLA
MRLB

8. Script Commands Files

Full System DevTool IDE, page 67Reference Manual (C) 2012-2024 ASH WARE, Inc.

MTD
OPACA
OPACB
PDCM
TBSA
TBSB
FLAG0
FLAG1
FM0
FM1
PRSS
PSS
FM0_CHAN
FM1_CHAN
PRSS_CHAN
PSS_CHAN
PSTI
PSTO
TDLA
TDLB
MATCHA
MATCHB
CAPTUREA
CAPTUREB

Note that the fields FM0, FM1, PRSS and PSS refer to time-slot-transition (TST)sampled
values and thus only apply to the current channel and thread (TST). PSS is also re-sampled
when the chan register is written. To access the per-channel values for these fields, use
the corresponding <>_CHAN field names. Note that PRSS_CHAN and PSS_CHAN
reference the last sampled values for a specified channel.

8.6.10 Syntax for eTPU ALU Register Access

eTPU-C register types are now supported in symbolic processing in script commands such
as print_to_trace(), verify_val(), write_val(), etc., and also in the watch window as shown
below.

8. Script Commands Files

page 68, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In order for this to work, the registers must be exposed in a header file.

In standard the eTPU-C headers (etpuc.h) several register variables are exposed by
default as follows:

register_chan chan;
register_erta erta;
register_ertb ertb;
register_tcr1 tcr1;
register_tcr2 tcr2;
register_tpr tpr;
register_trr trr;
register_chan_base chan_base;

Others can be defined per the eTPU-C syntax, for example:

register_diob diob;
register_mach mach ;
register_p15_0 p15_0; // lower 16 bits of p register

See the standard eTPU-C headers for details on the syntax of the register types. Once
defined, such variables can be referenced in the watch window or symbolic script
commands just like other variables.

print_to_trace("\"Current channel is %d\"", "chan");

Note that write-only registers like link do not provide meaningful data.

In addition, the ALU and MDU condition codes are exposed to the symbolic script
commands via the CC symbol:

struct {
unsigned int V : 1; // ALU overflow condition code
unsigned int N : 1; // ALU negative condition code
unsigned int C : 1; // ALU carry condition code
unsigned int Z : 1; // ALU zero condition code
unsigned int MV : 1; // MDU overflow condition code
unsigned int MN : 1; // MDU negative condition code
unsigned int MC : 1; // MDU carry condition code
unsigned int MZ : 1; // MDU zero condition code

8. Script Commands Files

Full System DevTool IDE, page 69Reference Manual (C) 2012-2024 ASH WARE, Inc.

unsigned int MB : 1; // MDU busy flag
unsigned int SMLCK : 1; // semaphore locked flag

} CC;

This allows for script access such as the examples below:

print_to_trace("CC.N = %d", CC.N);
verify_val("CC.N", "==", "1");
verify_val("CC.Z", "==", "0");
verify_val("CC.SMLCK", "==", "0");
print_to_trace("CC.MZ = %d", CC.MZ);
verify_val("CC.MN", "==", "0");
verify_val("CC.MZ", "==", "1");

8.6.11 String within a string supports formatted symbolic information

The "string within a string" formatted supports generation of formatted symbolic
information by certain script commands. The format is a "C" string with a second
embedded C string. The embedded sting must use the backslash escape character to begin
and end the embedded string. Two example uses of this are shown below.

write_chan_hsrr (TEST1_CHAN, 5);
wait_time(0.12);
// Send the results to the trace window
print_to_trace("\"TEST RESULTS (trace):\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");
// Same as above ... but to the screen
print ("\"TEST RESULTS (screen):\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");

8.6.12 Comments in Script Commands Files

Legacy "C" and the new "C++" style comments are supported, as follows.

// This is a comment.
set_tdl(3);

/* This is a legacy C-style comment.
This is also a comment.
This is the end of the multiple-line comment. */

8. Script Commands Files

page 70, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

set_tdl(/* more comment */ 3);

8.6.13 Decimal, Hexadecimal, and Floating Point Notation in Script Files

Decimal and Hexadecimal notation are interchangeable.

357 // Decimal Notation
0x200 // Hexadecimal Notation

In certain cases floating point notation is also supported.

3.3e5 // Floating Point

8.6.14 String Notation

The following is the accepted string notation.

"STRING"

The characters between the first quote and the second quote are interpreted as a string.

"File.dat"

This denotes a string with eight characters and termination character as follows, 'F', 'i', 'l',
'e', '.', 'd', 'a', 't', '\0'.

Concatenation

It is often desirable to concatenate stings. The following example illustrates a case in
which this is particularly useful.

#define TEST_DIR "..\\TestDataFiles\\"
read_behavior_file (TEST_DIR "Test.bv");
vector(TEST_DIR "Example");

C-Style Escape Sequences

In the C language, special characters are specified within a string using the backslash
character, '\'. For instance, a new-line character is specified with the backslash character
followed by the letter "n", or '\n'. The character following the backslash character is
treated as a special character. The following special characters are supported.

\\ References a backslash character
"..\\File.dat"

Planned Obsolescence of Single Backslash within Strings

8. Script Commands Files

Full System DevTool IDE, page 71Reference Manual (C) 2012-2024 ASH WARE, Inc.

In previous versions of this software a C-style escape sequence was not supported and a
single backslash character was treated as a just that, a single backslash character. In
anticipation of future software versions supporting enhanced C-style escape sequences, the
single backslash character within a string now causes a warning. ASH WARE
recommends using a double-backslash to ensure compatibility with future versions of this
software.

//The following string causes a warning.
"..\File.dat"

8.7 Script Commands

Listed below are the available script command functional groups. Clicking on the desired
command functional group will access the command listing for that group.

All Target Types Script Commands

Clock control script commands
Timing script commands
Verify traversal time commands
Modify memory script commands
Verify memory script commands
Register write script commands
Register verification script commands
Symbol value write script commands
Symbol value verification script commands
System script commands
File script commands
Trace script commands
Code coverage script commands

eTPU Script Commands

Channel function select register script commands
Channel priority register script commands
Host service request register script commands
Interrupt association script commands
External boolean logic script commands
Pin control and verification script commands
Pin transition behavior script commands
Clear Worst Case Thread Indices Commands
System configuration commands
Timing configuration commands

8. Script Commands Files

page 72, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

STAC Bus commands
Global Data Commands
Channel data commands
Channel base address commands
Engine data commands
Channel function mode (FM) commands
 Channel event vector entry commands
Interrupt script commands
Shared Subsystem Script Commands
Link Injection Script Command

MC33816 Script Commands

Hardware Configuration commands
SPI Data Write/Verify Commands
Register Script Commands
Verification Script Commands
SPI and SpiGen Configuration File Creation Script Commands

Build Script Commands

Build script commands

8.7.1 Timing

Script commands in this group provide capabilities such as the ability to set the system
frequency, control when (other) script commands execute, clear the worst case threads
(used following the init threads,) and to find worst case information for a time region.

8.7.1.1 Timing Script Commands

wait_time(T);

No script commands are executed until the simulation’s current time plus the T
microseconds.

wait_time(33.5); // (assume current time=50 microseconds)
set_link(5);
wait_time(100.0);
set_link(2);

In this example at 83.5 microseconds (from the start of the simulation) channel 5’s Link
Service Latch (LSL) will be set. No script commands are executed for an additional 100

8. Script Commands Files

Full System DevTool IDE, page 73Reference Manual (C) 2012-2024 ASH WARE, Inc.

microseconds. At 183.5 microseconds (from the start of the simulation) channel 2’s LSL
will be set.at_code_tag(TagString);

at_time(T);

When this command is reached, no subsequent commands are executed until T
microseconds from the simulation’s start time. At that time the script commands following
the at_time statement are executed.

The Full System IDE's enhanced scripting provides a script command to read the current
time in microseconds into a script variable.

F64 time_us;
time_us = read_time();

See the Enhanced Scripting Capabilities section for more information on the use of
variables within the scripting environment.

at_code_tag_ex(TagString, Timeout, TimeoutAction);

These commands prevent subsequent commands from executing until the target hits the
source code that contains the string, <TagString>. Note that all source code files are
searched and that the string should be unique so that it is found at just one location (for
otherwise the command will fail).

at_code_tag("$$MyTest1$$");
verify_val("failFlag", "==", "0");

In the example above, the target executes until it gets to the point in the source code that
contains the text, $$MyTest1$$ and then verifies that the variable named failFlag is equal
to zero. It is important to note that the variable could be local to the function that contains
the tag string such that it may be only briefly in scope. The only scoping requirement is
that the variable is valid right when the target is paused to examine this variable.

The extended version of the command, at_code_tag_ex(), also supports a timeout (in
microseconds) such that if the tagged source code is not traversed in the amount time
specified by Timeout, then the action specified by TimeoutAction will occur. Supported
actions are FAIL_ON_TIMEOUT, FAIL_ON_TAG, and ALWAYS PASS.
FAIL_ON_TIMEOUT causes a verification failure (and subsequent test suite failure) if
the tagged code is not traversed in the specified time. FAIL_ON_TAG is just the opposite
and is used when the tagged code is NOT expected to be traversed. ALWAYS_PASS
allows the script command execution to proceed on the first of either the tagged code being
traversed or on the timeout, and no verification error is generated in either case.

at_code_tag_ex("$$MyTest2$$", 4.5, FAIL_ON_TIMEOUT);

8. Script Commands Files

page 74, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In example above, the target executes until the point in the source code is traversed that
contains the text, $$MyTest2$$. If in 4.5 microseconds the tagged code has NOT yet
been traversed than a verification failure results. Script command execution continues on
the first of the tagged text being traversed (the expected case) or the timeout (the failing
case.)

In this example at 83.5 microseconds (from the start of the simulation) channel 5’s Link
Service Latch (LSL) will be set. No script commands are executed for an additional 100
microseconds. At 183.5 microseconds (from the start of the simulation) channel 2’s LSL
will be set.

delay_warnings(T);

No MC33816 startup warnings are generated until T microseconds from the simulation’s
start time. Note that this command is global so that it acts on all four cores and therefore
does not need to be duplicated if multiple MC33816 cores are being simulated.

ch1_core0.delay_warnings(2000.0);

In this example certain messages that occur at startup (e.g., 'core not enabled' or 'invalid
checksum') are delayed for 2 milliseconds. This is generally the amount of time a
simulated CPU would take to initialize the the MC33816's registers, code memory, and data
RAMS.

8.7.1.2 Verify Timing Script Commands

The verify timing script command verifies that timing requirements are met. The format is
as follows.

verify_timer_clks("TimingTag", MinSysClks, MaxSysClks);

The "ActionTag" parameter is a string that must match a similarly-named timing time-
window within your code. The MinSysClk and MaxSysClk parameters describe the
allowable minimum and maximum number of system clocks (inclusive) that execution of
the code is allowed to take in order for the verification test to pass. If the code takes less
time than the minimum or more time than the maximum to execute then a verification error
occurs.

If the code has been traversed multiple times than the verification command verifies the
last full traversal.

The following is an example of a region of code marked for timing. See the Timer Action
Commands section for more information on naming timing regions.

int MyFunc(int x)

8. Script Commands Files

Full System DevTool IDE, page 75Reference Manual (C) 2012-2024 ASH WARE, Inc.

{
int y; // @ASH@timer_start("Test A");
y = x + 25;
return y // @ASH@timer_stop("Test A");

}

In the following example, the last full traversal of the above code is verified to have taken
between 10 and 20 system clocks. A verification error occurs if the code has never been
fully traversed, if the last traversal took 9 or fewer system clocks, or if the last traversal
took 21 or more system clocks.

verify_timer_clks("Test A", 10, 20);

Note that on the eTPU there are two system clocks per instruction cycle, so the following
#define can improve the test’s readability.

#define CYCLES *2 // A cycle is two clocks on the eTPU
verify_timer_clks("Test A", 5 CYCLES, 10 CYCLES);

Related Information

Naming timing regions in source code
Verifying traversal times a script command file
View named timing regions timing using the Watch Window

8.7.1.3 Clock Control Script Commands

The script commands described in this section provide control over the clock and frequency
settings.

The set_cpu_frequency(); script command has been deprecated. Instead, use the
set_clk_period() script command described in this section. A warning message is
generated when this command is used. This message can be disabled from the Message
Options dialog box.

set_clk_period(femtoSecondPerClkTick);

The script command listed above sets the target’s clock period in femto-seconds per clock
tick. Note that one femto second is 1e-15 of a second or one billionth of a micro-second.
A simple conversion is to invert the desired MHz and multiply by a billion.

// 1e9/16.778 = 59601860 femto-seconds
set_clk_period(59601860);

In this example the CPU clock frequency is set to 59,601,860 femto-seconds, which is
16.778 MHz.

8. Script Commands Files

page 76, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

8.7.1.4 Thread Script Commands

The Full System IDE stores worst-case latency information for each channel. This is very
useful for optimizing system performance. But in some applications the initialization code,
which generally does not contribute to worst case latency, experiences the worst case
thread length. In this case, it is best to ignore the initialization threads when considering the
worst case thread length for a function. This command provides for ignoring the
initialization threads.

// Initialize the channels.
write_chan_hsrr (RCV_15_A, ETPU_ARINC_RX_INIT);
write_chan_hsrr (RCV_15_B, ETPU_ARINC_RX_INIT);

// Wait for initialization to complete,
// then reset the worst case thread indices.
wait_time(100);
clear_worst_case_threads();

In this example the channels are issued a host service request, then after 100 microseconds
(presumably sufficient time to initialize) the threads indices are reset.

Another script command can be used to verify that a particular meets performance
requirements.

verify_wctl(<thread name>, <max steps>, <max RAM
accesses>);

If the thread is part of an ETEC class, the name should be specified in Class::ThreadName
form. This script command will through a script verification error if the worst case steps
for the specified thread exceeds the number provided, or worst case RAM accesses
exceeds the number passed in the script command.

To output WCTL data to a file, in an easy-to-read format, the following command can be
used:

write_wctl(<output file name>, <channel or function
number>, <channel for function mode>, <grouping on or off>,
<output style>);

So, for example, if the following is placed at the end of the Hello World demo script file:

write_wctl("pwm_wctl.txt", PWM_CHAN, WCTL_TYPE_CHANNEL,
WCTL_GROUP_ON, WCTL_OUTPUT_PRETTY);

8. Script Commands Files

Full System DevTool IDE, page 77Reference Manual (C) 2012-2024 ASH WARE, Inc.

The following text gets output to the pwm_wctl.txt file when the simulation is executed:

 |----- THREAD -----|-- STEPS -| RAMs |
 | Addr Cov Cnt | WC Tot | WC | WC Time
0 0858 1/1 1 9 9 5 180 nS Init
1 087C 1/4 133 11 1463 5 220 nS
HandleFallingEdge
2 08AC 0/27 0 - 0 - --- Unused

Note that clear_worst_case_threads() clears the thread data collection that is
output by write_wctl() or verifed with verify_wctl().

8.7.2 MCU Configuration

These include a host of MCU-specific configuration script commands such as setting the
entry table base address (ETBA) in the eTPU or setting the DC load in the MC339816.

8.7.2.1 eTPU System Configuration Commands

write_entry_table_base_addr(Addr);

This command writes the Event Vector Table's address. It writes a value into the
ETPUECR register's ETB field that corresponds to address Addr.

#define MY_ENTRY_TABLE_BASE_ADDR 0x800
write_entry_table_base_addr(MY_ENTRY_TABLE_BASE_ADDR);

In the above example the event vector table is placed at address 0x800.

write_engine_relative_base_addr(Addr);

This (eTPU2 ONLY!) command writes the Engine Relative Base Address. It writes a
value into the ETPUECR register's ERBA field that corresponds to address Addr.

#define MY_ENGINE_ADDR 0xA00
write_engine_relative_base_addr(MY_ENGINE_ADDR);

In the above example the engine relative space is placed (allocated) at address 0xA00.

write_scheduler_priority_passing_disable(Val);

This (eTPU2 ONLY!) command writes the Scheduler Priority Passing Disable bit. It
writes the specified 0 or 1 value into the SPPDIS bit of the ETPUECR register. The
default value is 0.

write_scheduler_priority_passing_disable(1);

8. Script Commands Files

page 78, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In the above example priority passing in the scheduler is disabled.

write_global_time_base_enable(Enable);

The command enables the time bases for all the eTPUs.

write_entry_table_base_addr(Addr);

In the Byte Craft eTPU "C" Compiler the event vector table base address can be
automatically generated using the following macro.

#pragma write h, (#define MY_ENTRY_TABLE_BASE_ADDR ::ETPUentrybase(0));

In the Byte Craft eTPU "C" Compiler the event vector table base address is specified as
follows:

#pragma entryaddr 0x800;

This command writes the SCMOFFDATAR register. This register is the opcode that gets
executed when the eTPU executes from an SCM address that is not populated with actual
memory.

write_scm_off_data(Val);

8.7.2.2 eTPU Timing Configuration Commands

write_angle_mode(Val);
write_tcr1_control(Val);
write_tcr2_control(Val);
 write_tcr1_source(Val);

These commands write their respective field values in the ETPUTBCR register.

write_tcr1_prescaler(Prescaler);
write_tcr2_prescaler(Prescaler);

IMPORTANT NOTE: These two script commands write actual value of the 'system clock
divider' NOT THE VALUE OF THE TCR1P or the TCR2P registers!!! So, for
example, the script 'write_tcr1_prescaler(6);' gives a divide by of '6' but the TCR1P
register gets written to a '5'!

These commands write the prescaler ‘Prescaler’ to the ETPUTBCR register. Valid values
for TCR1 are 1..256 and for TCR2 are 1..64.

write_angle_mode(0); // Disable

write_tcr1_control(1); // System clock/2 (default TCR1 clock

source)

write_tcr2_control(2); // TCR2’s clk is falling TCRCLK Pin

write_tcr1_prescaler(1); // Fastest ... divide by 1

write_tcr2_prescaler(64); // Slowest ... divide by 64

8. Script Commands Files

Full System DevTool IDE, page 79Reference Manual (C) 2012-2024 ASH WARE, Inc.

In this example angle mode is disabled, the TCR1 counter is programmed to be equal to the
system clock divide by two (system clock divided by two, prescaler is divides by one), and
TCR2 is programmed to be the system clock divided by 512 (system clock divided by 8
with a 64 prescaler.)

write_tcr1_control(2); // use TCR1 clock source

write_tcr1_source(1); // System Clock/1 (eTPU2 Only!)

write_tcr1_prescaler(1); // Fastest ... divide by 1

In the above example system clock/1 is the input to the TCR1 prescaler. This is ONLY
available in the eTPU2 and beyond!

set_angle_indices(<DegreesPerCycle>, <TeethPerCycle>);

This command supports specification of angle indices required to display current angular
information in various portions of the visual interface including the, "Global Time and Angle
Counters" window. In a typical automotive application the angle hardware is used as a
PLL on the actual engine. Typically two engine revolutions are defined as a single "cycle"
so a cycle is defined as 720 degrees. Also, a typical crank has 36 teeth and rotates twice
per engine revolution. The following script command generates this configuration.

// This configures the visualization of the crank
#define DEGREES_PER_CYCLE 720
#define TEETH_PER_CYCLE 72
set_angle_indices(DEGREES_PER_CYCLE, TEETH_PER_CYCLE);

This command configures angle visualization for a cycle of 720 degrees, and a crank with
36 teeth which rotates twice per cycle yielding 72 teeth per cycle.

8.7.2.3 eTPU Host Service Request Register Script Commands

write_chan_hsrr(ChanNum,Val);

This command writes channel ChanNum’s HSRR bits to value Val.

write_chan_hsrr(4,0);

In this example channel 4’s HSRR bits are written to zero. If channel 4 had a pending host
service request, it would be cleared.

8.7.2.4 eTPU Channel Address Script Commands

write_chan_base_addr(ChanNum, Addr);

This command writes channel ChanNum’s address Addr. Note that this writes the CPBA
register value.

#define PWM1_CHAN 3

8. Script Commands Files

page 80, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

#define PWM2_CHAN 4
#define PWM1_CHAN_ADDR 0x300
#define PWM2_CHAN_ADDR (PWM1_CHAN_ADDR + PWM_RAM)
write_chan_base_addr(PWM1_CHAN, PWM1_CHAN_ADDR);
write_chan_base_addr(PWM2_CHAN, PWM2_CHAN_ADDR);

In this example channel 3’s data will start at address 0x300. Note channel variables and
static local variables use this.

8.7.2.5 eTPU Channel Function Select Register Commands

write_chan_func(ChanNum,Val);

This command sets channel CHANNUM to function Val.

#define MY_FUN_NUM 0x10
write_chan_func(7, 0x10);

In this example channel 7 is set to function 10 (decimal). All other channel function
selections remain unchanged.

In the Byte Craft eTPU "C" compiler the function number can be automatically generated
using the following macro.

#pragma write h, (#define MY_FUNC_NUM ::ETPUfunctionnumber(Pwm));

8.7.2.6 eTPU Event Vector Entry Condition (Standard/Alternate) Commands

write_chan_entry_condition(ChanNum, Val);

This command writes channel ChanNum’s event vector (entry) condition to Val. Note that
this writes the CxCR register's ETCS field. A value of 0 designates the standard table and
1 designates alternate. Note that each function has a set value and that this value MUST
match that of the eTPU function to which the channel is set.

#define UART_STANDARD_ENTRY_VAL 0

#define PWM_ALTERNATE_ENTRY_VAL 1

write_chan_entry_condition(UART1_CHAN, UART_STANDARD_ENTRY_VAL);

write_chan_entry_condition(UART2_CHAN, UART_STANDARD_ENTRY_VAL);

write_chan_entry_condition(PWM1_CHAN, PWM_ALTERNATE_ENTRY_VAL);

write_chan_entry_condition(PWM2_CHAN, PWM_ALTERNATE_ENTRY_VAL);

In this example the UART channels are programmed to use the standard event vector
table and the PWM channels are programmed to use the alternate event vector table.

8. Script Commands Files

Full System DevTool IDE, page 81Reference Manual (C) 2012-2024 ASH WARE, Inc.

The ETEC compiler automatically outputs entry table type information into the auto-defines
file.

In the Byte Craft eTPU "C" Compiler the event vector condition (alternate/standard) for
the eTPU function is specified as follows.

#pragma ETPU_function Pwm, alternate;

void Pwm (int24 Period, int24 PulseWidth)

{

...

In the Byte Craft eTPU "C" Compiler the event vector mode can be automatically
generated using the following macro.

#pragma write h, (#define PWM_ALTERNATE_ENTRY_VAL ::ETPUentrytype(Pwm));

Note that setting of the event vector table’s base address is covered in the System
configuration commandsSYSTEM_CFG_CMDS section.

write_chan_entry_pin_direction(ChanNum, Val);

This command writes channel ChanNum’s event vector pin direction to Val. Note that this
writes the CxCR register's ETPD field. A value of 0 uses the channel’s input pin and a
value of 1 uses the output pin.

#define ETPD_PIN_DIRECTION_INPUT 0

#define ETPD_PIN_DIRECTION_OUTPUT 1

write_chan_entry_pin_direction(UART1_CHAN, ETPD_PIN_DIRECTION_INPUT);

write_chan_entry_pin_direction(UART2_CHAN, ETPD_PIN_DIRECTION_OUTPUT);

In this example the UART1 chan event vector table thread selection is based on the input
pin, and UART2 event vector thread selection is based on the output pin.

See the System Configuration Commands section for information on setting the entry
table’s base address.

8.7.2.7 eTPU Channel Function Mode Script Command

write_chan_mode(ChanNum, ModeVal);

This command writes channel ‘ChanNum’ to function mode ‘ModeVal’. Note that this
modifies the FM field of the CxSCR register. This is a two-bit field so valid values are 0, 1,
2, and 3.

#define PWM1_CHAN 17
write_chan_mode(PWM1_CHAN, 3);

8. Script Commands Files

page 82, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In this example, channel 17’s function mode is set to 3

8.7.2.8 eTPU Channel Priority Register Commands

write_chan_cpr(ChanNum,Val);

This command writes the priority assignment Val to the CPR for channel ChanNum.

write_chan_cpr(6,2);

In this example a middle priority level (2=middle priority) is assigned to channel 6 by writing
a two to the CPR bits for channel 6. All other eTPU channel priority assignments remain
unchanged.

8.7.2.9 eTPU Shared Subsystem Script Commands

config_shared_sub_system(subSystemId, engineId, chanNum);

This command configures the subsystem 'subSystemId' to generated a link on engine
'engineId' channel 'ChanNum'. SubSystemId is the ID for the sub-system. The parameter
'engineId' programs the ETPUSSSnIR register's 'LENQ' field and is set to 'DISABLED',
'ENGINE_1', or 'ENGINE_2'. The parameter chanNum programs the ETPUSSSnIR
register's 'LCHAN' field.

issue_sub_system_link(subSystemId);

This command issues a link that originates from the sub-system specified by the
subSystemId field.

config_shared_sub_system(0, ENGINE_1, 17);
issue_sub_system_link(0);

The above command sequence configures the shared memory subsystem to interrupt
channel 17 of engine 1 and then issues a link.

write_chan_shared_subsystem_access_enable(chanNum,
enableVal); // (eTPU2 only)

This command enables or disables shared subsystem accesses. This is done on a per
channel bases in that some channels can have this enabled while others have it disabled.
The 'chanNum' specifies the channel to be enabled or disabled. The 'enableVal' can either
be '1' (enabled) or '0' (disabled.) Note that this command is only available for eTPU2.

write_chan_shared_subsystem_access_enable(4, 1);

In this example, channel 4 is enabled for memory accesses to the shared subsystem.

8. Script Commands Files

Full System DevTool IDE, page 83Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.7.2.10 eTPU STAC Bus Script Commands

The STAC Bus for sharing time bases (TCR1, TCR2) between eTPU engines on dual-
eTPU microcontrollers can be configured with the following script commands:

write_stac_tcr1_enable();
write_stac_tcr1_assignment(Mode);
write_stac_tcr1_server(ServerID);
write_stac_tcr2_enable();
write_stac_tcr2_assignment(Mode);
write_stac_tcr2_server(ServerID);

The enable commands allow the specified time base to be exported to or imported from the
STAC Bus. Whether the time base acts as a server or client is determined by Mode,
where a Mode of 0 is client operation, and a Mode of 1 is server operation. When in client
mode, the ServerID determines where the time base is to be imported from. The server
numbers for the time bases are hardcoded in hardware as follows:

0 – eTPU_A TCR1
1 – eTPU_B TCR1
2 – eTPU_A TCR2
3 – eTPU_B TCR2

A typical usage of the STAC Bus is to export the TCR2 time base (angle) from eTPU_A
to eTPU_B. This could be accomplished with the following set of script commands
(assumes other time base configuration already complete):

// configure STAC Bus

eTPU_A.write_stac_tcr2_enable(1);

eTPU_A.write_stac_tcr2_assignment(1); // server

eTPU_B.write_stac_tcr2_enable(1);

eTPU_B.write_stac_tcr2_assignment(0); // client

eTPU_B.write_stac_tcr2_server(2); // import eTPU_A's TCR2

// enable timers

write_global_time_base_enable(1);

8.7.2.11 eTPU Link Script Command

set_link(ChanNum);
clear_link(ChanNum);
verify_link(ChanNum, Val);

This 'set_link' script command directly sets a Link Service Request (LSR) to channel
ChanNum and the 'clear_link' clears the link. The verify_link() is used to verify that a link
is either set or cleared (Val is 0 ir 1).

8. Script Commands Files

page 84, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

set_link(8);
wait_time(3);
verify_link(8, 1);
clear_link(8);
verify_link(8, 0);

In this example a link is generated on channel 8.

Important note. There is no corresponding capability in the actual host interface relating
to the 'set_link' and 'clear_link' script commands. These commands are entirely a
figment of the rather distorted imagination of the simulation designer. As such there is no
related capability in the host interface, so please use these script commands with caution.

8.7.2.12 eTPU Interrupt Script Commands

Interrupts can cause special script ISR file to execute as described in the Script ISR
section.

clear_chan_intr(ChanNum);
clear_chan_overflow_intr(ChanNum);
clear_data_intr(ChanNum);
clear_data_overflow_intr(ChanNum);

These commands clear the interrupts for channel ChanNum. It is equivalent to setting the
bit associated with the channel in the CICX, DTRC, CIOC, or DTROC fields.

verify_chan_intr(ChanNum, Val);
verify_chan_overflow_intr(ChanNum, Val);
verify_data_intr(ChanNum, Val);
verify_data_overflow_intr(ChanNum, Val);
verify_illegal_instruction(Val);
verify_microcode_exception(Val);

These commands verify that the respective interrupts are either asserted (Val==1) or de-
asserted (Val==0).

clear_global_exception();

This command clears the global exception along with the exception status bits. It is
equivalent to setting the GEC field in the ETPUMCR field.

disable_chan_intr(ChanNum);
enable_chan_intr(ChanNum);
disable_data_intr(ChanNum);

8. Script Commands Files

Full System DevTool IDE, page 85Reference Manual (C) 2012-2024 ASH WARE, Inc.

enable_data_intr(ChanNum);

These commands enable/disable the interrupt for channel ChanNum. Note that if you
associate a script ISR file with an interrupt, these commands allow or prevent that file from
running on assertion of the interrupt.

clear_this_intr();

This command can only be run from within a script ISR file. It clears the interrupt that
caused the command to execute.

8.7.2.13 eTPU Interrupt Association Script Commands

Interrupt association script commands associate a script commands file with the firing of
interrupts such that when the interrupt is both enabled and active, the script commands file
executes. See the Script Commands Files chapter for a description of the use of ISR script
commands files

load_chan_isr("filename.eTpuCommand", ChanNum); // eTPU-Only

load_data_isr("filename.eTpuCommand", ChanNum); // eTPU-Only

load_exception_isr("filename.eTpuCommand"); // eTPU-Only

In order for the ISR script to actually execute the ISR must be enabled. The following
script commands enable and disable ISRs for the eTPU.

enable_chan_intr(chanNum); // eTPU Only

disable_chan_intr(chanNum); // eTPU Only

enable_data_intr(chanNum); // eTPU Only

disable_data_intr(chanNum); // eTPU Only

This commands loads ISR script commands file filename.TpuCommand (or
filename.eTpuCommand) and associates them with the various types of interrupts from
channel ChanNum.

close_chan_isr(ChanNum); // eTPU only

close_data_isr(ChanNum); // eTPU only

close_exception_isr(); // eTPU only

load_data_isr("ISR_22.eTpuCommand", 22);
enable_data_intr(22);
wait_time(5000);
close_data_isr(22);
disable_data_intr(22);

This eTPU DATA isr example loads the file ISR_22.eTpuCommand and associates it with
the data interrupt from channel 22. If the interrupt for channel 22 is both asserted and
enabled within the first 5ms, then the script commands in the file will run.

load_exception_isr("GlobalExc.eTpuCommand"); // eTPU-Only

8. Script Commands Files

page 86, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

This eTPU example loads the file GlobalExc.eTpuCommand and associates it with the
global interrupt.

8.7.2.14 MC33816 Hardware Commands

Injector Circuit

See the section 'Built-in Injector' or more information on the this built-in circuit.

place_injector(INJECTOR_SLOT, HIGH_SIDE_BOOST,
HIGH_SIDE_BATTERY, LOW_SIDE, SENSE_RESISTOR, INDUCTANCE,
RESISTANCE);

This command creates an instance of the built-in external injector circuit. The parameters
are as follows.

- INJECTOR_SLOT must be one of the eight supported injector
slots, 'INJECTOR1' through 'INJECTOR8' which indicates
which of the slots this injector circuit gets placed.
Multiple injectors can be created but each injector must
be placed into its own slot.

- HS_BOOST is one of the high side driver pins, 'G_HS1'
through 'G_HS5' that specifies to which of the MC33816's
high side driver pins the BOOST transistor is connected.

- HS_BATTERY is one of the high side driver pins, 'G_HS1'
through 'G_HS5' that specifies to which of the MC33816's
high side driver pins the BATTERY transistor is
connected.

- LS is one of the eight low side driver pins, 'G_LS1
through 'G_LS7' that specifies to which of the MC33816's
high side driver pins the low side driver is connected.

- SENSE_RESISTOR specifies across which of the four current
sense pin pairs 'VSENSE1' through 'VSENSE4' that the
injector's current sense resistor is connected. Note that
the simulation model allows multiple injectors to be
connected to the same sense pins and that the voltage
across the sense resistor is calculated based on the sum
of all current sources. Note also that the sense
resistance is specified with the set_sense_resistance();
script command (see below).

8. Script Commands Files

Full System DevTool IDE, page 87Reference Manual (C) 2012-2024 ASH WARE, Inc.

- INDUCTANCE is the injector's inductance specified in
micro-henries.

- RESISTANCE is the injector's resistance specified in
ohms.

The following is an example of this script command.

place_injector(INJECTOR1, G_HS2, G_HS1, G_LS1, VSENSE1, 60.0, 2.0);

In the above example an external injector circuit model is created in slot 1. The Boost
driver's gate is connected to the HS2 pin and the battery driver's gate is connected to the
HS1 pin. The Low side driver is connected to the LS1 pin. The current sense point is
connected to the Sense1 pin. The injector's inductance is 60 micro-henries and its
resistance is 2 ohms.

DC To DC Converter Circuit

See the section 'Built-in DC to DC Boost Converter' or more information on this built-in
circuit.

place_dcdc_converter(INDUCTANCE, CAPACITANCE);

This command creates the built-in external DC to DC converter circuit. The circuit power
driver gets connected to pin G_LS7 and the current sense gets connected to the SENSE4
pins and the VBOOST voltage output gets connected to the VBOOST pin, and none of
these pins can be changed. The circuit's inductor's inductance is specified with the
INDUCTANCE parameter and the units are micro-henries.

place_dcdc_converter(50, 25);

In the above example an external DC to DC converter is created, the inductance is set to
50 micro henries, and the capacitance is set to 25 micro farads.

set_dcdc_iload(CURRENT);

The above script sets or changes the DC to DC Converters load current to the parameter
CURRENT, in amperes.

set_dcdc_iload(0.13);
wait_time(500);
set_dcdc_iload(.4);

In the above example the DC to DC Converter's load current is initially set to 0.13 amps
and 500 micro-seconds later is changed to 0.4 amps.

H-Bridge Circuit

8. Script Commands Files

page 88, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

See the section 'Build-in H-Bridge' for more information on the this built-in circuit.

place_h_bridge(WHICH_BRIDGE_SLOT, TOP_LEFT, BTM_RIGHT,
TOP_RIGHT, BOTTOM_LEFT, SENSE_RESISTOR, INDUCTANCE,
RESISTANCE);

This command creates the built-in H-bridge. The parameters are as follows.

- BRIDGE_SLOT must be one of the two H-Bridge slots, either
'HBRIDGE1' or 'HBRIDGE2'.

- TOP_LEFT This is the left top high-side driver that
supplies the positive current to the h-bridge from the
battery.

- BOTTOM_RIGHT This is the bottom right driver that drains
positive current to ground via the current-sense

resistor. Note that as of 2020, December it can now be

either a high-side driver or a low-side driver.

- TOP_RIGHT This is the right top high-side driver that
supplies the negative current to the h-bridge from the
battery.

- BOTTOM_LEFT This is the bottom left driver that drains
positive current to ground via the current-sense

resistor. Note that as of 2020, December it can now be

either a high-side driver or a low-side driver.

- SENSE_RESISTOR specifies across which of the four current
sense pin pairs 'VSENSE1' through 'VSENSE4' that the h-
bridge's current sense resistor is connected. Note that
although other built-in circuits may share a sense
resistor, the h-bridge must have its own dedicated sense
resistor.

- INDUCTANCE is the h-bridge's inductance specified in
micro-henries.

- RESISTANCE is the h-bridges's resistance specified in
ohms.

This command creates the built-in H-bridge.

place_h_bridge(HBRIDGE1,G_HS1,G_LS6,G_HS5,G_LS2,VSENSE3,
55.0, 10.0);

In the above example an external h-bridge circuit model is created in slot 1. Current is
driven in the positive direction by enabling HS1 and LS6. Current is driven in the negative

8. Script Commands Files

Full System DevTool IDE, page 89Reference Manual (C) 2012-2024 ASH WARE, Inc.

direction by enabling HS5 and LS2. The current sense point is connected to the Sense3
pin. The h-bridge's inductance is 55 micro-henries and its resistance is 10 ohms.

Resistor/Inductor Load Circuit

See the section 'Built-in Load' or more information on the this built-in circuit.

place_load_r(DRIVER, SUPPLY, LOAD_RESISTANCE);
place_load_rl(DRIVER, SUPPLY, LOAD_RESISTANCE,
LOAD_INDUCTANCE);
place_load_r_regulated(DRIVER, SUPPLY, LOAD_RESISTANCE,
SENSE_RESISTOR);
place_load_rl_regulated(DRIVER, SUPPLY, LOAD_RESISTANCE,
LOAD_INDUCTANCE, SENSE_RESISTOR);

The above commands create loads between the battery and ground. The loads can be
controlled by either High-side drivers (HS1-HS5) or Low-side drivers (LS1-LS7.) The
loads can also be regulated (a sense resister (VS1-VS4) is used to sense current or the
load can simply be unregulated which means that it is powered on/off without measuring
the current using a sense resistor. The parameters are as follows.

- DRIVER must be HS1-HS5 or LS1-LS7.

- SUPPLY can be either BOOST or BATTERY.

- LOAD_RESISTANCE is the load's resistance specified in
ohms. Note that although HS1, HS3, and HS5 can be
connected to either BOOST or BATTERY, the VDS diagnostics
comparator is hard-coded to BATTERY and cannot be
changed. Therefore, if connected these to the BOOST
supply, the VDS Diagnostics comparator cannot be used.

- LOAD_INDUCTANCE is the load's inductance specified in
micro-henries (if used).

- SENSE_RESISTOR specifies across which of the four current
sense pin pairs 'VSENSE1' through 'VSENSE4' that the
injector's current sense resistor is connected (if used).
Note that the simulation model allows multiple loads
and/or injectors to be connected to the same sense pins
and that the voltage across the sense resistor is
calculated based on the sum of all current sources. Note
also that the sense resistance is specified with the
set_sense_resistance(); script command (see below).

The following is an example of this script command.

8. Script Commands Files

page 90, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

place_load_rl_regulated(G_HS2, BOOST, 2, 60, VSENSE3);

In the above example an external R/L (Resistor and inductor) load model is created
between High Side driver 2 and a sense resistor 3. The current sense point is connected to
the Sense3 pin. The load's resistance is 2 ohms and the load's inductance is 60 micro-
henries. The BOOST supply is selected.

place_load_r(G_LS4, BATTERY, 2);

In the above example an external R (Resistor-only) load model is created between the
battery and Low Side driver 4. Load side driver 4 is connected to ground and there is no
sense resister that measures current making it an unregulated load. The load's resistance is
2 ohms.

Additional Circuit Configuration
set_rds_on_resistance(DRIVER, INDEX, RESISTANCE);

This commands sets a drivers on drain-to-source 'on' resistance.

The supported DRIVER are HIGH_SIDE_DRIVER and LOW_SIDE_DRIVER.

Then index must be valid for that driver type. The high side drivers, the range of valid
indexes is 1 to 5 and for low-side driver the valid index is 1 to 7.

RESISTANCE is specified in ohms.

Then index must be valid for that element type. For instance, for the high side drivers, the
range of valid indexes is 1 to 5. Also, for injectors and the DC to DC converter, the device
must have been placed before a fault can be forced.

set_sense_resistance(RESISTANCE, SENSE_RESISTOR);

This command sets resistance of the current sense resistor. RESISTANCE is specified in
ohms. The current sense resistor, 'SENSE_RESISTOR" must be across one of the four
senses pin pairs, 'VSENSE1' through 'VSENSE4'.

set_sense_resistance(0.010, VSENSE4);

In the above example the 'SENSE4' sense resistor's resistance is set to 0.010 ohms.

set_shared_sense_resistor(RESISTANCE, SENSE_BLOCK1,
SENSE_BLOCK2);

This command sets resistance of a current sense resistor, and attaches the resistor to two
current sense blocks. The current blocks must be across two of the four sense pin pairs,
'VSENSE1' through 'VSENSE4'. Note that the second listed current sense block cannot
be driven by any of the built-in models.

set_shared_sense_resistor(0.020, VSENSE3, VSENSE4);

8. Script Commands Files

Full System DevTool IDE, page 91Reference Manual (C) 2012-2024 ASH WARE, Inc.

In the above example 'SENSE3' and 'SENSE4' current sense blocks are both tied to a
single (common) 0.020 ohms resistor. Note that because VSENSE4 is the second current
sense block listed, it cannot be an injector's or the DC/DC converter's sense resistor.

set_voltage(VOLTAGE, VOLTAGE_SOURCE);

This command sets a voltage source's voltage. Voltage is specified in Volts.
VOLTAGE_SOURCE must be either VBOOST or VBATT.

set_voltage(12.5, VBATT);
wait_time(1000);
set_voltage(14.7, VBATT);

The above series of script command sets the initial battery voltage to 12.5 volts and after 1
millisecond, changes the battery voltage to 14.7 volts.

write_binary_pin(LOGIC_LEVEL, INPUT_PIN);

This command writes the pin specified by the Pin and Node enumerated type to the logic
level specified by LOGIC_LEVEL (either 0 or 1).

// Wait a bit for micro to initialize
// then set the drven pin
wait_time(2);
write_binary_pin(1, DRVEN);

The above series of script commands waits 2 microseconds for the cores to initialize, sets
the DRVEN pin to a '1' logic level.

set_fault(ELEMENT, INDEX, FAULT_TYPE);

This command forces or removes a fault on a circuit element. INDEX specifies the
elements index and FAULT_TYPE specifies the type of fault to force on to the element.

set_fault(HIGH_SIDE_DRIVER, 2, DEVICE_SHORT);
wait_time(20);
verify_current(SENSE1, 0.0, 0.01);
set_fault(HIGH_SIDE_DRIVER, 2, NO_FAULT);

In the above example High Side Driver #2 (HS2) is set to the 'DEVICE_SHORT' fault
condition in which the driver's source pin is shorted to the drain pin. After 20 microseconds
the current in the sense resister is verified to be off. Lastly, the fault is removed.

The supported ELEMENT types are the following:

· INJECTOR

· DC_DC_CONVERTER

· LOAD_HIGH_SIDE

8. Script Commands Files

page 92, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

· LOAD_LOW_SIDE

· HBRIDGE

· HIGH_SIDE_DRIVER

· LOW_SIDE_DRIVER

Then index must be valid for that element type. For instance, for the high side drivers, the
range of valid indexes is 1 to 5. Also, for injectors and the DC to DC converter, the device
must have been placed before a fault can be forced.

Faults are removed using the fault type 'NO_FAULT'.

Note that not all types of faults are supported for all elements. The following table shows
the supported faults for each element.

Element Valid INDEX range Supported FAULT types

Injector 1-8 NO_FAULT,
DEVICE_SHORT, OPEN,
GND_SHORT_HIGH_SIDE,
BOOST_SHORT_HIGH_SID
E,
BATTERY_SHORT_HIGH_
SIDE,
GND_SHORT_LOW_SIDE,
BOOST_SHORT_LOW_SID
E,
BATTERY_SHORT_LOW_
SIDE

DC to DC Converter's
Inductor

1 NO_FAULT

Load (R/L, R) n/a NO_FAULT,
DEVICE_SHORT, OPEN

H-Bridge 1-2 NO_FAULT,
DEVICE_SHORT, OPEN,

8. Script Commands Files

Full System DevTool IDE, page 93Reference Manual (C) 2012-2024 ASH WARE, Inc.

Element Valid INDEX range Supported FAULT types

High Side Driver 1-5 NO_FAULT,
DEVICE_SHORT, OPEN

Low Side Driver 1-7 NO_FAULT,
DEVICE_SHORT, OPEN

THE FOLLOWING COMMANDS HAVE BEEN DEPRECATED!

force_short(CIRCUIT_TYPE, CIRCUIT_INDEX, NODE0, NODE1); //
NO LONGER SUPPORTED!
remove_short(CIRCUIT_TYPE, CIRCUIT_INDEX, NODE0, NODE1); //
NO LONGER SUPPORTED!

8.7.3 Variable, Memory, and Register Modification and Verification

These are the 'main banana' script commands as far as data flow goes. Values in
variables, (more generic) memory, registers, etc., can be both modified and verified.

8.7.3.1 Memory Read Script Commands

Read memory script commands provide the mechanism for reading data from the target
memory into the scripting environment (variables). The required syntax is to assign a script
variable to the return value of the script command. The first argument of the script
command is an address space-enumerated type. The second argument is the address from
which the value should be read.

x = read_mem_u8(enum ADDR_SPACE, U32 address);

x = read_mem_u16(enum ADDR_SPACE, U32 address);

x = read_mem_u24(enum ADDR_SPACE, U32 address);

x = read_mem_u32(enum ADDR_SPACE, U32 address);

U32 x;
x = read_mem_u8(MC33816_DATA_SPACE, 0x7);

8. Script Commands Files

page 94, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In the above script command example, the byte found at address 0x7is read into script
variable 'x'.

S32 y;

y = read_mem_u24(ETPU_DATA_SPACE, 0x101);

In the above script command example, a 24-bit (three-byte) memory at address 101h is
read into 'y'. Note that the 24-bit value is signed-extended when it is converted to S32.

Note: Under the hood the variable to which the read value is assigned is actually treated as
the first argument. This means a statement like this:

x = read_mem_u16(MC33816_DATA_SPACE,
_AW816DA_IMM_MinCurrent_);

Could also be written like below.

read_mem_u16("x", MC33816_DATA_SPACE,
_AW816DA_IMM_MinCurrent_);

Related Topics

See the eTPU Channel Data Script Commands section which covers reading,
writing and verifying eTPU memory.

8.7.3.2 Memory Modify Script Commands

Modify memory script command provide a way to read-modify-write any data in any target
memory. The first argument is an address space-enumerated type. The second argument
is the address at which the value should be written or read-modified-written. The third
argument is an assignment operation type. The fourth argument is the value to be used for
the assignment operation.

modify_mem_u8(enum ADDR_SPACE, U32 address, enum ASSIGNMENT_TYPE op,

U8 val);

modify_mem_u16(enum ADDR_SPACE, U32 address, enum ASSIGNMENT_TYPE

op, U16 val);

modify_mem_u24(enum ADDR_SPACE, U32 address, enum ASSIGNMENT_TYPE

op, U24 val);

modify_mem_u32(enum ADDR_SPACE, U32 address, enum ASSIGNMENT_TYPE

op, U32 val);

Memory can also be modified within script commands using the assignment operator. See
the Assignments in Script Commands Files section for a description. Note that since the
assignment syntax is not actually C-compatible, it is recommended that memory
modification script commands be used instead, as the non-C assignment syntax causes
script file code references not to be available.

8. Script Commands Files

Full System DevTool IDE, page 95Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.7.3.3 Memory Verify Script Commands

Verify memory script commands provide the mechanism for verifying the values of the
target memory. The first argument is an address space-enumerated type. The second
argument is the address at which the value should be verified. The third argument is a
mask that allows certain bits within the memory location to be ignored. The fourth
argument is the value that the memory location must equal.

verify_mem_u8(enum ADDR_SPACE, U32 address, U8 mask, U8 val);

verify_mem_u16(enum ADDR_SPACE, U32 address, U16 mask, U16 val);

verify_mem_u24(enum ADDR_SPACE, U32 address, U24 mask, U24 val);

verify_mem_u32(enum ADDR_SPACE, U32 address, U32 mask, U32 val);

This command uses the following algorithm.

- Read the memory location in the specified address space and address.

- Perform a logical "and" of the mask with the value that was read from
memory.

- Compare the result to the expected value.

- If the expected value is not equal to the masked value, generate a verification
error.

The following example verifies the value of an 8-bit (byte) memory location.

verify_mem_u8(MC33816_DATA_SPACE, 0x7, 0xc0, 0x80);

The example above verifies that the two most significant bits found at address 0x7 are
equal to 10b. The lower 6 bits are ignored. If the bits are not equal to 10b, a script failure
message is generated and the target's script failure count is incremented.

verify_mem_u16(MC33816_DATA_SPACE, 0x10, 0xffff, 0x55aa);

In the example above, a 16-bit (two-byte) memory at address 10h is verified to equal
0x55aa. By using a mask of FFFFh, the entire word is verified.

verify_mem_u24(ETPU_DATA_SPACE, 0x101, 0xffffff, 0x555aaa);

In the example above, a 24-bit (three-byte) memory at address 101h is verified to equal
0x555aaa. By using a mask of 0xFFFFFF, the entire word is verified.

verify_mem_u32(MC33816_DATA_SPACE, 0x20, 1<<27, 1<<27);

In the example above, bit 27 of a 32-bit (four-byte) memory location at address 20h is
verified to be set. All other bits except bit 27 are ignored.

Related Topics

See the eTPU Channel Data Script Commands section which covers both writing
and verifying eTPU memory.

8. Script Commands Files

page 96, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

8.7.3.4 Register Write Script Commands

Write register script commands provide the mechanism for changing the values of the
target registers. The first argument is the value to which the register will be set. The
second argument is a eTPU register-enumerated type MC33816 register enumerated type
CPU32 register-enumerated type with a definition that depends on the specific target and
register width on which the script command is acting.

write_reg1(U1, enum REGISTERS_U1);
write_reg5(U5, enum REGISTERS_U5);
write_reg8(U8, enum REGISTERS_U8);
write_reg16(U16, enum REGISTERS_U16);
write_reg24(U24, enum REGISTERS_U24);
write_reg32(U32, enum REGISTERS_U32);

write_reg16(0x5557, REG_R0);

In the above script command example 5557 hexadecimal is written to register R0.

8.7.3.5 Register Verify Script Commands

Verify register script commands provide the mechanism for verifying the values of the
target registers. The first argument is aeTPU register-enumerated type MC33816 register
enumerated type CPU32 register-enumerated type with a definition that depends on the
specific target and register width on which the script command is acting. The second
argument is the value against which the register will be verified.

verify_reg1(enum REGISTERS_U1, U1);
verify_reg5(enum REGISTERS_U5, U5);
verify_reg8(enum REGISTERS_U8, U8);
verify_reg16(enum REGISTERS_U16, U16);
verify_reg24(enum REGISTERS_U24, U24);
verify_reg32(enum REGISTERS_U32, U32);

verify_reg16(REG_R0, 0x5557);

In the script command example above, register R0 is verified to be 5557 hexadecimal. If
not, a script failure message is generated and the script failure count is incremented.

8. Script Commands Files

Full System DevTool IDE, page 97Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.7.3.6 Symbol Write Script Commands

Write symbol value script commands provide a mechanism for writing data to
simulated/target memory using the symbolic names from the source code. The write_val()
command is for writing data of a basic type to a symbolically referenced memory location.

write_val("symbolExprString", "exprString");

The expression string (exprString) can be a numerical constant or a simple symbolic
expression. Constants can be supplied as decimal signed integers, unsigned hexadecimal
numbers (prepended with ‘0x’), floating point numbers, or as a character (e.g. ‘A’). A
symbolic expression can be just a local/global symbol or a simple expression such as *V
(de-reference), &V (address of V), V[constant], V.member or V->member, where V is a
symbol of the appropriate type. The special @ channel variable (eTPU only) reference
syntax is also supported. "symbolExprString" must be a symbolic expression as described
above, an "l-value" in compiler parlance. The type of the symbolic expression must be a
basic type – char, int, float, etc. If the types of the two sides differ then C type conversion
rules are followed before writing the data to memory.

Two other forms of the write symbol value script command are also supported that directly
take the numerical value to write as an argument.

write_val_int("symbolExprString", U32 val);
write_val_fp("symbolExprString", double val);

These forms allow the value to be input as a constant expression, perhaps using a series of
macros, thereby providing more flexibility.

The write_str() command is provided as a shorthand way to write a string into the memory
pointed to by a symbolic expression of pointer type..

write_str("pointerExprString", "stringExprString");

The pointer expression string (pointerExprString) is symbolic expression as described
above, but of type pointer rather than a basic type. It can be a pointer to any type, and is
implicitly type-cast to the char* type. "stringExprString" can either be a string constant, or
it can be of type char array or char pointer. In either case, write_str() function like the C
library function strcpy(). Use write_str with caution; no effort is made to check that the
destination buffer has sufficient space available, and the resulting bug induced by such a
buffer overflow can be extremely difficult to debug.

A key concept is that of symbol scope. A variable defined within a particular function goes
out of scope if that function is not being executed. To get around this, a script command
can be set to execute when the function becomes active using the at_code_tag(); script
command. See the Timing Script Commands section for a description.

at_code_tag("&&Test1Here&&");

8. Script Commands Files

page 98, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

write_val("FailFlag", "0");

In the above example the target is run until it gets to the address associated with the source
code that contains the text &&Test1Here&&. Once this address is reached, symbol
FailFlag is set equal to zero.

at_code_tag("&&Test23Here&&");
write_str("PlayerBuffer", "Michael Jordan");

In this case the string "Michael Jordan" is written to the buffer named "PlayerBuffer". If
the buffer has insufficient space to hold this string, a bug that is difficult to identify would
result.

See the Global eTPU Channel variable Access section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

8.7.3.7 Verify Symbol Value Script Commands

These verify symbol value commands have a similar syntax to those commands described
in the Write Symbol Value Script Command section.

verify_val("exprString", "testOpString", "exprString");

The expression strings (exprString) can be a numerical constant or a simple symbolic
expression. Constants can be supplied as decimal signed integers, unsigned hexadecimal
numbers (prepended with ‘0x’), floating point numbers, or as a character (e.g. ‘A’). A
symbolic expression can be just a local/global symbol or a simple expression such as *V
(de-reference), &V (address of V), V[constant], V.member or V->member, where V is a
symbol of the appropriate type. The special @ channel variable (eTPU only) reference
syntax is also supported. If the types of the two sides differ, C type conversion rules are
followed before performing the test operation.

"testOpString" is a C test operator. Supported operators are ==, !=, >, >=, <, <=, &&, and
||.

If the result of the specified operation on the expressions is 0, or false, a verification error
is generated.

at_code_tag("&&Test1Here&&");
verify_val("FailFlag", "==", "0");

In the example above, the target is run until it gets to the address associated with the
source code that contains the text &&Test1Here&&. Once this address is reached, the
value of symbol FailFlag is read and a verification error is generated if it does not equal
zero.

8. Script Commands Files

Full System DevTool IDE, page 99Reference Manual (C) 2012-2024 ASH WARE, Inc.

Two other forms of the verify symbol value script command are also supported that
directly take the numerical value to compare against as an argument.

verify_val_int("exprString", "testOpString", U32 val);
verify_val_fp("exprString", "testOpString", double val);

These forms allow the test value to be input as a constant expression, perhaps using a
series of macros, thereby providing more flexibility.

Separate script commands are available to compare and verify string values.

verify_str("expr1, "testOp", "expr2");
verify_str_ex("expr1", "testOp", "expr2", len);

The "expr1" and "expr2" parameters can either be a string constant, or can be of type char
array or char pointer. If strings are resolved from both parameters then they are compared
using the comparator specified in "testOp". If the outcome of this is true (non-zero), the
verification test passes; otherwise a failure is reported. Supported comparator operators
are ==, !=, >, and <, >= and <=. Greater-than and less-than operations follow the same
rules as the strcmp() standard library function.

The extended version of this command, verify_str_ex(); also support a length specifier, len.
 Think strncmp where the comparison acts only on the first "len" characters and the
remainder are ignored.

at_code_tag("^^StringTest1^^");
verify_str("somePtr", "==", "Hello World");

In the example above, the target is run until it gets to the address associated with the
source code that contains the text ^^StringTest1^ .̂ Once this address is reached, the
ASCII values are read until the terminating character, a byte of value zero, is reached.
The resulting string is compared, case-sensitively, with the string "Hello World". If the two
strings are not equal, a verification error is generated.

at_code_tag("^^StringTest2^^");
verify_str_ex("somePtr", "<=", "Hello World", 5);

In the example above, the first five letters of two strings are compared and verification
error results unless somePtr is less than or equal to "Hello".

See the Global eTPU Channel variableAccess section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

8. Script Commands Files

page 100, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

8.7.3.8 eTPU Engine Data Script Commands

 These engine data script commands are only available on the eTPU2 products.
write_engine_data32(AddrOffset, Val);
write_engine_data24(AddrOffset, Val);
write_engine_data16(AddrOffset, Val);
write_engine_data8 (AddrOffset, Val);

verify_engine_data32(AddrOffset, Val);
verify_engine_data24(AddrOffset, Val);
verify_engine_data16(AddrOffset, Val);
verify_engine_data8 (AddrOffset, Val);

These commands write engine data at address AddrOffset to value Val, or verify that the
data at address AddrOffset matches value Val. Note that 32-bit numbers must be located
on a double even address boundary (0, 4, 8, ...,) that 24-bit numbers must be located on a
single-odd boundary (1, 5, 9, ...), that 16-bit accesses must be located on even boundaries
(0,2,4,…) and that 8-bit numbers can be on any address boundary.

The address is formed by adding the engines base address (see ERBA.) with the address
formed in the by the Addroffset field. See the System Configuration Commands section
for information on how the Engine Relative Base Address (ECR.ERBA) field is
writtenwrite_engine_data32 (0x20, 0xC6E2024A);

verify_engine_data32(0x20, 0xC6E2024A);
verify_engine_data24(0x21, 0xE2024A);
verify_engine_data16(0x20, 0xC6E2);
verify_engine_data16(0x22, 0x024A);
verify_engine_data8 (0x20, 0xC6);
verify_engine_data8 (0x21, 0xE2);
verify_engine_data8 (0x22, 0x02);
verify_engine_data8 (0x23, 0x4A);

In this example data at an address offset of 0x20 (relative to that eTPU’s engine base
address) word is written with a 32-bit value 0xC6E2024A (hex). The written value is then
verified as 32-, 24-, and 8-bit sizes.

Note the ETEC eTPU C Compiler automatically generates all needed engine variable
address data into the auto-defines file as a series of macros; no explicit user effort is
required.

Bitwise access to engine-space parameter RAM is supported with a set of matching
functions to those above.

write_engine_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_engine_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

8. Script Commands Files

Full System DevTool IDE, page 101Reference Manual (C) 2012-2024 ASH WARE, Inc.

write_engine_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_engine_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a _Bool bit that is in
the LSB of an 8-bit unit, the script command would be:

// set _Bool at LSB of 8-bit unit to 1
write_engine_bits8(0x10, 7, 1, 1);

8.7.3.9 eTPU Channel Data Script Commands

write_chan_data32(ChanNum, AddrOffset, Val);
write_chan_data24(ChanNum, AddrOffset, Val);
write_chan_data16(ChanNum, AddrOffset, Val);
write_chan_data8 (ChanNum, AddrOffset, Val);
verify_chan_data32(ChanNum, AddrOffset, Val);
verify_chan_data24(ChanNum, AddrOffset, Val);
verify_chan_data16(ChanNum, AddrOffset, Val);
verify_chan_data8 (ChanNum, AddrOffset, Val);

These commands write channel ChanNum’s data at address AddrOffset to value Val, or
verify that the data at the specified parameter RAM memory location is value Val. Note
that 32-bit numbers must be located on a double even address boundary (0, 4, 8, ...,) that
24-bit numbers must be located on a single-odd boundary (1, 5, 9, ...), that 16-bit accesses
must be located on even boundaries (0,2,4,…) and that 8-bit numbers can be on any
address boundary.

#define UART_CHAN 12
write_chan_data32 (UART_CHAN, 0x20, 0xC6E2024A);
verify_chan_data32(UART_CHAN, 0x20, 0xC6E2024A);
verify_chan_data24(UART_CHAN, 0x21, 0xE2024A);
verify_chan_data16(UART_CHAN, 0x20, 0xC6E2);
verify_chan_data16(UART_CHAN, 0x22, 0x024A);
verify_chan_data8 (UART_CHAN, 0x20, 0xC6);
verify_chan_data8 (UART_CHAN, 0x21, 0xE2);
verify_chan_data8 (UART_CHAN, 0x22, 0x02);
verify_chan_data8 (UART_CHAN, 0x23, 0x4A);

8. Script Commands Files

page 102, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In this example channel 12’s data at an address offset of 0x20 (relative to that channel's
base address) word is written with a 32-bit value 0xC6E2024A (hex). The written value is
then verified as 32-, 24-, and 8-bit sizes.

In the Byte Craft eTPU "C" Compiler the address offset can be generated using the
following #pragma in the code:

#pragma write h, (#define MY_ADDR_OFFSET ::ETPUlocation(Pwm, MyFuncVar));

The ETEC eTPU C Compiler automatically generates all needed address data into the
auto-defines file; no explicit user effort is required.

Bitwise access to parameter RAM is supported with a set of matching functions to those
above.

write_chan_bits32(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_chan_bits24(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_chan_bits16(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_chan_bits8 (ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits32(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits24(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits16(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits8 (ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a _Bool bit that is in
the LSB of an 8-bit unit, the script command would be:

// set _Bool at LSB of 8-bit unit to 1
write_chan_bits8(BOOL_CHAN, 0x10, 7, 1, 1);

With the Full System IDE's enhanced scripting capabilities, it is possible to read from
channel frame memory into script variables, as a shortcut from using the read_mem_u<>()
script commands.

U32 x;
x = read_chan_data_u32(ChanNum, AddrOffset);
x = read_chan_data_u24(ChanNum, AddrOffset);
x = read_chan_data_u16(ChanNum, AddrOffset);
x = read_chan_data_u8(ChanNum, AddrOffset);

Depending upon the variable type, sign-extension is performed as necessary. The
alternative form for reads is:

read_chan_data_u32("x", ChanNum, AddrOffset);

8. Script Commands Files

Full System DevTool IDE, page 103Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.7.3.10 eTPU Global Data Write/Verify Commands

write_global_data32(AddrOffset, Val);
write_global_data24(AddrOffset, Val);
write_global_data16(AddrOffset, Val);
write_global_data8 (AddrOffset, Val);

verify_global_data32(AddrOffset, Val);
verify_global_data24(AddrOffset, Val);
verify_global_data16(AddrOffset, Val);
verify_global_data8 (AddrOffset, Val);

These commands write global data at address AddrOffset to value Val, or verify that the
data at address AddrOffset matches value Val. Note that 32-bit numbers must be located
on a double even address boundary (0, 4, 8, ...,) that 24-bit numbers must be located on a
single-odd boundary (1, 5, 9, ...), that 16-bit accesses must be located on even boundaries
(0,2,4,…) and that 8-bit numbers can be on any address boundary.

The address is specified as an offset from the base of parameter RAM.

write_global_data32 (0x20, 0xC6E2024A);
verify_global_data32(0x20, 0xC6E2024A);
verify_global_data24(0x21, 0xE2024A);
verify_global_data16(0x20, 0xC6E2);
verify_global_data16(0x22, 0x024A);
verify_global_data8 (0x20, 0xC6);
verify_global_data8 (0x21, 0xE2);
verify_global_data8 (0x22, 0x02);
verify_global_data8 (0x23, 0x4A);

In this example data at an address offset of 0x20 (relative to that eTPU’s engine base
address) word is written with a 32-bit value 0xC6E2024A (hex). The written value is then
verified as 32-, 24-, and 8-bit sizes.

Note the ETEC eTPU C Compiler automatically generates all needed global variable
address data into the auto-defines file as a series of macros; no explicit user effort is
required.

Bitwise access to engine-space parameter RAM is supported with a set of matching
functions to those above.

write_global_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_global_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_global_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_global_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

8. Script Commands Files

page 104, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

verify_global_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_global_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_global_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_global_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a _Bool bit that is in
the LSB of an 8-bit unit, the script command would be:

// set _Bool at LSB of 8-bit unit to 1
write_global_bits8(0x10, 7, 1, 1);

8.7.3.11 MC33816 SPI Data Write/Verify Commands

write_spi_data16(Addr, Val);
verify_spi_data16(Addr, Val);

These commands write and verify spi data. The 'Addr' parameter is specified in bytes so
the addresses given in the MC33816 manual must be right-shifted by one bit. The Val
parameter is the value that gets written in the write command, or verified in the verify
command.

#define CH1_UC0_OutputAccessAddr (0x184<<1)
write_spi_data16 (CH1_UC0_OutputAccessAddr, 0x0eee);
verify_spi_data16(CH1_UC0_OutputAccessAddr, 0x0eee);

In this example the 'Output Access' register for Channel 1, Core 0 is set to 0x0EEE. It's
value is then verified.

Note the MC33816 assembler automatically generates all needed global variable address
from the data ram data into the auto-defines file and that all global register addresses (in
their word-to-byte shifted format) are available in file 'StdDefMc33816.h'.

Bitwise access is supported with the following functions:

write_spi_bit(Addr, BitPosition, Val);

verify_spi_bit(Addr, BitPosition, Val);

These script commands allow the writing and verification of bitfields. The 'BitPosition'
parameter is from the LSB of the 16 bit register.

// Start the micro
// by setting 'flash_enable.pre_flash_enable' (bit 4)
#define CH1_FlashEnableAddr (0x100<<1)
write_spi_bit (CH1_FlashEnableAddr, 4, 1);
verify_spi_bit (CH1_FlashEnableAddr, 4, 1);

8. Script Commands Files

Full System DevTool IDE, page 105Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.7.3.12 MC33816 Register Script Commands

set_reset_source(<reset_source>);

The above script command allows the user to set the reset source (which can then be read
via the SPI reset source register, which is read-only and clears on read). E.g.

set_reset_source(SPI_RESET);
verify_mem_u16(MC33816_SPI_SPACE, ResetSourceAddr, 0xffff,
0x4);
verify_mem_u16(MC33816_SPI_SPACE, ResetSourceAddr, 0xffff,
0x0);

See the reset source enumerated type for all valid reset source parameters.

set_diagnostic_isr(<channel>, <uc0 isr addr>, <uc1 isr
addr>);

This script command configures a diagnostic ISR register. If channel 1 is specified SPI
address 0x10C is written, if channel 2 then SPI address 0x12C is written. The script
command verifies that the ISR addresses are in the valid range.

set_driver_disabled_isr(<channel>, <uc0 isr addr>, <uc1 isr
addr>);

This script command configures a driver disabled ISR register. If channel 1 is specified
SPI address 0x10D is written, if channel 2 then SPI address 0x12D is written. The script
command verifies that the ISR addresses are in the valid range.

set_software_isr(<channel>, <uc0 isr addr>, <uc1 isr addr>,
<uc0 rising start isr enable>, <uc0 falling start isr
enable>, <uc1 rising start isr enable>, <uc1 falling start
isr enable>);

The set_software_isr() script command configures a software ISR register. If channel 1 is
specified SPI address 0x10E is written, if channel 2 then SPI address 0x12E is written.
The script command verifies that the ISR addresses are in the valid range. The command
also configures the start signal software interrupt settings (0 = disable, 1 = enable).

8.7.4 Pin and Node Modification and Verification

This section includes script commands for controlling, modifying, and verifying pins and
nodes. For all devices, input pins are controlled and their values are verified. Verification
can be over a region of time (e.g., a 3 micro-second pulse should occur somewhere
between 100 and 200 microseconds) or at a specific snapshot in time (e.g., the pin must be
high at exactly the time when the script executes.) For analog devices such as the
MC33816, the various voltages and currents can be both controlled and verified.

8. Script Commands Files

page 106, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

8.7.4.1 Pin Window Verification Commands

These command have the purpose of verifying the state of the pin (or node) within a time-
window. Within this time-window an entire pulse can be verified, a single transition can be
verified, or the absence of any transitions at all can be verified. The commands in this
section differ from the commands like, 'verify_chan_output_pin();' (documented in section
Pin Verification and Control Script Commands) which verify the pin state state at a
snapshot in time and is therefore subject to 'false pass' scenarios in which the pin pulses
occur (and are not detected) between adjacent snapshots. These script commands
described in this section are not subject to this limitation because the pin state is verified
over an entire time-windw.

Script verify_pulse();

The verify_pulse(); script command verifies that exactly one pulse (two transitions) occurs
on a pin (or node) within a time-window.

Parameter 'Node' specifies the Node or Pin type. See the Pin and Node Enumerated Type
section for a listing of the pin and node names. For the eTPU, only the CHAN_OUTPUT
node is valid. For the MC33816, only the VSENSE1 to VSENSE4 nodes are valid and
these refer to the current comparator's output node.

Parameter 'Index' is the index of the Node. For example, in the eTPU, this might signify
the channel number.

Parameters 'StartTime' and 'EndTime' specify the beginning and end of the time-window in
which the pulse must occur.

Parameter 'PulseType' can be either LO_HI_LO (a positive pulse) or HI_LO_HI (a
negative pulse.)

Parameters 'FirstTransitionTime' and 'SecondTransitionTime' specify the times of the two
transitions in micro-seconds.

Parameter 'Index' is the index of the pin. For instance, in the eTPU there are 32-channels,
so a Node of 'CHAN_OUTPUT' and an index of '4' refers the the eTPU's channel 4
output pin.

verify_pulse(Node, Index, StartTime, PulseType,
FirstTransitionTime, SecondTransitionTime, EndTime);

The default 'tolerance' is one system clock minus one nanosecond. This can be overridden
with the 'set_verify_region_tolerance(); script command described below.

8. Script Commands Files

Full System DevTool IDE, page 107Reference Manual (C) 2012-2024 ASH WARE, Inc.

This script command verifies the following aspects of this waveform. Note that the script
must execute after the pulse and as such verifies that the pin transitions that have already
occurred.

· At the 'Start Time' the pin is at State1 (low in this diagram)

· The First Transition occurs within +/- the allowed tolerance

· The Second Transition occurs within +/- the allowed tolerance

· Exactly two transitions occur between the Start Time and the End Time

Script verify_transition();

The verify_transition(); script command verifies that exactly one transitions occurs on a pin
(or node) within a time-window.

Parameter 'Node' specifies the Node or Pin type. See the Pin and Node Enumerated Type
section for a listing of the pin and node names. For the eTPU, only the CHAN_OUTPUT
node is valid. For the MC33816, only the VSENSE1 to VSENSE4 nodes are valid and
these refer to the current comparator's output node.

Parameter 'Index' is the index of the Node. For example, in the eTPU, this might signify
the channel number.

Parameters 'StartTime' and 'EndTime' specify the beginning and end of the time-window in
which the transition must occur.

Parameter 'TransitionType' can be either RISING (a low to high transition) or FALLING
(a high to low transition.)

Parameters 'TransitionTime' specify the time of the transition in micro-seconds.

Parameter 'Index' is the index of the pin. For instance, in the eTPU there are 32-channels,
so a Node of 'CHAN_OUTPUT' and an index of '4' refers the the eTPU's channel 4
output pin.

8. Script Commands Files

page 108, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

verify_transition(Node, Index, StartTime, PulseType,
TransitionTime, EndTime);

The default 'tolerance' is one system clock minus one nanosecond. This can be overridden
with the 'set_verify_region_tolerance(); script command described below.

This script command verifies the following aspects of this waveform. Note that the script
must execute after the transition and as such verifies that the pin transition have already
occurred.

· At the 'Start Time' the pin is either low (if verifying a rising edge) or high (if
specifying a falling edge.)

· The Transition occurs within +/- the allowed tolerance

· Exactly one transition occurs between the Start Time and the End Time

Script verify_pin_region();

The verify_pin_region(); enhanced script command verifies the pin (or node) over a time-
window. The intent of the command is to verify that pin (or node) stays at a particular
state (high or low) over an entire time-window, and specifically that no pin transitions at
occur occur within the time-window. Note that there is no 'tolerance' band.

Parameter 'Node' specifies the Node or Pin type. See the Pin and Node Enumerated Type
section for a listing of the pin and node names. For the eTPU, only the CHAN_OUTPUT
node is valid. For the MC33816, only the VSENSE1 to VSENSE4 nodes are valid and
these refer to the current comparator's output node.

Parameter 'Index' is the index of the Node. For example, in the eTPU, this might signify
the channel number.

Parameters 'StartTime' and 'EndTime' specify the beginning and end of the time-window in
which the pin must be at 'State' (HI or LO).

Parameter 'State', is the pin state in the time-window. Allowed values are HI and LO.

8. Script Commands Files

Full System DevTool IDE, page 109Reference Manual (C) 2012-2024 ASH WARE, Inc.

verify_pin_region(Node, Index, StartTime, State, EndTime);

Note that there is no implied tolerance. I suppose you could think of the tolerance as being
zero in the same way as I think of myself as being a billionaire with zero billions of dollars.

· Between the Start Time and the Script Execution Time the pin is at State

· No transitions occur between the Start Time and the End Time

Script set_verify_region_tolerance();

set_verify_region_tolerance(MicroSecondsTolerance);

The set_verify_region_tolerance() script command sets the tolerance for the
verify_pulse(); and verify_transition(); script commands to 'MicroSecondsTolerance'.

Note that only this tolerance only applies to the time of the transitions. It does not apply to
either time-window boundaries (set by 'StartTime and EndTime'.) This does not apply to
the 'verify_pin_region(); script command because it does not have a pin-transition to which
this script command would apply.

Note that once set, this value applies for future script commands. However, if the
simulator is reset, then the tolerance is restored to the default.

8.7.4.2 Pin Verification and Control Script Commands

Note that there are superior 'region verification' scripts defined in section "Pin Region
Verification Commands'' that you may want to use instead of the
'verify_chan_output_pin();' documented in this section. The 'verify_chan_output_pin();'
described below verifies the pin state state at a specific snapshot in time and is therefore
subject to 'false pass' scenarios in which the pin pulses occur (and are not detected)
between adjacent snapshots. The pin region verification script commands described in the
"Pin Region Verification Commands" section are not subject to this limitation because the
pin state is verified over an entire region.

8. Script Commands Files

page 110, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

eTPU input pins are normally controlled using test vector files. eTPU output pins
configured as outputs are normally controlled by the eTPU and are verified using master
behavior verification test files described in the Functional Verification section. Therefore,
these commands are not the primary method for controlling and verifying pin states.
Instead, these commands serve as a secondary capability for pin state control and
verification.

write_chan_input_pin(ChanNum, Val);
write_chan_output_pin(ChanNum, Val);
write_tcrclk_pin(Val);
verify_chan_output_pin(ChanNum, Val);
verify_ouput_buffer_disabled(ChanNum);
verify_ouput_buffer_enabled(ChanNum);

These commands write either ChanNum's or the TCRCLK pin to value Val, verify that
ChanNum's pin is equal to Val, or verify that an output buffer is enabled or disabled.

#define TEST_CHAN 4
write_chan_input_pin(TEST_CHAN, 0);
write_tcrclk_pin(1);

In this example, channel 25's input pin is cleared to a low, and the TCRCLK pin is set high.

#define TEST_CHAN 4
verify_chan_output_pin(TEST_CHAN, 1);
verify_ouput_buffer_disabled(TEST_CHAN);
wait_time(23.4);
verify_chan_output_pin(TEST_CHAN, 0);
verify_ouput_buffer_enabled(TEST_CHAN);

In this example channel 4's output pin is verified to have a falling transition within a 23.4-
micro-second window. It is also verifying that the pin is acting like an open-drain (active
low, passive high.)

write_input_pin(PinType, ChanNum, Val);

The PinType parameter can be TIM_INPUT or TBD. The Val can be 0 or 1.

8.7.4.3 Pin Transition Behavior Script Commands

The pin transition behavior capabilities allow the user to generate behavioral models of the
source code and to verify the source code against these saved behavioral models. The
script commands allow the user to both create pin transition behavioral model and automate
the verification process. Script command capabilities include the ability to save and load
pin transition behavior files, the ability to enable continuous verification against these

8. Script Commands Files

Full System DevTool IDE, page 111Reference Manual (C) 2012-2024 ASH WARE, Inc.

models and control tolerance of tests, and the ability to perform a complete verification of
all recorded behavior at once.

NEW : Enhanced behavior verification starting with release 5.00 provides much more
flexible and useable pin transition verification capabilities. With enhanced behavior
verification pin transition data is saved in a new format that is .csv (comma separated
value) format for compatibility with many other tools. However, the enhanced behavior
verification can read original style .bv files as well as the new .ebv files. Existing scripting
commands apply to original .bv files only where noted.

A more complete discussion of functional verification is given in the Functional Verification
chapter while a discussion of the specifics of pin transition behavioral modeling is given in
the Pin Transition Behavior Verification section. With the new enhanced behavior
verification the loaded master pin transition behavior data can be viewed in theWaveform
Window.

Enhanced Behavior Verification Script Commands

The test tolerance commands apply whether an old-style .bv file or new .ebv file is being
used as the master, however, the file manipulation script commands only apply to .ebv files.

create_ebehavior_file("filename.ebv");

This command creates an enhanced behavior data file with the specified name. .ebv file
creation in a script command file has the following limitations:

- only one can be created

- cannot have the same file name as a running (under verification) .ebv file

- must occur at simulation time 0 before any wait_time() or at_time() script commands

- must occur after any external gate instantiation or after any vector file commands

add_ebehavior_pin("<pin name>");

By default, when an enhanced behavior data file is created all pins will be saved. On the
eTPU, that consists of all 32 channel input, all 32 channel output pins, and the _tcrclk pin.
With this script command, the user can select just the pins desired to be saved to the .ebv
file, as this is generally just a small subset. The <pin name> argument is the name provided
in the .vector file through the "node" command, or is the default name of the pin (e.g.
_ch3.out is the channel 3 output pin on the eTPU). These script commands must
immediately proceed the create_ebehavior_file() script command. Once one
add_ebehavior_pin() script command is used, all pins of interest must be added with this
script command as the default of all is disabled.

8. Script Commands Files

page 112, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

close_ebehavior_file();

Closes an enhanced behavior file that was created, saving off any remaining buffered data
to file. When using the created .ebv file, verification should be stopped at the same time as
when the .ebv file data stopped being recorded; see stop_ebehavior_file().

run_ebehavior_file("filename.ebv");

This script command opens the specified enhanced behavior verification file. The loaded
file is often referred to as the "master file" or "gold file". By default, all pins found in the
.ebv file are enabled for verification. The script command has the same limitations as
create_ebehavior_file() script command, in that it must be called out at a simulation time of
0, etc. The default tolerance for all pin transition data being verified is two system clocks
and zero offset.

set_ebehavior_pin_tolerance("<pin name>", <time tolerance
mode>, <time offset in us>, <time tolerance in us>);

Sets the time tolerance allowed between the loaded master file and the current simulation
run for the specified pin. The default is to verify all the pins in the .ebv file (or .bv file if an
old-style behavior data file is loaded), but once one of these script commands is specified
then each pin to be verified must be specified with a set_ebehavior_pin_tolerance() script
command. The <pin name> argument is the name provided in the .vector file through the
"node" command, or is the default name of the pin. The only available time tolerance mode
currently available is "EBV_ABSOLUTE" - this means that pin transition times in the gold
file will be compared directly to the pin transition times that occur in the current simulation
run, taking into account the offset and tolerance. The time offset in microseconds is an
adjustment made to pin transition data in the gold file before comparing to the simulation pin
transition time. For example, if additional code in the initialization of an eTPU function has
caused it to start outputting a signal 2us later than previously, then a time offset of 2us can
be specified and a smaller time tolerance used in the comparison. The time offset can be
positive or negative. The time tolerance controls the maximum amount of difference
between the master/gold file pin transition time and the simulation pin transition time before
a behavior verification error is thrown. Behavior verification throws an error if the
absolute value of the time difference between a gold file pin transition time and the current
simulation pin transition time exceeds the specified tolerance. In general, these script
commands should immediately follow the run_ebehavior_file() script command, although
tolerances can be changed on the fly during simulation.

set_ebehavior_global_tolerance(<time tolerance mode>, <time
offset in us>, <time tolerance in us>);

This script command sets behavior verification tolerances for all pins of interest (default to
all, or those specified with set_ebehavior_pin_tolerance). The arguments - mode, time

8. Script Commands Files

Full System DevTool IDE, page 113Reference Manual (C) 2012-2024 ASH WARE, Inc.

offset and time tolerance are described in the set_ebehavior_pin_tolerance()
documentation.

disable_ebehavior_pin("<pin name>");

Pins can be individually disabled from behavior verification with this script command. Note
that this command and set_ebehavior_pin_tolerance work sequentially when determining
the final set of pins of interest.

stop_ebehavior_file();

Used to end enhanced behavior verification and close the .ebv file being used as the
master/gold file. For the pins being verified, the gold file and current simulation must
match at this time or a behavior verification error will occur. The stop_behavior_file()
script command should occur at the same time as the close_ebehavior_file() command did
during enhanced behavior file creation.

Deprecated Behavior Verification Script Commands
read_behavior_file("filename.bv");

This command loads the pin transition behavior file into the master pin transition behavior
buffer. This buffer forms a behavioral model of the pin transition behavior of the source
code. Only old-style .bv files can be read with this command.

verify_all_behavior();

This command verifies all recorded pin transition behavior against the master pin transition
behavior buffer. It generates a behavior verification error message and increments the
behavior failure count for each deviation from the behavioral model. Only old-style .bv
files can be verified with this command.

enable_continuous_behavior();

This command enables continuous verification of pin transition behavior against the master
pin transition behavior buffer. During source code simulation each functional deviation
generates a behavior verification error message and causes the behavior verification failure
count to be incremented. This is useful for identifying the specific areas in which the
microcode behavior has changed. This command only applies to verification with old-style
.bv files. Enhanced behavior verification automatically runs in continuous mode.

disable_continuous_behavior();

This command disables continuous verification of pin transition behavior against the master
pin transition behavior buffer. Note that pin transition behavior is still recorded in the pin
transition behavior buffer. This command only applies to verification with old-style .bv
files. Enhanced behavior verification automatically runs in continuous mode.

resize_pin_buffer(<NumPinTransitions>);

8. Script Commands Files

page 114, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

This command resizes the pin transition buffer. The default size is 100K transitions.

resize_pin_buffer(500000);

In this example the pin transition buffer size is changed such that it can hold 500K pin
transitions. This script command should only be executed at time zero.

Note that resizing the pin transition buffer can have serious affects on performance. For
instance it can cause a long delay when the Full System IDE is reset. It can also
significantly slow down the logic analyzer redraw rate, such that the simulation speed is
bound by the redraw rate. Simulation speed reductions can be obviated by hiding or
minimizing the logic analyzer while the Full System IDE runs, such that redraws are not
required, thereby improving simulation speed.

The effective pin transition buffer size can also be increased in other ways. This is
discussed in the Waveform Options Dialog Box section.

8.7.4.4 External Logic Commands

Boolean logic that is external to the MC33816 is instantiated through the use of
place_xyz(); script commands. Several types of external logic are available. The script
command used to instantiate each type of logic is listed below. See the External Logic
Simulation chapter for a detailed description of the use of external Boolean logic gates.

- place_buffer(InPin, OutPin); Instantiates a buffer follower

- place_inverter(InPin, OutPin); Instantiates an inverter

- place_and_gate(In1Pin, In2Pin, OutPin); Instantiates an 'AND' gate

- place_or_gate(In1Pin, In2Pin, OutPin); Instantiates an 'OR' gate

- place_xor_gate(In1Pin, In2Pin, OutPin); Instantiates an 'XOR' gate

- place_nand_gate(In1Pin, In2Pin, OutPin); Instantiates a 'NAND' gate

- place_nor_gate(In1Pin, In2Pin, OutPin); Instantiates a 'NOR' gate

- place_nxor_gate(In1Pin, In2Pin, OutPin); Instantiates an 'INVERTING
XOR' gate

- remove_gate(Out); Removes the gate that drives channel 'Out'

The eTPU has up to two pins per channel which (depending on the specific device) may or
may not actually be connected together or to from outside of the microcontroller. Indexes
are defined as follows for the eTPU.

- 0 to 31 Channels 0 through 31 inputs, respectively

8. Script Commands Files

Full System DevTool IDE, page 115Reference Manual (C) 2012-2024 ASH WARE, Inc.

- 32 to 63 Channels 0 through 31 outputs, respectively

- 64 TCRCLK pin

place_and_gate(5, 33, 64);

This example places an 'AND' gate with eTPU channels 5's input pin and eTPU channel
2's output pin as inputs and the TCRCLK pin as the output.

Two eTPU Engine Configurations

In two eTPU configurations it is possible to place gates between the two eTPU’s pins.
This is done using the following syntax.

- 128 to 159 Other eTPU’s channels 0 through 31 inputs
pins

- 160 to 191 Other eTPU’s channels 0 through 31 output
pins

- 192 Other eTPU’s TCRCLK pin

place_xor_gate(160, 161, 5);

This example places a ‘XOR’ gate from eTPU B’s channel 0 and 1 output pins to eTPU
A’s channel 5 input pin.

The MC33816 has the following pins that can be used. Indexes are defined as follows for
the MC33816.

- 0 to 2 FLAG0 through FLAG2

- 3 to 8 START1 through START6

- 9 IRQB

- 10 to 11 OA_1 through OA_2

- 12 DBG

- 13-15 (not used)

- 16 DRVEN

- 17 RESETB

- 18-20 (not used)

- 21-27 LS1-LS7

- 28-40 (not used)

- 41-45 HS1-HS5

place_or_gate(0, 2, 4);

8. Script Commands Files

page 116, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

This example instantiates an 'OR' gate with pins FLAG0 and FLAG2 as inputs and pin
START2 as the output.

Each of the place_xyz(); script command has an extended version that supports cross
target/core gates, as shown below.

- place_buffer_ex(InTarget, InPin, OutTarget, OutPin);
Instantiates a buffer follower

- place_inverter_ex(InTarget, InPin, OutTarget, OutPin);
Instantiates an inverter

- place_and_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
 Instantiates an 'AND' gate

- place_or_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
 Instantiates an 'OR' gate

- place_xor_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
 Instantiates an 'XOR' gate

- place_nand_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget,
OutPin); Instantiates a 'NAND' gate

- place_nor_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
 Instantiates a 'NOR' gate

- place_nxor_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget,
OutPin); Instantiates an 'INVERTING XOR' gate

The InTarget, In1Target, In2Target and OutTarget are the names of the target and are
expressed as strings such as "eTPU_A" or "Ch1_Core0".

place_or_gate_ex("eTPU_A", 32+16, "Ch1_Core0", 10,
"eTPU_A",11);

In the above example an 'OR' gate is placed with its two inputs coming from the eTPU A's
channel 16 output pin and the MC33816's OA_1 pin. The output of the OR gate drives
eTPU A's channel 11's input pin.

8.7.4.5 MC33816 Verification Script Commands

verify_current(SENSE, MIN, MAX);

The above script command verifies that the current, in amperes, is between MIN and
MAX. The currently-supported current sense points are the voltage flowing through the

8. Script Commands Files

Full System DevTool IDE, page 117Reference Manual (C) 2012-2024 ASH WARE, Inc.

sense resistors (SENSE1 through SENSE4), through the high side drivers (HS1-HS5),
through the low side drivers (LS1-LS7) and the injectors (INJECTOR1-INJECTOR8).

verify_current(SENSE1, 4.5, 6.0);

The above script command verifies that the current through the sense resistor 'SENSE1' is
between 4.5 amps and 6.0 amps.

verify_voltage(NODE, MIN, MAX);

The above script command verifies that the voltage at the voltage source, VBOOST or
VBATT.

verify_voltage(VBOOST, 69.0, 69.5);

The above script command verifies that the VBOOST voltage is between 69 and 69.5
volts.

verify_binary_pin(PIN_NAME, VAL);

The above script command verifies that a pin is at a logic level. See the Pin and Node
Enumerated Type section for a listing of the pin and node names.

verify_binary_pin(START1, 0);

The above script command verifies that the pin named 'Start1' is at a 0 logic level.

8.7.5 Code

Code coverage, which is a critical aspect of structured testing, is done with the script
commands found in this section. It is also possible to arm the simulator to create a warning
when a specific (and presumably unexpected) section of code executes.

8.7.5.1 Code Coverage Script Commands

An important index of test suite completeness is the coverage percentage that a test suite
achieves. The Full System IDE provides several script commands that aid in the
determination of coverage percentages. In addition, script commands provide the capability
to verify that minimum coverage percentages have been achieved. A discussion of this
topic is found in the Code Coverage Analysis section. The following are the script
commands that provide these capabilities.

write_coverage_file("Report.Coverage");
verify_file_coverage("MyFile.uc",instPct,braPct);
verify_all_coverage(instPct,braPct);

8. Script Commands Files

page 118, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

// eTPU-Only
verify_file_coverage_ex("MyFile.c",instPct,braPct,entPct);
verify_all_coverage_ex(instPct,braPct,entPct);

The write_coverage_file(…) command generates a report file that lists the coverage
statistics. Statistics for individual files are listed as well as a cumulative file for the entire
loaded code.

The verify_file_coverage(…); and verify_file_coverage_ex(…); commands are used as
part of automation testing of a specific source file. The instPct and braPct parameters are
the minimum required branch and coverage percentages in order for the test to pass. The
entPct parameter is the minimum require entry percentage and is available only in the
eTPU simulator. These parameters are both expressed in floating point notation. The valid
range of coverage percentage is zero to 100. Note that for each branch instruction there
are two possible branch paths: the branch can either be taken or not taken. Therefore, in
order to achieve full branch coverage, each branch instruction must be encountered at least
twice and the branch must both be taken and not taken.

The verify_all_coverage(…); and verify_all_coverage_ex(…); are similar to the
verify_file_coverage commands except these commands focus on the entire build rather
than specific source code modules. As such, they are less useful as a successful testing
strategy will focus on specific modules rather than on the entire build.

Note that this capability is also available directly from the file menu.

wait_time(100);
verify_file_coverage("toggle.uc",92.5,66.5);
verify_all_coverage(33.3,47.5);
write_coverage_file("record.Coverage");

The code in this example waits 100 microseconds and then verifies that at least 92.5
percent of the instructions associated with file toggle.uc have been executed and 66.5
percent of the possible branch paths associated with file toggle.uc have been traversed. In
addition, the example verifies that at least 33.3 percent of all instructions have been
executed and that 47.5 percent of all branch paths have been traversed. A complete report
of instruction and branch coverage is written to file record.

Inferred Event Vector Coverage

In eTPU applications it is often difficult to get complete (100%) event vector coverage.
There are two situations in difficulties may be encountered.

8. Script Commands Files

Full System DevTool IDE, page 119Reference Manual (C) 2012-2024 ASH WARE, Inc.

The first situation would be a valid and expected thread that is difficult to reproduce in a
simulation environment. For example when measuring the time at which a rising edge
occurs, it may be difficult to generate a test case for when the input pin is a zero, because
a thread handler will normally execute immediately such that the pin is still high.

But an event vector handling the case of a rising edge and a low pin is valid. For instance,
a rising edge followed by a falling edge could occur before a thread executing in another
channel completes. Now the thread handling this rising edge executes with a low pin state.
 It is therefore important to test this case, but how? The solution to achieving event vector
coverage for this case is to be clever in designing a test. For example, you might inject two
very short pulses into two channels running the same function. The channels will be
serviced sequentially, so if you keep the pulse width shorter than the thread length than the
second thread will execute with the input pin low.

The second situation in which it may be difficult to achieve complete event vector coverage
is when there are multiple event vectors that handle invalid cases. For instance, all
functions must handle links, even when a link is not part of the functions normal operation.
Such a link could occur if there was a bug in another function. Since there are number of
such invalid situations, they are typically grouped. As such, it may be justified to bundle
these together using the following script command. This command allows coverage of a
single event vector to count as coverage for other (inferred) event vectors.

infer_entry_coverage(FuncNum, FromEntryIndex, ToEntryIndex);

Consider the following thread labeled, "invalid_flag0". This thread is never expected to
occur because the function clears flag0 at initialization, and flag0 is never set. So thus state
which handles a match or transition event in which the flag0 condition is set should never
execute.

A test has been written to excersize this thread, and one can see that Event vector 15 has
been covered because the box on the left is white. But entries 13, 21, and 23 have not

8. Script Commands Files

page 120, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

been executed because the boxes on the left are still black. Since this is an invalid case
that actually should never execute, it is considered sufficient to infer coverage of entries 13,
21, and 23, as long as event vector 15 is covered. This is done using the following script
command.

infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 13);
infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 21);
infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 23);

Although there are a number of restrictions listed below that are enforced by the Full
System IDE, the most important restriction is not enforced. Namely, that this coverage by
inference should only used for invalid cases where the thread exists purely as Built In Test
(BIT) and would not in normal operation be expected to execute. In fact, when testing to
the very highest software testing standards, 100 percent event vector coverage should be
achieved without the use of this script command.

- Execution of an event vector that is covered by inference results in a
verification failure
- The FromEntryIndex’s thread and the ToEntryIndexthread thread must be the
same.

Note: when developing eTPU code using the ETEC eTPU class programming paradigm,
unused/unexpected entries are often directed to the built-in global error handler. These
entries thus do not show up in the user source module, but rather are associated with the
global error handler source code (_global_error_handler.sta).

Cumulative Coverage

To produce the highest quality software it is imperative that testing cover 100% of
instructions and branches.. Additionally, for quality control purposes, this coverage should
be proven using the verify_coverage scripts. But most test suites consist of multiple tests,
such that the coverage is achieved only after all tests have run. The cumulative coverage
scripts provide the ability to prove that the entire test suite cumulatively has achieved 100%
coverage.

The typical testing procedure might work as follows. A series of tests is run, and at the
end of each test the coverage data is stored. At the end of the very last test, the coverage
data from all previous tests are loaded such that the resulting coverage is an accumulation
of the coverage of all previous tests. Then the verify_coverage script command is run
proving that all tests have passed. The following illustrates this process.

... Run Test A.

save_cumulative_file_coverage("MyFunc.c", "TestA.CoverageData");

... Run Test B.

8. Script Commands Files

Full System DevTool IDE, page 121Reference Manual (C) 2012-2024 ASH WARE, Inc.

save_cumulative_file_coverage("MyFunc.c", "TestB.CoverageData");

...

... Run Test M.

save_cumulative_file_coverage("MyFunc.c", "TestM.CoverageData");

... Run Test N.

load_cumulative_file_coverage("MyFunc.c", "TestA.CoverageData");

load_cumulative_file_coverage("MyFunc.c", "TestB.CoverageData");

...

load_cumulative_file_coverage("MyFunc.c", "TestM.CoverageData");

verify_file_coverage("MyFunc.c ",100,100,100);

Code Coverage Annotated Listing Files

It can be useful to generate reports files that provide coverage information at the source
and opcode level. The write_coverage_listing_file() has been provided to generate such
reports.

write_coverage_listing_file("ModuleName.c",
"ListingFileName", enum COVERAGE_LISTING_OPTIONS);

For a specified module (source file name), a code coverage annotated listing file with the
name specified by the "ListingFileName" argument is created. Any previous file of the
same name is overwritten. The output form is very much like a regular listing file as
generated by the ETEC compiler, with the additions of

- source file line number preprended to each line

- opcode/disassembly lines include a coverage field that indicates to what level the opcode
has been executed by tests (none, full execution, true branch, false branch, inferred
coverage)

The COVERAGE_LISTING_OPTIONS argument supports two mode options

ALL_LINES : Output all lines of the specified module/source
file with listing information.
NON_COVERED_ONLY_LINES : Output only line associated with
opcodes not fully executed.

Independent flags that modify the modes listed above may be added to the
COVERAGE_LISTING_OPTIONS argument. Currently one modifier flag is supported:

FILTER_ETPU_ENTRIES : Ignore entry table code for
disassembly purposes, and consider it fully covered so it
is ignored in non-covered only mode.

8. Script Commands Files

page 122, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Example:

write_coverage_listing_file("CoverageListing.c", "..\\temp\
\CL_100percent_nc_filter.lst",

NON_COVERED_ONLY_LINES + FILTER_ETPU_ENTRIES);

8.7.5.2 Code Warning Script Commands

A warning can be generated when the first opcode following a code label is executed.
Note that the warning is generated on execution of the code, not when the program counter
gets to the code. This means that the warning is executed a bit later than might be
expected.

set_code_label_warning("PWMF_Error");

In the above script command a warning is assigned to the code label 'PWMF_Error'. If
the code following this label is executed a warning is generated.

This can be used (say) when code that is not expected to execute actually executes. One
example of this is in the eTPU

<...snip...>
/*---
-----------------+
| Catch all unspecified entry table conditions
 |
+--
----------------*/
 else
 {
 PWMF_Error:
 ClearAllLatches();
 }
}

Note that a similar result can also be achieved using a Print action tag described more fully
in the 'Print Action Tag' section. This capability is illustrated below.

<...snip...>
/*---
-----------------+
| Catch all unspecified entry table conditions
 |
+--
----------------*/

8. Script Commands Files

Full System DevTool IDE, page 123Reference Manual (C) 2012-2024 ASH WARE, Inc.

 else
 {
 ClearAllLatches(); // @ASH@print("The 'dangling
else' thread is executing");
 }
}

8.7.6 Files

These script commands control creation of files. For instance, trace data can be piped to an
output file and 'data dump' files can be generated from regions of data or code memory.

8.7.6.1 Trace Buffer and Files

Overview

Trace files have two primary purposes; they are useful for generation of a file that appears
identical to the trace window but can be loaded into a file viewer to access advanced
search capabilities, and they are used to load into a post-processing facility for advanced
trace analyses. The various capabilities and settings are focused on these two purposes.

Generating Viewable Files

Viewable trace files can be generated by selecting the Trace buffer, Save As … submenu
from the Files menu. Note that the trace buffer is about five times larger than what
appears in the trace window. A viewable trace file can also be generated using script
commands. See the Trace Script Commands section.

Because viewable files are appropriate only for things like advanced search capabilities, no
error or warning is generated if the underlying trace buffer has overflowed.

Generating Parseable Files

Parseable files can be generated only by using the trace commands described in the Trace
Script Commands section. To ensure generation of deterministic parseable trace files,
these files can be generated only if the selected trace events are enabled within the Full
System IDE and the trace buffer has not overflowed when generating a trace file from the
buffer.

For large trace files it is best to use the streaming capability, thereby avoiding possible trace
buffer overflow issues.

8. Script Commands Files

page 124, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Parsing the Trace File

All post processing on the trace files should be done on files generated using the
"parseable" option.

Although the file format is intended to be self-explanatory, it is purposely left
undocumented to retain flexibility for future enhancements. Instead, it is recommended
that those wishing to post-process the trace files use the trace file parse source code
available from ASH WARE. The public methods in the TraceParser class are
documented and will remain stable for future releases.

Post processing of the trace file is an excellent way to analyze important performance
indices. For instance, eTPU latency calculations such as minimum, maximum, average,
and standard deviation would be one excellent application.

8.7.6.2 File Script Commands

These commands support loading and saving files via script commands.

dump_file(startAddress, stopAddress, enum ADDR_SPACE,
 "filename.dump", enum FILE_TYPE,
 enum DUMP_FILE_OPTIONS);

This command creates the file filename.dump of type FILE_TYPE, using the options
specified by DUMP_FILE_OPTIONS. The file is created from the image located
between startAddress and stopAddress, out of the address space ADDR_SPACE.

dump_file(0, 0xffff, CPU32_SUPV_DATA_SPACE, "Dump.S19",
 SRECORD, DUMP_FILE_DEFAULT);
#define MY_OPTIONS NO_ADDR + NO_SYMBOLS
dump_file(0, 0xffff, CPU32_SUPV_CODE_SPACE, "Dump.dat",
 DIS_ASM, MY_OPTIONS);

The downside of the dump_file command is that it does a one-time dump of the entire file
overwriting any previous file. An alternative to this is to continuously write the trace data
to a file as it is generated. See the Trace Script Commands section.

This example creates a Motorola SRECORD file, Dump.S19, from the first 64K of the
CPU32’s supervisor data space. The default options are used for this dump. An assembly
file, Dump.dat, is also created from the first 64K of supervisor code space and both
address mode and symbolic information are excluded. Assuming the target processor is a
CPU32, the generated assembly code is for the CPU32.

verify_files("fileName1.dat", "fileName2.dat",

8. Script Commands Files

Full System DevTool IDE, page 125Reference Manual (C) 2012-2024 ASH WARE, Inc.

 enum VERIFY_FILES_RESULT);

This script command verifies two file named fileName1.dat and fileName2.dat. In addition
to checking for matching or mismatching, this script command also can verify non-
existence of either file or both files. Expected results are specified with the
VERIFY_FILES_RESULT enumeration.

verify_files("new.dat", "gold.dat", FILE1_MISSING);
dump_file(0, 0x28, MC33816_DATA_SPACE, "new.dat", IMAGE,
DATA8);
verify_files("new.dat", "gold.dat", FILESMATCH);

In the above example a new file named "new.dat" is generated, and is compared against
file "gold.dat" to make sure that they match. By first verifying that file "new.dat" does not
exist the fact that file "new.dat" is actually generated by the dump command is also
verified.

dump_file(0, 0x28, MC33816_DATA_SPACE, "new.dat", IMAGE,
DATA8);
verify_files("new.dat", "gold.dat", FILES_MISMATCH);
wait_time(100);
dump_file(0, 0x28, MC33816_DATA_SPACE, "new.dat", IMAGE,
 DATA8 | FILE_APPEND);
verify_files("new.dat", "gold.dat", FILES_MATCH);

The above example illustrates use of the FILE_APPEND options to store multiple data
snapshots into a single file. By first verifying that the files mismatch, then that the files
match, it proves that it is this verification process that actually generated the passing
results.

Related Topics:

Trace Script Commands

8.7.6.3 MC33816 SPI and Configuration File Creation Script Commands

create_spi_commands_file();

The above script command exports the script commands file as a series of SPI bus
commands in a format that can be used by the create_spi_commands_file(); command line
utility.

create_all_config_files(SUB_DIRECTORY);

The above script command creates the configuration files needed by the NXP SPI bus
utility that initializes and runs the MC33816 across a SPI bus. The files are placed in the
directory SUB_DIRECTORY.

8. Script Commands Files

page 126, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

create_all_config_files("MyFilesDirectory");

In the above example the current state of the MC33816 is exported as a series of SPI-Gen
compatible files and places the files in directory 'MyFilesDirectory'.

8.7.6.4 CSV Data Import/Export

read_csv_1d("<data_1d_array_var>", "<csv format file>",
SCRIPT_CSV_CONTROL);
read_csv_2d("<data_2d_array_var>", "<csv format file>",
SCRIPT_CSV_CONTROL);

The above script commands read a data file in CSV format into script array variables. The
one-dimensional version will read the first column of a CSV file into the specified array,
while the two-dimensional version will read the entire CSV file into the specified script
array variable. Any necessary type conversions will be performed. IMPORTANT
NOTE: the script array variable dimensions will be enlarged IF NEEDED to hold the data.

S32 a[20];
F64 b[1][1];
S32 a_len;
S32 b_len[2];
read_csv_1d("a", "csv_data_file_10rows.csv",
CSV_READ_FIRST_LINE); // first line of file is data, not
header
a_len = read_dim_length("a", 0); // a_len gets value of 20
read_csv_2d("b", "csv_data_file_15rows_3cols.csv",
CSV_IGNORE_FIRST_LINE); // first line in file is header;
ignore
b_len[0] = read_dim_length("b", 0); // returns 15
b_len[1] = read_dim_length("b", 1); // returns 3

Since the read of a CSV file may change the dimensions of an array, there is a script
command to retrieve the length of a script array variable dimension.

read_dim_length("<array_var>", <dimension index>);

Array data can also be exported to a CSV-format file.

write_csv("<source array var>", "<output file>", "<header
text>");

The source array variable can be one or two dimensional. It's entire contents are written
to the specified file in CSV format. If the header text parameter is an empty string, no
header line is written to the file and data starts on the first line, otherwise the header text is
written out as the first line.

write_csv("capture", "pin_data.csv", "TIME, PIN STATE");

8. Script Commands Files

Full System DevTool IDE, page 127Reference Manual (C) 2012-2024 ASH WARE, Inc.

For enhanced flexibility, data can be appended to existing files. The file must exist before
executing the command, whose format is as follows:

append_csv("<source var>", "<output file>");

The source variable may be non-array or one dimensional (appends one line), or two
dimensional, in which case the number lines appended is equal to the number of rows in the
array variable.

8.7.7 System Script Commands

system(commandString);
verify_system(commandString, returnVal);

These commands invoke the operating system command processor to execute an operating
system command, batch file, or other program named by the string, <commandString>.
The first command, system, ignores the return value, while the second command,
verify_system, verifies that the value returned is equal to the expected value, returnVal. If
the returned value is not equal to the expected value than a script verification error is
generated.

system("copy c:\\temp\\report.txt check.txt");
verify_system("fc check.txt expected.txt", 0);

In this example the operating system is invoked to generate a file named check.txt from a
file named report.txt. The file check.txt is then compared to file expected.txt using the fc
utility. A script verification error is generated if the files do not match.

exit();

This shuts down the Full System IDE and sets the error level to non-zero if any verification
tests failed. If all tests pass, the error level is set to zero. The error level can be examined
by a batch file that launched the Full System IDE, thereby supported automated testing.
See the Regression Testing section for a detailed explanation of and examples showing
how this command can be used as part of an automated test suite.

print(messageString);
print_pass(messageString);
// NOTE: does not affect exit code in auto-run mode

These commands are geared toward promoting camaraderie between coworkers. These
commands cause a dialog box to open that contains the string, <messageString>. The truly
devious practical joker will find a way to combine this script command with sound effects.

print("Hit any key to fuse all P-wells "
 "with all N-substrates in your target silicon");

8. Script Commands Files

page 128, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In the example above, your coworker at the adjacent lab bench pauses for a certain
amount of healthy introspection. A well-placed and timed bzilch-chord can significantly
enhance its effect.

print("\"TEST RESULTS:\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");

The print_pass() print command is identical to the print() script command except
print_pass() leaves the error level of the simulation unaffected. The print() script
command always sets the simulation error level to 1.

The print command supports using __FILE__ as an argument that gets replaced by the
name (and absolute path) of the file in which it is found.

print("\"%s : TEST COMPLETE\", __FILE__"); // outputs
"<filename> : TEST COMPLETE"

In the case of print_sfn(), the error level of the simulation run is unaffected. These script
commands are available to be used via action tags as well.

Formatted symbolic information can be generated using as described in the "String within a
String" section. See the example shown above.

verify_version_ex(Tool, verHi, verLo, verBuildChar,
messageString);

This command generates a warning message if the Tool version is earlier than that
specified by <verHi>, <verLo> and <verBuildChar>. Tool can be either
TOOL_DEV_TOOL or TOOL_ETEC. If an earlier than required version of the Full
System IDE is actually running then a dialog appears that contains the text specified by
<messageString>.

verify_version_ex(TOOL_DEV_TOOL, 0,82,'A',

 "This demo application that illustrates GLOBAL INITIALIZATION\n"

 "will not work in this early version of the Full System IDE.");

In the example above the message, "this demo …" appears if run on a Full System IDE
version earlier than version 3.50, build B. We recommend this script command be placed
first in the script file so that it gets processed before any parse errors or unsupported
command errors can occur.

Note that the following script command is deprecated in the Full System IDE! However, if
it is run in the Full System IDE it checks the equivalent Mtdt Version. This prevents false-
passes because the Full System IDE version are restarted at version 1.00.

verify_version(verHi, verLo, verBuildChar, messageString);

8. Script Commands Files

Full System DevTool IDE, page 129Reference Manual (C) 2012-2024 ASH WARE, Inc.

This command generates a warning message if the Full System IDE version is earlier than
that specified by <verHi>, <verLo> and <verBuildChar>. If an earlier than required
version of the Full System IDE is actually running then a dialog appears that contains the
text specified by <messageString>.

verify_version(3,50,'B',

 "This demo application that illustrates GLOBAL INITIALIZATION\n"

 "will not work in this early version of the Full System IDE.");

In the example above the message, "this demo …" appears if run on a Full System IDE
version earlier than version 3.50, build B. We recommend this script command be placed
first in the script file so that it gets processed before any parse errors or unsupported
command errors can occur.

8.7.8 Trace Script Commands

print_to_trace(Message)

This command prints the string 'Message' to the Trace Window assuming that the last
executed channel at the time the script was executed is enabled in the Trace Options ...
dialog box (or to a current trace stream if so configured).

print_to_trace_ex1(ChanNum, Message)

This command prints the string Message to the Trace Window assuming 'ChanNum' is
enabled in the Trace Options ... dialog box (or to a current trace stream if so configured).
Note that this works only in the eTPU.

start_trace_stream_ex("FileName.Trace", enum TRACE_EVENT_OPTIONS,

 enum TRACE_FILE_OPTIONS, enum BASE_TIME,

 U32 numTrailingDigits, int isZeroTraceTime);

start_trace_stream_ex("FileName.Trace", enum TRACE_EVENT_OPTIONS,

 enum TRACE_FILE_OPTIONS, enum BASE_TIME,

 U32 numTrailingDigits, int isZeroTraceTime);

These commands saves the target’s trace buffer to file FileName.trace with the options set
by TRACE_EVENT_OPTIONS., TRACE_FILE_OPTION, BASE_TIME_OPTIONS,
and numTrailingDigits.

The numTrailingDigits field defines the number of digits to display after the decimal point.
For example, if you specify numTrailingDigits to be 2 and the time options to use micro-
seconds then the representation of 1.333 microseconds is '1.33'.

8. Script Commands Files

page 130, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The 'isZeroTraceTime' parameter specifies if the time reference used by the tracing
capability gets referenced to the time when the 'start_trace_stream' script command is
executed. For instance, if the start_trace_stream were to be issued at time 100
microseconds and 22 microseconds an 'Pin Transition' occurred, then the time of the 'Pin
Transition' event time would be listed at 122 microseconds if 'isZeroTraceTime' is a '0.'
Conversely, if 'isZeroTraceTime is a '1' the time would be listed as 22 microseconds.

Note that the start_trace_stream_ex() and the start_trace_stream() script commands take
identical parameters. The difference between the two command is that
start_trace_stream_ex() allows OPCODE_FETCH to be disabled while MEM_READ is
enabled. In the legacy start_trace_stream() if MEM_READ is enabled then the
OPCODE_FETCH is also enabled.

Note that this command has been improved starting with Version 4.8. The enabled
events specified by the script command all get logged to the trace file, even if not enabled
in the GUI. Any and all events specified in the script command get sent to the trace log
file. Previously, when saving in 'VIEWABLE' mode, any and all events in displayed in
the trace window were sent to the log file, and the parameters passed in the script file
were ignored. This VIEWABLE mode behavior of previous versions was, well, goofy.
And the limitation of not being able to continuously log events to the trace file if those
events were not enabled in the GUI was beyond goofy ... it was flat out weak.

end_trace_stream();

This command stops tracing to a stream and closes the file so that it can be opened by a
text viewer that requires write permission on the file.

at_time(400);

start_trace_stream("Stream.Trace", ALL-DIVIDER - MEM_READ,

 PARSEABLE, US, 3, 1);

print_to_trace("**\n"

 "***** START OF TEST \n"

 "**\n");

wait_time(1500);

end_trace_stream();

The above example begins streaming all trace data except dividers and memory reads to a
trace file named "Stream.Trace". Time is recorded in micro-seconds with three trailing
digits following the period such that the least significant digit represents nano-seconds. The
isResetTime field is set to "true" so that script execution time of 400 micro-seconds is
subtracted from the time and the clocks field.

8. Script Commands Files

Full System DevTool IDE, page 131Reference Manual (C) 2012-2024 ASH WARE, Inc.

Formatted symbolic information can be generated using as described in the "String within a
String" section. The following is an example of this format.

print_to_trace("\"TEST RESULTS:\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");

In the above example, variables A, B, and C must be in scope at the time the script
command is executed.

However, in it is possible to print eTPU Channel Variables using the '@<ChanNum>'
syntax as shown below.

The print_to_trace command supports using __FILE__ and/or __LINE__ as arguments
that get replaced by the name (and absolute path) of the file in which it is found, or the file
line number of the text.

print_to_trace("\"%s(%d) : TEST COMPLETE\", __FILE__,
__LINE__"); // outputs "<filename>(<linenum>) : TEST
COMPLETE"

Save Trace Buffer Script Command (DEPRECATED!)

save_trace_buffer("FileName.trace", enum TRACE_EVENT_OPTIONS,

 enum TRACE_FILE_OPTION, enum BASE_TIME,

 U32 numTrailingDigits);

WARNING: this save_trace_buffer() script command is deprecated.

WARNING: This command won't work if the '-NoEnvFile' is used as part of a command
line because the default behavior is for traces to NOT be saved to a trace buffer.

8.7.9 Math Script Commands

Exponential Approach

Say an R/L circuit starts at -0.5 amps and exponentially approaches 1.5 amps. How long
does it take to cross 1.4 amps? This script command calculates the amount of time for this
threshold to be reached.

#define INDUCTOR_MICRO_HENRIES 2000.0
#define LOAD_OHMS 10.0

8. Script Commands Files

page 132, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

F64 time_constant_us = INDUCTOR_MICRO_HENRIES / LOAD_OHMS;
F64 start_amps = -0.500;
F64 threshold_amps = 1.3;
F64 terminal_amps = 1.5;
F64 crossover_time_us;
// The crossover time gets set to 460 micro-seconds.
crossover_time_us = exponential_approach(start_amps,
threshold_amps, terminal_amps, time_constant_us);

Natural Log
F64 result;
result = natural_log(val);

This command returns the natural log of number 'Val'.

// Calculate the (negative) number of time constants
// for a 90% decay. Note: returns -2.3.
F64 neg_time_constants;
neg_time_constants = natural_log(0.1);

8. Script Commands Files

Full System DevTool IDE, page 133Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.7.10 Simulation Configuration

enable_target_interrupts(InterruptSourceTarget)

This command enables cross-target interrupts in a multi-target environment that support
such behavior. By default such interrupts are disabled from invoking interrupt handlers in
the destination target, but do signal via interrupt registers. In a System DevTool simulation,
this is intended to allow eTPU interrupts (channel and global exception) to activate interrupt
handlers in the simulated Host target.

enable_target_interrupts("eTPU_A"); // enable ISRs from
eTPU_A (run in Host script environment)

For eTPU targets, by default interrupts are mapped to the Host vector table as follows:

eTPU-A : channel interrupts 0-31, global exception 32

eTPU-B : channel interrupts 64-95, global exception 96

eTPU-C : channel interrupts 128-159, global exception 160

Note: this script command is currently only available on the Host target.

8.8 Automatic and Pre-Defined Define Directives

ASH WARE Specific Script

It is often desirable to conditionally parse (or not parse) portions of a script command file
depending on whether or not it is in the ASH WARE development environment. The
following #define is automatically prepended when parsing any script file, and therefore
can be used to control the aforementioned conditional parsing.

#define _ASH_WARE_SCRIPT_ 1

This #define is prepended prior to parsing every script file.

#ifndef _ASH_WARE_SCRIPT_
void RunEngineDemo()
{
#endif

8. Script Commands Files

page 134, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The code above causes the function declaration to be ignored by the ASH WARE parser.

Tool-Specific Scripts

With the introduction of the new Development Tool in some cases it may be helpful to have
tool-specific behavior. This is achieved using the 'Development Tool' define as follows.

#define _ASH_WARE_DEV_TOOL_ 1

This #define is prepended prior to parsing every script file in the 'Development Tool' but
NOT in the legacy 'Mtdt' tool.

When running as a hardware debugger (rather than a simulator) the following define allows
differentiation between the simulator and debugger.

#define _ASH_WARE_DEV_TOOL_ 1

The following is an example usage of simulator/debugger specific scripting.

#ifdef _ASH_WARE_HARDWARE_DEBUGGER_
// These scripts will execute if it is a debugger
verify_spi_data16(_AW816DA_IMM_StartPins_, 0x08);
verify_spi_data16(_AW816DA_IMM_StartPins45_, 0x00);
#else
// These scripts will execute if it is a simulator
verify_spi_data16(_AW816DA_IMM_StartPins_, 0x00);
verify_spi_data16(_AW816DA_IMM_StartPins45_, 0x01);
#endif

Target-Specific Scripts

It is often desirable to have a single script commands file run on multiple targets. In this
case target-dependent behavior is accomplished using the target define. The target define
is generated using the target name as follows.

#define _ASH_WARE_<TargetName>_ 1

TargetName is defined in the build batch file and is found in a pull-down menu in the upper
right hand side of the Full System IDE.

#ifdef _ASH_WARE_DBG32_
set_crystal_frequency(32768);
#endif // _ASH_WARE_DBG32_

Note the the target name as embedded in the macro name always has all letters
capitalized. In this example the set_crystal_frequency(); script command executes only if
the script command is running under a target named DBG32.

8. Script Commands Files

Full System DevTool IDE, page 135Reference Manual (C) 2012-2024 ASH WARE, Inc.

The build define is also injected as a macro into the script environment.

#define <BuildDefine> 1

A script file shared among projects testing on different targets can then have target-
specific sections:

#ifdef SIM_CHANNEL_1_CORE_1
// do Channel 1, Core 1 stuff
#elif defined(SIM_CHANNEL_2_CORE_0)
// do Channel 2, Core 0 stuff
#endif

Determining the Tool Versions

The compiler version and simulator version are available as the system macros
__COMPILER_VERSION__ and __MTDT_VERSION__. These resolve as strings and
are available in script commands such as print_to_trace() and verify_trace(). See below.

print_to_trace("Using compiler version %s and simulator version %s",

 __COMPILER_VERSION__, __MTDT_VERSION__);

verify_str("__MTDT_VERSION__", "==", "TPU Simulator, Version 3.50 Build D");

These can also be used in @ASH@print action commands that are embedded in the
source code files, as follows.

// @ASH@print_to_trace("Compiler version is %s\n", __COMPILER_VERSION__);

Determining the Auto-Run Mode

The Full System IDE is often launched as part of an automated test suite. Under these
conditions the test starts running and executes to completion (assuming no failures) with no
user intervention. The following is automatically defined when the Full System IDE is
launched in auto-run mode.

_ASH_WARE_AUTO_RUN_

The following is typically found at the end of a script file used as part of an automated test
suite.

#ifdef _ASH_WARE_AUTO_RUN_
exit();
#else
print("All tests are done!!");
#endif // _ASH_WARE_AUTO_RUN_

Determining the Interrupt Number

Channel interrupts for channels 0...15 are numbered 0...15.

8. Script Commands Files

page 136, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

ISR script commands execute in response to an enabled and asserted interrupt as
described in the ISR Script Commands Files section. On the eTPU each of these script
commands has a unique number, as follows.

- Channel interrupts for channels 0...31 are numbered 0...31.

- Data interrupts for channels 0...31 are numbered 31...63.

- The global exception interrupt number is 64.

The ‘define’ is formed using the target name, as follows.

_ASH_WARE_<TargetName>_ISR_

When running under a target named, "eTPU_A", the ISR script loaded for channel 25's
channel interrupt is automatically defined as follows.

#define _ASH_WARE_eTPU_A_ISR_ 25

If this same script command file is also loaded for the DATA interrupt, then the automatic
define would be as follows.

#define _ASH_WARE_ETPU_ISR_ 57

An example of how this can be used is as follows

#define THIS_ISR_NUM (_ASH_WARE_ETPU_ISR_)

#define THIS_CHAN_NUM (_ASH_WARE_ETPU_ISR_ & 0x1F)

clear_this_intr();

// Write a signature to indicate that this ISR ran

write_chan_data24 (THIS_CHAN_NUM, 0xD, 0xFD12A4 + THIS_ISR_NUM);

Passing Defines from the Command Line

When launching the Full System IDE it is often useful to pass #define directives to the
primary script commands file from the command line. This is explained in detail in the
Regression Testing section.

The following command line is found in the batch files used as part of the automated testing
of the MC33816 simulator. It is a 'negative' test in that the expected test result is a failure.

echo Running Injector 'Force a Failure' Test

set DEVTOOL="c:\Program Files (x86)\ASH WARE\MC33816 DevTool IDE V1_01A\Mc33816DevTool.exe"

%DEVTOOL% -p=InjectorTest.Spd816IdeProj -dFORCE_FAIL

if %ERRORLEVEL% EQU 0 (goto errors)

eTPU Target Pre-Defined Define Directives

The following define directives are automatically loaded and available for the eTPU
Simulation target.

8. Script Commands Files

Full System DevTool IDE, page 137Reference Manual (C) 2012-2024 ASH WARE, Inc.

#define ETPU1 MPC5554_B_1
#define ETPU2 MPC5554_B_2

8.9 Listing of Script Enumerated Data Types

This section describes the pre-defined enumerated types used by various script commands.

8.9.1 Script FILE_TYPE Enumerated Data Type

The following enumerated data type is used to specify the file type used in various script
commands. This specifies a dis-assembly, S Record, Intel Hexadecimal, or C data
structure file type.

enum FILE_TYPE {DIS_ASM, SRECORD, IHEX, IMAGE, C_STRUCT, }

8.9.2 Script VERIFY_FILES Enumerated Data Type

The following enumerated data type is used to specify the expected results of a file
comparison.

enum VERIFY_FILES_RESULT {
FILES_MATCH, FILES_MISMATCH,
FILE1_MISSING, FILE2_MISSING, BOTH_FILES_MISSING

}

8.9.3 Script FILE_OPTIONS Enumerated Data Type

The following enumerated data type is used to specify the options when dumping data to a
file. The available options depend on the type of file being dumped.

enum DUMP_FILE_OPTIONS {

// Disables listing of address information in dis-assembly

// and "C" data structure files:

NO_ADDR,

// Disables listing of hexadecimal dump, addressing mode,

// and symbol data

// in dis-assembly files:

NO_HEX, NO_ADDR_MODE, NO_SYMBOLS,

8. Script Commands Files

page 138, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

// Adds a #pragma format "val" to each dis-assembly line

// This is helpful for non-deterministic assembly languages

// to cause the assembler to generate a deterministic opcode

YES_PRAGMA,

// Adds a blank line between assembly lines

// Handy for finding opcode boundaries in parallel instr sets

// such as eTPU where a single opcode’s dis-assembly

// can span multiple lines.

YES_BLANK_LINES,

// Selects the endian ordering for image

// and "C" data structure files:

ENDIAN_MSB_LSB, ENDIAN_LSB_MSB,

// Selects data size in image and "C" data structure files:

DATA8, DATA16, DATA32,

// Selects decimal data instead of hexadecimal

// for "C" data structure files:

OUT_DEC,

// Append to file if it already exists

// (default is to overwrite any existing file)

// Available only for CStruct and Image files

FILE_APPEND,

// Specifies default options:

DUMP_FILE_DEFAULT,

};

8.9.4 Trace Options Enumerated Data Types

The following enumerated data type is used to specify the event options when saving a
trace buffer to a file.

enum TRACE_EVENT_OPTIONS {
// All targets
STEP, EXCEPTION, OPCODE_FETCH, MEM_READ, MEM_WRITE,
DIVIDER, PRINT, ERROR,

// eTPU Target only
TPU_TIME_SLOT, TPU_NOP, TPU_PIN_TOGGLE,

8. Script Commands Files

Full System DevTool IDE, page 139Reference Manual (C) 2012-2024 ASH WARE, Inc.

TPU_STATE_END, TPU_MATCH_CAPTURE,
TPU_TCR1_COUNTER, TPU_TCR2_COUNTER,
// NOTE: Same as (TPU_TCR1_COUNTER|TPU_TCR2_COUNTER)
TPU_TCR_COUNTER,

// MC33816 Only
MC33816_TERMINAL_COUNTER, MC33816_WAIT,
MC33816_PINS, MC33816_LS_HS_GATE_DRIVE,
MC33816_CURRENT_FEEDBACK, MC33816_FLAGS,

// GTM Target Only
GTM_ARU, GTM_WURM,

// All options
ALL,
}

Note the 'OPCODE_FETCH' option has been added to the Full System IDE in version
2.3 and can be used with the start_trace_stream_ex() script command. It was added
because it is generally desired to see memory reads, while opcode fetches are generally
not desired and are so numerous as to get in the way. Note that when using the
start_trace_stream() script command, the OPCODE_FETCH is also enabled by
MEM_READ.

The following enumerated data type is used to specify the file format options when saving
a trace buffer to a file.

enum TRACE_FILE_OPTIONS {
VIEWABLE, // This format is optimized for viewing
PARSEABLE, // This format is optimized for parsing
}

8.9.5 Code Coverage Listing Options Enumerated Data Type

The following enumerated data type is used to specify the listing file options when writing a
code coverage annotated listing file (write_coverage_listing_file() script command).

enum COVERAGE_LISTING_OPTIONS {
// listing file modes
ALL_LINES, // output all source module lines and
disassembly
NON_COVERED_ONLY_LINES, // output only non-fully-covered
source module lines

8. Script Commands Files

page 140, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

// flag items below can be added to alter main modes above
FILTER_ETPU_ENTRIES, // do not show disassembly, and do
not show entry

// table source/disassembly at all
in non-covered mode
};

8.9.6 Base Time Options Enumerated Data Type

The following enumerated data type is used to specify the base time for various script
commands.

enum BASE_TIME { US, NS, PS, }

8.9.7 Build Script TARGET_TYPE Enumerated Data Type

The following enumerated data type is used to specify the target type. No mathematical
manipulation of this data type is valid.

enum TARGET_TYPE {
ETPU_SIM,
SIM32,
SIM33816,
SIM_GTM,
};

8.9.8 Build Script TARGET_SUB_TYPE Enumerated Data Type

The following enumerated data type is used to specify the target’s sub type. No
mathematical manipulation of this data type is valid.

enum TARGET_SUB_TYPE {
// eTPU2 SIM – Single Engine
MPC5632M_0_A
MPC5633M_0_A
MPC5634M_0_A
SPC563M54_0_A
SPC563M60_0_A
SPC563M64_0_A

// eTPU2 SIM – Dual Engine
MPC5674_2_A // Rev-2, Engine A
MPC5674_2_B // Rev-2, Engine B

8. Script Commands Files

Full System DevTool IDE, page 141Reference Manual (C) 2012-2024 ASH WARE, Inc.

MPC5674_0_A // Rev-0, Engine A
MPC5674_0_B // Rev-0, Engine B
JPC563M60_1_A, // Rev-0, Engine A
JPC563M60_1_B, // Rev-0, Engine B

// eTPU SIM – Dual Engine
MPC5566_0_1, // Rev-0, Engine A
MPC5566_0_2, // Rev-0, Engine B
MPC5554_B_1, // Rev-B, Engine A
MPC5554_B_2, // Rev-B, Engine B

// eTPU SIM – Single Engine – 55xx
MPC5567_0_1, // Rev A
MPC5565_0_1, // Rev A
MPC5553_A_1, // Rev A
MPC5534_0_1, // Rev 0

// eTPU SIM – Single Engine - Coldfire
MPC5571_0_1, // Rev 0, MPC5570 and MPC5571
MCF5232_0_1, // Rev 0
MCF5233_0_1, // Rev 0
MCF5234_0_1, // Rev 0
MCF5235_0_1, // Rev 0

// MC33816 Simulator
CHAN_1_CORE_0,
CHAN_1_CORE_1,
CHAN_2_CORE_0,
CHAN_2_CORE_1,
};

8.9.9 Build Script ADDR_SPACE Enumerated Data Type

This enumerated data type is used when specifying the applicable address spaces for
various build script commands. It is also used in the generic modify_mem_uXX() and
verify_mem_uXX() script commands.

enum ADDR_SPACE {

// GTM
GTM_RAM_SPACE, GTM_CTRL_SPACE, GTM_PINS_SPACE,

8. Script Commands Files

page 142, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

// MC33816
MC33816_CODE_SPACE, MC33816_DATA_SPACE, MC33816_PINS_SPACE,
// Covers the entire space, registers, both rams, etc.
MC33816_SPI_SPACE,
MC33816_UNUSED_SPACE,

// eTPU
ETPU_CODE_SPACE, ETPU_CTRL_SPACE, ETPU_DATA_SPACE,
ETPU_DATA_24_SPACE, ETPU_NODE_SPACE, ETPU_UNUSED_SPACE,

// CPU32
CPU32_USER_CODE_SPACE, CPU32_SUPV_CODE_SPACE,
CPU32_USER_DATA_SPACE, CPU32_SUPV_DATA_SPACE,
CPU32_UNUSED_SPACE,

//
ALL_SPACES,
};

In the following very specific cases, mathematical manipulation of this enumerated data
type is allowed.

- Single instances of values referencing the same target may be added to each
other.

- Single instances of values referencing the same target may be subtracted
from ALL_SPACES.

The following are some valid mathematical manipulations of this data type.

// The following references
// a CPU32's USER and SUPERVISOR code spaces
CPU32_USER_CODE_SPACE + CPU32_SUPV_CODE_SPACE
// The following references
// all used CPU32 address spaces
ALL_SPACES - CPU32_UNUSED_SPACE

The following are some invalid valid mathematical manipulations of this data type.

// !!INVALID!! Target types (GTM and MC33816) cannot be
intermixed
 GTM_RAM_SPACE + MC33816_DATA_SPACE
// !!INVALID!!
// The same value cannot be added or subtracted to itself
ETPU_DATA_SPACE + ETPU_DATA_SPACE

8. Script Commands Files

Full System DevTool IDE, page 143Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.9.10 Build Script READ_WRITE Enumerated Data Type

This enumerated data type is used when specifying the applicable read and/or write cycles
for various build script commands.

enum READ_WRITE {
RW_READ8, RW_READ16, RW_READ24,
RW_READ32, RW_READ64, RW_READ128
RW_WRITE8, RW_WRITE16, RW_WRITE24,
RW_WRITE32, RW_WRITE64, RW_WRITE128,
RW_ALL,
};

Some mathematical manipulations are allowed. Single instances of all but the RW_ALL
values can be added together and single instances of each value may be subtracted from
RW_ALL.

#define SOME_READS RW_READ8 + RW_READ16 + RW_READ32
#define NON_ACCESS32S RW_ALL - RW_WRITE32 - RW_READ32

In this example, ALL_READS is defined as any read access, be it an 8-, 16-, or a 32-bit
read cycle. NON_ACCESS32S is defined as all 8-, 16-, 24-, 64-, and 128-bit read and
write cycles.

8.9.11 Assignment Operation Enumerated Data Type

This enumerated data type is used in the modify_mem_uXX() script commands.

enum ASSIGNMENT_TYPE {
ASSIGN_EQUAL, // =
AND_EQUAL, // &=
OR_EQUAL, // |=
XOR_EQUAL, // ^=
BSL_EQUAL, // <<=
BSR_EQUAL, // >>=
PLUS_EQUAL, // +=
MINUS_EQUAL, // -=
TIMES_EQUAL, // *=
DIVIDE_EQUAL, // /=
REMAINDER_EQUAL, // %=

};

8. Script Commands Files

page 144, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

8.9.12 eTPU Register Enumerated Data Types

The eTPU register enumerated data types provide the mechanism for referencing the
eTPU registers. These enumerated data types are used in commands that reference the
TPU registers such as the register write commands that are defined in the Write Register
Script Commandssection.

The following enumeration provides the mechanism for referencing the eTPU's registers.

enum REGISTERS_U32 { REG_P_31_0, };

enum REGISTERS_U24 {
REG_A, REG_B, REG_C_REG, REG_D, REG_DIOB, REG_SR, REG_ERTA,
REG_ERTB, REG_TCR1, REG_TCR2, REG_TICK_RATE, REG_MACH,
REG_MACL, REG_P,
};

enum REGISTERS_U16 {
REG_TOOTH_PROGRAM, REG_RETURN_ADDR, REG_P_31_16,
REG_P_15_0,
};

enum REGISTERS_U8 {
REG_LINK, REG_P_31_24, REG_P_23_16, REG_P_15_8, REG_P_7_0,
};

enum REGISTERS_U5 { REG_CHAN, };

enum REGISTERS_U1 {
REG_Z, REG_C_FLAG, REG_N, REG_V,
REG_MZ, REG_MC, REG_MN, REG_MV,
};

The following are examples of how the enumerated register types are used.

write_reg32(0x12345678, REG_P);
verify_reg32(REG_P, 0x12345678);
write_reg24(0x123456, REG_A);
verify_reg24(REG_A, 0x123456);
write_reg16(0x1234, REG_RETURN_ADDR);
verify_reg16(REG_RETURN_ADDR, 0x1234);
write_reg5 (0x12, REG_CHAN);
verify_reg5 (REG_CHAN, 0x12);
write_reg1 (0x1, REG_Z);
verify_reg1(REG_Z, 0x1);

8. Script Commands Files

Full System DevTool IDE, page 145Reference Manual (C) 2012-2024 ASH WARE, Inc.

8.9.13 Pin and Node Enumerated Type

This enumerated type is used to specify external pins and various simulation nodes.

enum PIN_AND_NODE {

// eTPU Channel Output Pin
CHAN_OUTPUT,

// MC33816 'Flag' input pins
FLAG0, FLAG1, FLAG2,

// MC33816 'Start' input pins
START1, START2, START3, START4, START5, START6,

// MC33816 MCU Interrupt pin
// NOTE: the MC33816 interrupts the host CPU using this pin
IRQB,

// MC33816 The 'Output Analog' pins
OA_1, OA_2,

// MC33816 The 'DBG' pin
DBG,

// MC33816 Driver Enable input pin
DRVEN,

// MC33816 The 'RESETB' pin
RESETB,

// MC33816 Low Side Driver Gate Sense Pins
G_LS1, G_LS2, G_LS3, G_LS4, G_LS5, G_LS6, G_LS7,

// MC33816 High Side Driver Gate Pins
G_HS1, G_HS2, G_HS3, G_HS4, G_HS5,

// MC33816 Current Sense Pins
// NOTE: The current sense pins are assumed to be
// connected in pairs. For example, VSENSEP1 and VSENSEN1
// are specified with VSENSEN1
VSENSE1, VSENSE2, VSENSE3, VSENSE4,

// MC33816 Voltage source nodes for the Battery

8. Script Commands Files

page 146, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

// and the Vboost voltage.
VBATT, VBOOST,

};

8.9.14 MC33816 Reset Source Enumerated Type

This enumerated type is used to specify (set) an MC33816 reset source.

enum RESET_SOURCE
{

SPI_RESET,
POWER_ON_RESET,
PIN_RESET,

};

8.9.15 CPU32 Register Enumerated Data Types

The CPU32 register enumerated data types provide the mechanism for referencing the
CPU32 registers. These enumerated data types are used in commands that reference the
CPU32 registers such as the register write commands that are defined in the Write
Register Script Commands section.

The following enumeration provides the mechanism for referencing the CPU32's 8-bit
registers.

enum REGISTERS_U8 {
REG_CCR, // Condition Code Register
};

The following enumeration provides the mechanism for referencing the CPU32's 16-bit
registers.

enum REGISTERS_U16 {
REG_SR // Status Register
};

The following enumeration provides the mechanism for referencing the CPU32's 32-bit
registers.

enum REGISTERS_U32 {
REG_PC, REG_VBR, // Program Counter, Vector Base
Register
REG_USP, REG_SSP, // User and Supervisor Stack Pointers
REG_SFC, REG_DFC, // Alternate Function Code Registers

8. Script Commands Files

Full System DevTool IDE, page 147Reference Manual (C) 2012-2024 ASH WARE, Inc.

REG_DO, REG_D1, REG_D2, REG_D3, // Data register D0 to
D3
REG_D4, REG_D5, REG_D6, REG_D7, // Data register D4 to
D7
REG_AO, REG_A1, REG_A2, REG_A3, // Addr register A0 to
A3
REG_A4, REG_A5, REG_A6, REG_A7, // Addr register A4 to
A7
};

8.9.16 MC33816 Register Enumerated Data Types

The MC33816 register enumerated data types provide the mechanism for referencing the
MC33816 registers. These enumerated data types are used in commands that reference
the MC33816 registers such as the register write commands that are defined in the Write
Register Script Commands section.

The following enumeration provides the mechanism for referencing the MC33816's
registers.

enum REGISTERS_U16 {
REG_PC, REG_IR, REG_MH, REG_ML
REG_RO, REG_R1, REG_R2, REG_R3, REG_R4,
};

The following are examples of how the enumerated register types are used.

write_reg16(0x1234, REG_IR);
verify_reg16(REG_IR, 0x1234);

8.9.17 Script CSV_CONTROL Enumeated Data Type

This is used in the CSV import script commands to control how the file is read and
processed.

enum SCRIPT_CSV_CONTROL { CSV_IGNORE_FIRST_LINE,
CSV_READ_FIRST_LINE, }

page 148, Full System DevTool IDE

9. Test Vector Files

Full System DevTool IDE, page 149Reference Manual (C) 2012-2024 ASH WARE, Inc.

9
Test Vector Files

Overview

Test vector provides a complex test vector generation capability. Simulated signals similar
to those found in a typical environment can be generated. Test vector files are used for
forcing of "high" or "low" states at the device's input or I/O pins. Note that this capability is
NOT available for the CPU simulation engine.

It is helpful to compare test vector files to script commands files. Roughly, test vector files
represent the external interface to the device, while script commands files represent the
CPU (or host MCU) interface. Test vector files are treated quite differently from script
commands files. While script commands file lines are executed sequentially and at specific
simulated times, test vector files are loaded all at once. Test vector files are used solely to
generate complex test vectors on particular Full System IDE nodes. As the Full System
IDE executes, these test vectors are driven unto the specified nodes.

Loading and Editing the Test Vector File

Test vector files are opened (and created ... if appropriate) by double clicking on the
'Vector' node in the project window. Once created, the test vector file will always be
reloaded prior to beginning or restarting execution.

9. Test Vector Files

page 150, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Test Vector Generation Functional Model

The test vector generation model consists of a single master test vector clock and a
number of wave form generators. The same master test vector clock clocks all wave form
generators. The wave form generators cannot produce waveforms whose frequencies
exceed that of the master test vector clock.

A wave form might consist of a loop in which a node is driven high for 10 master test
vector clock periods then low for 15. The loop could be set up to run forever.

Test vector files provide the following functionality.

- The master test vector clock frequency is specified.

- The wave form generators are created and defined.

- Wave form outputs drive device input pins (nodes).

- Multiple nodes are grouped (i.e., group COMM consists of UART_RCV1
and UART_RCV2).

- Complex Boolean states are defined.

Before being parsed, test vector files are run through a C Preprocessor. Thus the files can
use the #include mechanism as well as macros and other preprocessor directives and
capabilities.

9. Test Vector Files

Full System DevTool IDE, page 151Reference Manual (C) 2012-2024 ASH WARE, Inc.

Command Reference

The following test vector commands are available.

Node
Group
State
Frequency
Wave

In addition there is an eTPU example of the waveforms generated for an automobile
engine monitor system.

In addition there is an eMC33816 example of the waveforms generated for an Direct
Injection system.

Comments

Test vector files may contain the object-oriented, C++ style double slash comments. A
comment field is started with two sequential slash characters, //. All text starting from the
slashes and continuing to the end of the line is interpreted as comment. The following is an
example of a comment.

// This is a comment.

9.1 Node Command

node <Name> <Node>

The node commands assign the user defined name, "Name" to a node, "Node". Note that
depending on the microcontroller, the input and output from each channel may (or may not)
be brought to external pins. Please refer to the NXP literature for the specific
microcontroller being used.

Standard eTPU Nodes

- ch0.in Channel 0’s input pin
- ch0.out Channel 0’s output pin
- ch1.in Channel 1’s input pin
- ch1.out Channel 0’s output pin
- …
- ch31.in Channel 31’s input pin
- ch31.out Channel 31’s output pin

9. Test Vector Files

page 152, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

- tcrclk eTPU external clock input pin

In the example shown below the name A429Rcv is assigned to the eTPU’s channel 5 input
pin.

node A429Rcv ch4.in

Thread Activity Nodes

Thread activity can be extremely useful in both understanding and debugging Full System
IDE functions. The Full System IDE provides the following thread activity nodes.

- ThreadsGroupA
- ThreadsGroupB
- ThreadsGroupC
- ThreadsGroupD
- ThreadsGroupE
- ThreadsGroupF
- ThreadsGroupG
- ThreadsGroupH

These nodes can be renamed. In the following example, the ThreadsGroupB node is
assigned the name A429RcvThreads. Note that the primary purpose of renaming these
nodes is to provide a more intuitive picture in the logic analyzer window, as shown below.
See the Waveform Options Dialog Box section for more information on how to specify
groups for monitoring of TPU and eTPU thread activity.

node RcvThreads ThreadsGroupB

Standard MC33816 Nodes

- START1 The 'START1' pin
- START2 The 'START2' pin
- START3 The 'START3' pin
- START4 The 'START4' pin
- START5 The 'START5' pin
- START6 The 'START6' pin

9. Test Vector Files

Full System DevTool IDE, page 153Reference Manual (C) 2012-2024 ASH WARE, Inc.

- FLAG0 The 'FLAG0' pin
- FLAG1 The 'FLAG1' pin
- FLAG2 The 'FLAG2' pin

In the example shown below the name 'Injector3Start' is assigned to the MC33816's
'START3' pin.

define START3 Injector3Start

9.2 Group Command

group <GROUP_NAME> <NODE 1> [NODE 2] ... [NODE N]

The group command assigns multiple nodes, "NODE N" to a group name
GROUP_NAME. These nodes can be referred to later by this group name. The group
name may contain any ASCII printable text. These group names are case sensitive
(though this is currently not enforced.) Up to 30 nodes may be grouped.

define ADDRESS1 ch5
define ADDRESS2 ch7
define DATA ch3
group PORT1 ADDRESS1 ADDRESS2 DATA

In this example a group with the name PORT1 is associated with eTPU channel pins 5, 7,
and 3.

// Create a multiple-node groups
group DrivePinGroup start1 start2 start3 start4

In this example a group with the name DrivePinGroup is associated with MC33816 pins
channel pins start1 start2 start3, and start4.

9.3 State Command

state <STATE_NAME> <BIT_VALUE>

The state command assigns a bit value BIT_VALUE to a user-defined state name
STATE_NAME. State names may contain any ASCII printable text. These state names
are case sensitive (though this is currently not enforced.) Bit values must consist of a
sequence zeros and ones. The total number of zeros and ones must be between one and
30.

state NULL 0110

In this example a user-defined state NULL is associated with the bit pattern 0110.

9. Test Vector Files

page 154, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

9.4 Frequency Command

frequency <FREQUENCY>

The frequency command sets the master test vector clock to FREQUENCY which is a
floating point number whose terms are million cycles per second (MHz). All test vectors
are set by this frequency. Since the entire test vector file is loaded at once, if a test vector
file contains multiple frequency commands, only the last frequency command is used and
all previous frequency commands are ignored.

frequency 1

In this example the master test vector generation frequency is set to one MHz. This is a
convenient test vector frequency because its period of one microsecond makes timing easy
to calculate.

9.5 Wave Command

The wave command creates and defines a new wave form generator. There is no limit to
the number of wave commands that may be used in a test vector file. The number of
wave form generators is equal to the number of wave commands found in the test vector
file.

wave <GROUP> <STATE REPEAT> <(STATE REPEAT <...>)
REPEAT> end

The wave command causes the nodes of GROUP to be stimulated by the state and repeat
count pairs STATE REPEAT. Multiple states and repeat counts are allowed. A special
infinite repeat count, *, generates an infinite repeat count. This command may span
multiple lines. An end statement must terminate the command.

wave OUTPUTS
(OFF 5 DRIVE_A 1 DRIVE_B 2) 3
OFF *

end

The resulting wave form from this example is shown below. The wave form begins with
signal A and signal B being off for five master test vector clock periods. Signal A is then
driven for one period. Then signal B is driven for two periods. These three states
constitute a loop which executes three times. After the loop has executed three times the
OFF state is driven forever. Note that the NODE, GROUP, STATE, and FREQUENCY
commands are omitted from this example for simplification purposes.

9. Test Vector Files

Full System DevTool IDE, page 155Reference Manual (C) 2012-2024 ASH WARE, Inc.

9.6 Engine Example, eTPU
// File: ENGINE.Vector

// AUTHOR: Andrew M. Klumpp, ASH WARE.

// DATE: 950404

//

// DESCRIPTION:

// This generates the test vectors associated with a four cylinder

// car. The four spark plugs fire in the order 1,3,2,4. For convenience

// an engine frequency is chosen such that one degree corresponds to

// 10 microseconds (10 microseconds will be written as 10us).

// A test vector frequency is chosen such that one degree corresponds

// to one time-step.

// The test vector frequency is the Full System IDE's

// internal test vector timebase.

// Within each engine revolution two spark plugs fire.

// ASSIGN NAMES TO PINS

// Assign the descriptive names to the synch and spark plug signals.

node Synch ch3

node Spark1 ch8

node Spark2 ch11

node Spark3 ch6

node Spark4 ch4

// ASSOCIATE PINS WITH A GROUP

// Make a group named SYNCH with only the SYNCH eTPU channel as a member

group SYNCH Synch

// Make a group named SPARKS that consists of the four spark plug signals

group SPARKS Spark4 Spark3 Spark2 Spark1

// DEFINE THE SYNCH STATES

// The synch signal can be either pulsing (1) or waiting (0).

state synch_pulse 1

state synch_wait 0

// DEFINE THE SPARK FIRE STATES

// There are five states:

// There is one state for each of the four spark plugs firing.

// There is one state for none of the spark plugs firing.

9. Test Vector Files

page 156, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

state FIRE4 1000

state FIRE3 0100

state FIRE2 0010

state FIRE1 0001

state NO_FIRE 0000

// SET THE TEST VECTOR BASE FREQUENCY

// In order to have a convenient relationship between time and degrees

// an engine revolution is made to be 3600us such that one degree

// corresponds to 10us.

// Thus a convenient test vector time-step period of 10us is chosen.

// frequency = 1/period = 1/10us = 0.1MhZ

// (Frequency is expressed in MHz; this is a modification of a

// previous version of the User Manual.)

frequency 0.1

// CREATE/DEFINE THE SYNCH WAVE FORM

// This generates a one degree (10us) pulse every 360 degrees (3600us).

wave SYNCH (synch_pulse 1 synch_wait 364) * end

// CREATE/DEFINE THE SPARK WAVE FORM

// Each spark is equally spaced every 1/2 revolution

// which is 180 degrees (1800us).

// Each spark plug triple fires and each fire lasts one degree (10us).

//

// In addition there is a 17 degree (170us) lag of this wave form

// relative to the synch wave form.

wave SPARKS

no_fire 17 // This creates a 17 degree lag

(// Enclose the following in a bracket to generate a loop/

// The first plug fire cycle lasts five degrees (50us).

// The spark plug fires three times.

fire1 1 no_fire 1 fire1 1 no_fire 1 fire1 1

// The delay between fire cycles is 180 degrees

// less the five degree fire cycle.

// 180-5=175 degrees

no_fire 175

// The third plug fires next.

fire3 1 no_fire 1 fire3 1 no_fire 1 fire3 1

// Give another 175 degree delay.

no_fire 175

// The second plug fires next.

fire2 1 no_fire 1 fire2 1 no_fire 1 fire2 1

9. Test Vector Files

Full System DevTool IDE, page 157Reference Manual (C) 2012-2024 ASH WARE, Inc.

// Give another 175 degree delay.

no_fire 175

// The fourth plug fires next.

fire4 1 no_fire 1 fire4 1 no_fire 1 fire4 1

// Give another 175 degree delay.

no_fire 175

) * // Enclose the loop and put the infinity character, *.

end

The following wave form is generated from the above example.

9.7 Direct Injection Example, MC33816

//
// File Example.vector, copyright ASH WARE, Inc. 2013-2017
//

// These nodes will be driven by a WAVE command
node start1 START1
node start2 START2
node start3 START3
node start4 START4

// Create a multiple-node groups
group DrivePinGroup start1 start2 start3 start4

// Create some states
state all_off 0000
state one_on 1000
state three_on 0010
state two_on 0100
state four_on 0001

// Set the test vector step to 1 GHz
// (This is a 1 uS time-step)

9. Test Vector Files

page 158, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

frequency 1

// Drive a complex input waveform on to these input pins.
// embedded loops (loops within loops)
// and multipe 'wave' commands are possible
wave DrivePinGroup all_off 10
(

one_on 1000
// Just make the last three short,
// Not actually using them yet, ...
three_on 1100
two_on 1200
four_on 700

) *
end

The above example produces the waveform shown below.

10. Functional Verification

Full System DevTool IDE, page 159Reference Manual (C) 2012-2024 ASH WARE, Inc.

10
Functional Verification

Functional verification supports an automated method for verifying that behavioral
requirements are met by the code. These capabilities can be grouped as data flow
verification, pin transition behavior verification, and code coverage verification.

The following diagram shows a hardware perspective of functional verification. Pin
transition verification is applicable only to eTPU Simulation.

TPU
External

Hardware
Pin

Transitions
TPU Microcode

Interface
Registers

CPU

Pin Transition
Behavior Verification

Code Coverage
Verification

Data Flow
Verification

10. Functional Verification

page 160, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Data flows between the MC33816 and the Host-MCU via interface registers. Data flow
verification provides the capability of verifying this data flow.

Pin transitions are generated by the MC33816 or by external hardware. Pin transition
verification capabilities allow the user to verify this pin transition behavior.

Code coverage provides the capability to determine the thoroughness of a test suite. Code
coverage verification allows the user to verify that a test suite thoroughly exercises the
code.

A Full Life-Cycle Verification Perspective

The following describes a typical software life-cycle. Initially, a set of requirements is
established. Then the code is designed to meet these requirements. Following design, the
code is written and debugged. A set of formal tests is then developed to verify that the
software meets the requirements. The software is then released.

Now the software enters a maintenance stage. In the maintenance stage, changes must be
made to support new features and perhaps to fix bugs. Along with this, the formal tests
must be modified and rerun. Then the software must be re-released.

This life-cycle can be described as having three stages: development, verification, and
maintenance. All of these three stages are supported. The IDE and GUI are primarily of
interest in the initial development phase. Verification involves developing a set of
repeatable and automated tests that that show that the requirements are being met. In the
maintenance stage these previously-developed automated tests are rerun to prove that
requirements are still being met when bug fixes and enhancements cause the code base to
change.

There is a significant emphasis on automation such that a complete test suite can be run,
sometimes spanning hours, and a series of tests results in a single 'pass' or 'fail' result.

10.1 Data Flow Verification

Data flow verification is one of the verification capabilities for which an overview is given
in the Functional Verification chapter.

Data flows between the MC33816 and the Host-MCU primarily across the SPI bus
to/from either the global registers or the data RAM

10. Functional Verification

Full System DevTool IDE, page 161Reference Manual (C) 2012-2024 ASH WARE, Inc.

The eTPU parameter RAM data flow is verified using the verify_chan_data24(X,Y,Z) and
verify_chan_bits24(X,Y,Z,V) script commands described in the eTPU Parameter RAM
Script Commands section.

The data flow across the CISR register is verified using the verify_intr(X,Y) script
command described in the eTPU Interrupt Script Commands Script Commands section.

In the following example data flow across the SPI bus to the data RAM is verified. A
RAM location corresponding to a variable named 'Signature' is initialized to the value
'0xBAD'. The simulation runs for 5 micro-seconds. The data RAM location of variable
'Signature' is then verified to contain the value 0xA538.

write_spi_data16(_AW816DA_signature_, 0xBAD);
at_time(5);
verify_spi_data16(_AW816DBA_bank_csignature_, 0xA538);

10.2 Pin Transition Behavior Verification

Pin transition behavior verification is one of the verification capabilities for which an
overview is given in the Functional Verification chapter. Pin transition behavior verification
capabilities include the ability to save recorded pin transition behavior to enhanced pin
transition behavior (.ebv) files, the ability to load saved pin transition behavior files into the
Full System IDE, and the ability to verify that the most current pin transition behavior
matches the saved behavior. Old-style behavior verification files (.bv) can still be read and
used for verification, but can no longer be created. All pin transition behavior verification
must now be managed via scripting. GUI menu options are no longer available.

From a behavioral model perspective these capabilities correlate to the ability to create
behavioral models and the ability to compare source microcode against these behavioral
models. The emphasis in the Full System IDE is on the automation of these modeling
capabilities through script commands, as the capabilities are no longer available from the
menus.

Pin Transition Buffers

There are two pin transition storage buffers in the Full System IDE as shown in the
following diagram.

10. Functional Verification

page 162, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Master Buffer
of Pin Transition

Behavior

Running Buffer
of Recorded Pin

Transition Behavior

Saved To File

Loaded As Simulator Runs Read From File

Compare

The running buffer is filled as the Full System IDE runs. Whenever a pin transition occurs,
information regarding this transition is stored in this buffer, which is also used to draw the
signals in the logic analyzer window. This pin transition information can be selectively
recorded to file using the create_ebehavior_file("filename.ebv"), add_ebehavior_pin("<pin
name>") and close_ebehavior_file() script commands; also see Enhanced Pin Transition
Behavior Verification below.

Enhanced Pin Transition Behavior Verification

The new enhanced pin transition behavior verification makes use of a user-friendly data file
format and provides more options on how master file pin transitions are compared to
transitions in the current simulation. With the original behavior verification capability,
anything other than an exact match, clock cycle for clock cycle, was considered a failure.
The reality is that often times even very small code changes can result in a signal being
shifted by a clock cycle or two, which previously would result in failure. Enhanced
behavior verification provides options for controlling the tolerance used in comparisons, so
that small changes that are functionally correct can pass verification. Additionally, master
file pin transition data can now be viewed in the Waveform Window making it easier to
track down problems when a failure does occur.

10. Functional Verification

Full System DevTool IDE, page 163Reference Manual (C) 2012-2024 ASH WARE, Inc.

The first step in making use of pin transition behavior verification is to create a master file,
also called a .ebv file for its default extension. These enhanced behavior verification files
are text and in comma-separated value (CSV, or .csv) format. All behavior verification is
controlled from the scripting environment - to create a master file use the
create_ebehavior_file("filename.ebv") script command. It must execute at simulation time
zero, but after any vector file load or pin buffer placements.

// save off all pins
create_ebehavior_file("Engine.EBV");

By default all pins are saved to the .ebv file. On the eTPU, this is all 32 channel input pins,
all 32 output pins, and the TCRCLK pin. In many cases, only a small subset of pins are of
interest. The add_ebehavior_pin("<pin name>") script command allows the user to save
data only on those pins of interest. The pin name comes from any node naming in the
vector file, or is the underlying default pin name (e.g. "ch3" is the channel 3 pin on the
TPU, or "_ch5.out" is the channel 5 output pin on the eTPU).

// save off only the fuel injection output signals
create_ebehavior_file("Engine_Injection.EBV");
// add_ebehavior_pin commands must immediately follow the
create command
add_ebehavior_pin("Injector1");
add_ebehavior_pin("Injector2");
add_ebehavior_pin("Injector3");
add_ebehavior_pin("Injector4");

After the creation setup commands are complete, and the script file exercises the software,
the .ebv file needs to be closed and any unsaved data flushed out. Note that data may be
saved in several steps as the simulation runs - enhanced behavior verification is not subject
to buffer size limitations due to its continuous file management. This is done with the
close_ebehavior_file() script command.

wait_time(20000000); // Let the tests run to completion
close_ebehavior_file(); // close EBV being saved

As mentioned, the .ebv file is in comma-separated value format. The first line contains the
column header information, which is time units for the first column, followed by pin names
of all saved pin data. After that, each line contains a simulation time value in microseconds
followed by the value of each pin. Below is an example of the first few lines of an .ebv file
which contains data on just two pins.

TIME (US), PWM_A, PWM_B,

000000000000.000000, 0, 1,

000000000019.980000, 1, 1,

000000000039.980000, 0, 1,

000000000049.980000, 0, 0,

10. Functional Verification

page 164, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The comma-separated value allows the file to be easily parsed by other existing tools, such
as spreadsheet applications.

Once a master .ebv file has been created, it can be used to verify pin behavior stays within
an expected tolerance range on subsequent simulation runs. Typically this is done after a
software change has been made that is not supposed to affect pin transition behavior. With
enhanced behavior verification, only a continuous verification model is supported. As with
.ebv file creation, all control is via script commands. First, which .ebv file to be used for
the verification run must be specified - this is done with
run_ebehavior_file("filename.ebv"). By default, all pins found in the .ebv file are verified
with a default transition error tolerance equivalent to two system clocks.

// test all pins
run_ebehavior_file("PWM_gold.EBV");

The above command should be issued at simulation time zero, at the same place in the
script file as the .ebv file was generated with the create_ebehavior_file() command. The
simulation should run, and at the end, at the same time as when the .ebv file was saved and
closed, the verification should be stopped with the stop_ebehavior_file() script command.

stop_ebehavior_file(); // stop EBV verification

Tolerances can be adjusted, and the pins being verified can be specified, using the
enhanced behavior verification pin tolerance script commands. With the
set_ebehavior_global_tolerance() script command, all pins under test can have their
allowed error tolerance set.

run_ebehavior_file("Engine_gold.EBV");
// verify all pins in the .ebv file to a 2us tolerance
set_ebehavior_global_tolerance(EBV_ABSOLUTE, 0.0, 2.0);

The set_ebehavior_pin_tolerance() script command serves a dual purpose. Once one of
these commands is specified, only pins specified with set_ebehavior_pin_tolerance() script
commands will be verified.

run_ebehavior_file("PWM_gold.EBV");
// test only PWM_A and PWM_C pins w/ appropriate tolerance
set_ebehavior_pin_tolerance("PWM_A", EBV_ABSOLUTE, 0.0,
1.1);
set_ebehavior_pin_tolerance("PWM_C", EBV_ABSOLUTE, 0.0,
1.1);

Although the tolerances can be adjusted at any time during simulation, if using
set_ebehavior_pin_tolerance() to configure a subset of pins to test, these commands should
directly follow the run_ebehavior_file() command. Tolerances can then be adjusted later,
either by individual pin or globally.

10. Functional Verification

Full System DevTool IDE, page 165Reference Manual (C) 2012-2024 ASH WARE, Inc.

Currently there is one tolerance type - "EBV_ABSOLUTE". This means the absolute time
of each transition in the master file is compared to the absolute time of the matching
transition in the current simulation run. In the comparison process, first the offset is is
applied to the master file transition time, and then the difference between the two times is
calculated. If the absolute value of this result is less than the configured tolerance, the
behavior is considered valid and simulation continues. If it is greater than the tolerance, a
behavior error is thrown - this may or may not trigger a pop-up error dialog depending upon
the IDE messages configuration.

Last, individual pins can be disabled from behavior verification with the
disable_ebehavior_pin() script command.

disable_ebehavior_pin("PWM_C");

With enhanced behavior verification, an .ebv file can be created while simultaneously using
another one for verification. This could be handy in the sense that after running a
simulation session the user has a new current pin transition file - it could be used as an
input into other tools, or if verification is successful, it could be copied as the new "gold", or
master file.

// create and verify simultaneously
create_ebehavior_file("Powertrain_current.EBV");
run_ebehavior_file("Powertrain_gold.EBV");

// ... simulation ...

// finish behavior verification
close_ebehavior_file(); // close EBV being saved
stop_ebehavior_file(); // stop EBV verification

When enhanced behavior verification is used with a dual-eTPU simulation model, an .ebv
file and the associated commands apply to a single eTPU engine. In other words, if pin
transition behavior verification is to be done on each eTPU, there must be a separate .ebv
file for each.

10.2.1 Deprecated Pin Transition Behavior Verification

Legacy .bv pin transition data files can still be used by the new enhanced behavior
verification; .bv files can no longer be generated. The master buffer can be loaded only
with pin transition behavior data from a previously saved file. This file forms a behavioral
model of the source microcode. Changes can be made in the source microcode and the
changed microcode can be verified against these behavioral models. This file is loaded
using the read_behavior_file("filename.bv") script command.

10. Functional Verification

page 166, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

There are two options for verifying pin transition behavior against the previously-generated
behavioral model. The first option is to continuously check the running pin transition
behavior buffer against the master pin transition behavior buffer. This is selected by the
enable_continuous_behavior() script command that follow a behavior file load. The second
option is to perform a complete check of the running buffer against the master buffer all at
once. This is selected using the verify_all_behavior() script command at the end of a
simulation run. Time tolerances for pin transitions default to 2 system clocks, but can be
adjusted using the new enhanced behavior verification set_ebehavior_pin_tolerance() and
set_ebehavior_global_tolerance() script commands.

A count of failures is displayed in the Configuration Window. This count is incremented
whenever a behavior verification failure occurs. By default, each failure will generate an
error dialog, but this can be disabled by de-selecting Options -> Messages... -> Behavior
verification failure.

A consideration regarding these behavioral models is the buffer size. The maximum
behavioral buffer size is currently set at 100,000 records, though this may increase in future
releases. If the number of recorded pin transitions equals or exceeds this buffer size then
the buffer rolls over and verification against this buffer is not possible.

A second consideration is TCR2 pin recording. Normally TCR2 pin transitions are not
written in these buffers. This is because the recording of TCR2 pin transitions very quickly
fills up the buffer and causes the buffer to quickly roll over. When the buffer rolls over
verification is not possible with legacy .bv files.

10.3 Pin Transition Verification Example

The following is an example eTPU Commands Script that both generates, and verifies pin
transition data. The #define '_CREATE_EBV_FILE_' determines if the .EBV file will be
generated (create the gold file) or tested (test the current run against a previously-
generated gold file.

// Linker-generated header file
#include "MyCode_defines.h"

#define TEST_CHAN 4

// Set the clock to 100 MHz (10 ns/clock -->1e7
FemtoSeconds/clock)
set_clk_period(10000000);
write_entry_table_base_addr(_ENTRY_TABLE_BASE_ADDR_);

10. Functional Verification

Full System DevTool IDE, page 167Reference Manual (C) 2012-2024 ASH WARE, Inc.

write_tcr1_control(2); // System clock/2, NOT gated
by TCRCLK
write_tcr1_prescaler(1);
write_global_time_base_enable(1);

// Channel Configuration Registers Functions (CxCR, CxSCR,
CxHSRR)
write_chan_base_addr(TEST_CHAN, 0x300);
write_chan_func(TEST_CHAN, _FUNCTION_NUM_Pwm_);
write_chan_entry_condition(TEST_CHAN,
_ENTRY_TABLE_TYPE_Pwm_);

//

write_chan_cpr (TEST_CHAN, 3);
write_chan_hsrr (TEST_CHAN, 7);
write_chan_data24 (TEST_CHAN, _CPBA24_Pwm_Period_,
0x000400);
write_chan_data24 (TEST_CHAN, _CPBA24_Pwm_HighTime_,
0x000050);

//#define _CREATE_EBV_FILE_

#ifdef _CREATE_EBV_FILE_
create_ebehavior_file("MyGoldSim.ebv");
add_ebehavior_pin("PWM");
#else
run_ebehavior_file("MyGoldSim.ebv");
#endif // _CREATE_EBV_FILE_

//

// Run the simulator for awhile
// Compare recorded pin-transitions with known-good gold
file
wait_time(1000);

#ifdef _CREATE_EBV_FILE_
close_ebehavior_file();
#else
stop_ebehavior_file();

10. Functional Verification

page 168, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

#endif // #ifdef _CREATE_EBV_FILE_

#ifdef _ASH_WARE_AUTO_RUN_
exit();
#else
print("All tests are done!!");
#endif // _ASH_WARE_AUTO_RUN_

10.4 Code Coverage Analysis

Code coverage analysis is one of the verification capabilities for which an overview is
given in the Functional Verification chapter.

There are two aspects to code coverage. The first aspect is the code coverage visual
interface while the second aspect is the coverage verification commands.

Code Coverage Visual Interface

The visual interface is enabled and disabled using the project's IDE Options settings. When
this is enabled, black boxes appear as the first character of each source code line that is
associated with a microinstruction. As the code executes, and the instruction coverage
changes, these black boxes change to reflect the change in the coverage. This is
summarized below.

A black box indicates a 'C' source line or assembly instruction that has not
been executed.

An orange box indicates 'C' source line that has been partially executed.

A blue box indicates an assembly branch instruction in which neither
branch path has been traversed.

A green box indicates an assembly branch instruction where the branch
path has been traversed.

A red box indicates an assembly branch instruction where the non-branch
path has been traversed.

A white box indicates a 'C' source line or assembly instruction that has
been executed.

Code Coverage Verification Commands

10. Functional Verification

Full System DevTool IDE, page 169Reference Manual (C) 2012-2024 ASH WARE, Inc.

The code coverage verification commands, described in the Code Coverage Script
Commands section provide the capability to verify both instruction and branch coverage
percentages on both an individual file basis and a complete microcode build. If the required
coverage has not been achieved then a verification error message is generated and the
count of script failures found in the Configuration Window is incremented.

Code Coverage Report Files

Code coverage report files can be generated using the
write_coverage_file("filename.Coverage") script command described in the Code
Coverage Script Commands section. Code coverage report files can also be generated
directly from the File menu by selecting the Coverage submenu. This is described in the
Files Menu section.

The top of the code coverage report file contains a title line, a copyright declaration line,
and a time stamp line.

Following this generic information is a series of sections. The first section provides
coverage data on the entire microcode build. Succeeding sections provide coverage
information on each file used to create the microcode build.

Each section contains a number of lines that provide the following information. The
instruction line lists the total number of instructions. Both regular and branch instructions
are counted, but entry table information is not. The instruction hits line lists the number of
instructions that have been fully covered. The instruction coverage percent line lists the
percent of instructions that have been covered. The branches line lists the total number of
branch paths. This is always an even number because for each branch instruction there
are two possible paths (branch taken and branch not taken.) If the branch path has been
traversed then this counts as a single branch hit. Conversely if the non-branch path has
been traversed then this also counts as a single branch hit. The branch instruction is
considered fully covered when both the branch-path and the non-branch-path have been
traversed. The branch coverage percent line contains the percentage of branch paths that
have been traversed.

Flushed instructions for which a NOP has been executed are not counted as having been
covered.

An example of such a file (eTPU target) follows.

// Code coverage analysis file.
// Copyright 1996 ASH WARE, Inc.
// Wed Feb 6 09:08:29 2019

10. Functional Verification

page 170, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Total
 Instructions: 43
 Instruction Hits: 14
 Instruction Coverage Percent: 32.56
 Branches: 18
 Branch Hits: 4
 Branch Coverage Percent: 22.22
 Entries: 32
 Entry Hits: 5
 Entry Coverage Percent: 15.63
C:\Mtdt\TestsHigh\ETpu\Coverage\Pwm.c
 Instructions: 14
 Instruction Hits: 14
 Instruction Coverage Percent: 100.00
 Branches: 4
 Branch Hits: 4
 Branch Coverage Percent: 100.00
 Entries: 32
 Entry Hits: 5
 Entry Coverage Percent: 15.63
C:\Mtdt\Gui\testfiles\Lib_global_error_handler.sta
 Instructions: 29
 Instruction Hits: 0
 Instruction Coverage Percent: 0.00
 Branches: 14
 Branch Hits: 0
 Branch Coverage Percent: 0.00
 Entries: 0
 Entry Hits: 0
 Entry Coverage Percent: 0.00

Code Coverage Annotated Listing Files

Listing files (source file lines with the associated disassembled opcodes shown below each
line that generates code) annotated with code coverage information can be generated with
the write_coverage_listing_file() script command described in the Code Coverage Script
Commands section. An option parameter allows users to select between outputting a
complete annotated listing file for a specified module, or output just the source lines and
object code not executed (covered). In both cases every line is prepended with the original
source line number. When the non-covered listing option is specified, a line gap is placed

10. Functional Verification

Full System DevTool IDE, page 171Reference Manual (C) 2012-2024 ASH WARE, Inc.

between annotated source/assembly wherever source code lines have been filtered. A
small annotated sample is shown below.

[536]: else if (IsMatchAEvent() && (flag1==1) &&

(flag0==1))

[536]: [X]: 0016: 0x4250 Alt Entry 11, Addr 0x940, EnableMatches,

p_31_0=*((channel U32 *) 0x0), diob=*((channel U24 *) 0x5) [0]

[536]: : : HSR==0b000 Link==X matchA/TranB==1

matchB/TranA==0 InputPin==0 ChanFlag1==1 ChanFlag0==1 [2]

[536]: []: 001E: 0x4250 Alt Entry 15, Addr 0x940, EnableMatches,

p_31_0=*((channel U32 *) 0x0), diob=*((channel U24 *) 0x5) [0]

[536]: : : HSR==0b000 Link==X matchA/TranB==1

matchB/TranA==0 InputPin==1 ChanFlag1==1 ChanFlag0==1 [2]

[537]: {

[538]: // All 32 bits were received & half a gap has

been detected

[539]: // filtering (if any) is done now, while parity

check is done

[540]: // when the full gap is validated

[541]: AW_A429R_ValidHalfGapFilter:

[542]:

[543]: ClrFlag0();

[543]: [X]: 0940: 0xDFE87A8C ram p_23_0 = *((channel int24 *) 0x31);

FormatD6 [0]

[543]: : : 0xDFE87A8C chan clear ChannelFlag0, clear

MatchRecognitionLatchA;; FormatD6 [4]

[544]: ClearMatchAEvent();

[545]:

[546]: if (RxFilter.Label)

[546]: [X]: 0944: 0x0008F019 alu nil = p+0x0, SampleFlags;; FormatA2

[4]

[546]: [T]: 0948: 0xF0D84BC7 seq if z==true then goto addr_0x978,

flush;; FormatE1 [4]

[547]: {

[548]: unsigned int24 bitIndex;

[549]: unsigned int24 filterWord;

[550]: #ifdef __ETEC__

[551]: bitIndex = __bit_n_update(0,

Data.B.Bits23_0 & 15, 1, 0);

[551]: []: 094C: 0xBFEFFB80 ram p_23_0 = *((channel int24 *) 0x1);;

FormatB2 [4]

[551]: []: 0950: 0x0C380BFA alu a = p & 0xF;; FormatA3 [4]

[551]: []: 0954: 0x3F3F1FFD alu sr = ((u24) 0) | (1<<a);; FormatB6

[4]

After the prepended source code line number, each opcode line has coverage status shown
inside brackets [], followed by code address, opcode (or entry point), and disassembly. The
coverage status can be one of the following:

[] - not executed at all

10. Functional Verification

page 172, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

[X] - fully executed (both paths taken if branch)
[T] - only branch true path executed
[F] - only branch false path executed
[I] - inferred entry point coverage

Note, if the non-covered listing option is specified, and the module has been fully executed,
the result is an empty output file.

For eTPU targets, an additional flag option can be applied that causes entry table items to
be ignored (no disassembly for "all" mode, all entry source and disassembly filtered for non-
covered mode).

10.5 Regression Testing (Automation)

Regression Testing supports the ability to launch the Full System IDE from a DOS
command line shell. Command line parameters allow specific tests to be run. From the
command line the project file that is run and the primary script file(s) that are loaded into
each target are specified. Command line parameters also are used to specify that the
target system automatically start running with no user intervention, and to accept the
license agreement thereby bypassing the dialog box that would otherwise open up and
require user intervention. A script command is used to terminate the Full System IDE once
all the tests have been run.

Upon termination, the Full System IDE sets the error level to zero if no verification tests
failed, and otherwise error level is set to be non zero. This error level is the Full System
IDE’s termination code and can be queried within a batch file running under the operating
system’s DOS shell. By launching the Full System IDE multiple times, each time with a
different set of tests specified, and by checking the error level each time the Full System
IDE terminates, multiple tests can be run automatically and a single pass (meaning all tests
passed) or fail (meaning one or more tests failed) result can be determined.

Note that this only works in operating systems that support access to exit codes from a
batch file. Windows 98 does not support this. True operating systems such as Windows 7,
Windows XP Professional, Windows 2000 Professional, and Windows NT 4.0. do support
automation.

10. Functional Verification

Full System DevTool IDE, page 173Reference Manual (C) 2012-2024 ASH WARE, Inc.

10.6 Testing with a Specific Compiler Version

A production software release will generally be tied to a specific ETEC Compiler version.
However as ASH WARE continues to release new software versions, the once-default
(latest installed) software version will at some point longer be the default. It is therefore
important to be able to tie regression tests to a specific ETEC compiler version. This is
done by selecting the build target as show by the blue arrow, below. Right-click to bring up
the popup menu and select 'settings' to bring up the settings window shown below. Within
the settings window, select the version of the compiler you wish to tie the tests to. The
green arrow shows the tests being tied to ETEC compiler version 230C. Note that if the
tests were to be run on a compiler that does not have version 2.30C installed, then the tests
would fail. This setting is stored in the project file and not the environment file!

Also, see related section 'Using Non-Installed ETEC Versions'.

10.7 Command Line Options

When launching the Full System IDE the last-loaded project file is automatically loaded and
the project file contains most of the settings such as the name of the script file to load,
which messages to suppress, etc. However, it can be useful to specify the project file to
load or even to override settings contained in the project file. This is by specifying settings
at the command line when launching the Full System IDE. This is especially useful when
building regression tests.

10. Functional Verification

page 174, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Setting Option Example

Display Help

Prints a list of all the
Command Line
Parameters

-h -h

Project File

Loads the specified project
file. Note that if a relative
path is used to specify the
project file, it is relative to
the current working
directory at app launch.
Also note that all other
relative paths is command
line options are relative to
the project file directory,
NOT the current working
directory (although they are
often the same).

-p=<ProjectFileName> -p=Test.Spd816IdeProj

Loads project file
"Test.Spd816IdeProj"

Executable Image File

Loads the specified
executable image file (e.g.,
MyCode.elf)

-exe=<ExeImageFile> -exe=<MyCode.elf>

Loads "MyCode.elf"

Script File

Loads the specified script
file (single target). Path
relative to project file
directory.

-s=<ScriptFileName> -s=RarChunkTest.Cmd

Loads script file
"RarChunkTest.Cmd"

Script File

Loads the specified script
file into the specified target

-
s=<ScriptFileName>@
@<TargetName>

-s=MyScript.Cmd@@Cpu32

Loads script
"MyScript.Cmd" into the

10. Functional Verification

Full System DevTool IDE, page 175Reference Manual (C) 2012-2024 ASH WARE, Inc.

Setting Option Example

(multiple targets). Path
relative to project file
directory.

CPU32 simulation model
named "Cpu32"

Vector File

Loads the specified vector
file (single target) path
relative to project file
directory.

-v=<VectorFileName> -v=MyVector.vector

Vector File

Loads the specified vector
file into the specified target
(multiple targets). Path
relative to project file
directory.

-
v=<VectorFileName>
@@<TargetName>

-
v=MyVector.vector@@Ch1_
Core0

Vector Define

In vector file, define the
DefinedText as Val. Note
that the '=<Val>' portion
can be omitted and 'VAL'
will be assigned a default
value of '1'.

-
vd=<DefinedText>=<
Val>

-vd=CONTROL_CASE

Passes the #define
CONTROL_CASE 1 to
the vector file

-
vd=CMD_LINE_DEFINE_A
=01 -
vd=CMD_LINE_DEFINE_B
=10

Passes two defines with
values '01' and '10' on the
command line.

Define as true

In script commands file,
#define DefinedText 1

-d=<DefinedText> -d=CODE_BASELINE

Passes the #define
CODE_BASELINE 1 to
the script file

10. Functional Verification

page 176, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Setting Option Example

Define as value

In script commands file,
#define DefTxt Val

-d=<DefTxt>=<Val> -d=MY_VAR=55

Passes the #define
MY_VAR 55 to the script
file

Build Define

In MtDt build script, define
the DefinedText as true

-bd=<DefinedText> -bd=MPC5674_2

Defines MPC5674 as 'true'
in the build define such that
the MPC5674 rev 2 model
is loaded.

Log File

Logs messages to end of
file, "FileName.log". Path
relative to project file
directory.

-lf5=<FileName.log> -lf5=Error.log

Logs messages to file
"Error.log"

Log File Test Suite Mode

Outputs formatted
messages and extra
verification information into
the log file, when specified.
 Useful when using the tool
for verification purposes.

-lfmTestSuite -lfmTestSuite

Sets logging to test suite
mode (only applies if
logging enabled via -lf5).

Test Name

Used in conjunction with
the log file to append a test
result to the end of the log
file.

-tn=<TestName> "-tn=Pulse Width Test"

Appends 'Pulse Width Test
Passes' (or 'fails') to the
end of the log file.

Suppress Warning #1

Suppress the "Source Code
Missing" warning

-ws=1 -ws=1

10. Functional Verification

Full System DevTool IDE, page 177Reference Manual (C) 2012-2024 ASH WARE, Inc.

Setting Option Example

No Popup Dialogs

Disables display of dialog
boxes

-q -q

Build Log File

Logs Auto Build output to
the file, "FileName.log".
Path relative to project file
directory. Can only be
used in conjunction with the
-AutoBuild option.

-blf5=<FileName.log> -blf5=Build.log

Logs build output to file
"Build.log"

Suppress Environment File
Load

Normally an environment
file is loaded that specified
window positions, file scroll
locations, etc. This
suppresses loading of the
environment file and can
improve the repeatability of
certain tests.

-NoEnvFile -NoEnvFile

Run Minimized

Runs the Full System IDE
'Minimized' such that it is
possible to continue on ones
computer while running
regression tests.

-Minimize -Minimize

Automatically Build

Forces the target system to
rebuild the code, even when
not out of date, when the

-AutoBuild -AutoBuild

10. Functional Verification

page 178, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Setting Option Example

Full System IDE is
launched. Note that if a
target's build is disabled,
this will NOT cause the
code to build. Instead, use
the '-
EnableCodeBuild=<Target>
' option.

Override a Disabled Build

For a target with it's build
disabled in the project file,
this overrides the 'Disable'
such that the code will be
built.

-EnableCodeBuild=<Target> -EnableCodeBuild=eTPU_A

Prevent Build

Prevents code rebuild even
if the code is out of date.

-NoBuild -NoBuild

Automatically Run

Sets the target system to
running when the Full
System IDE is launched

-AutoRun -AutoRun

Network Retry Time

Time to wait (in seconds)
for a network license if
none is available

-NetworkRetry=<Sec> -NetworkRetry=30

Retries for 30 seconds if
unable to make a network
connection

Network License Checkout

Perform a network license
checkout, providing

-
NetworkCheckout=<y:
m:d:h:m>

-
networkcheckout=2035:5:6:16:
00

10. Functional Verification

Full System DevTool IDE, page 179Reference Manual (C) 2012-2024 ASH WARE, Inc.

Setting Option Example

success/fail status, and then
exiting.

Attempts to check out a
license until 4pm of May 6,
2035.

Network License Checkin

Check back in a checked-
out license, which frees the
license for other users
(after the linger time has
completed)

-NetworkCheckin -NetworkCheckin

10.7.1 Using the –d (define) Option and Escape Characters

There are issues with passing a quote character into Full System IDE in Windows because
Windows uses the quote character to bunch multiple pieces of text into a single command
line parameter. Consider the case where a filename is to be passed into the Full System
IDE. A good way of doing this is to define a string, then use the dump_file(); script
command as follows.

#define FILE_TO_DUMP "n:\\MyDataFile.dat"

dump_file(0, 0x28, MC33816_DATA_SPACE, FILE_TO_DUMP, IMAGE, DATA8);

It is possible to pass the FILE_TO_DUMP #define into the Full System IDE from the
command line (instead of having it in the script commands file) using the following
command line parameter.

"-dFILE_TO_DUMP=\"MyDataFile.dat\""

There are four quote characters in the command line parameter shown above. The first
and last quote characters are used by Windows to bunch everything between them
together into a single command line parameter which would (for example) allow spaces to
appear within the single parameter.

But the filename, MyDataFile.dat, is a string, and strings must be surrounded by quote
characters in the script commands file. This is accomplished by preceding the quote
character with the backslash character. Windows interprets this backslash-quote
combination literally and the quote character is thereby passed along with the filename into
Full System IDE.

10. Functional Verification

page 180, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

10.7.2 Warning Suppresion Command Line Options

Warning suppression command line options are used to suppress warnings from being
generated.

This is useful for regression testing in which a warning can cause a regression test to fail.

Although warning can also be suppressed in the 'Messages Options' dialog box, doing so
does not work well in conjunction with regression tests, and here is why. Messages
disabled in the 'Messages Options' dialog are stored in the environment file. Each user has
their own environment file. So a regression test that might pass when one user runs it
might fail when the other user runs it because one user has a message enabled that the
other user has disabled. So by disabling options on the command line, all users running the
same regression test will get the same behavior.

Note that this is significantly different in DevTool relative to MtDt because MtDt did not
have environment files and therefore MtDt stored these Messages Options in the
(generally common) project file.

The following list shows the value and meaning of each command line warning.

Warning Or Message ID

Behavior Verification Failure 101

Script Command Verification Failure 102

Bad at_time(); script command 103

Divide by zero 104

Obsolete set_cpu_frequency script command 105

A 32-bit script not at double-even address boundary 106

A 24-bit script not at single-odd address boundary 107

A 16-bit script not at an even address boundary 108

A memory-write script failed to write 109

Non-ASCII character in script command file 110

'print_pass()' script command 111

Missing source code 112

10. Functional Verification

Full System DevTool IDE, page 181Reference Manual (C) 2012-2024 ASH WARE, Inc.

New HSR issues with prior HSR still set 200

New LSR issues with prior LSR still set 201

Un-Initialized User-Defined Chan Mode (UDCM) Selected 202

eTPU2 code loading into eTPU1 model 203

AU's B bus active, but ignored 204

Semaphore Locked too long 205

Reserved field 206

Invalid Entry 207

Entry Standard/Alternate Mismatch 208

Invalid PRAM Access 209

Invalid OPCODE fetch 210

Invalid call return 211

Un-flushed call followed by another call 212

MRLE set when MRL==1 213

Race condition detected 214

Invalid TBCR.TCR2CTL Value 215

Invalid TBCR.TCR1CTL Value 216

Event vectoring on output pin unsupported 217

Write of unsupported ETPUSCMOFFDATAR<Not Applicable> 218

Invalid Memory Size 219

Bad CIN field assertion, CIN is ignored in this operation 220

MACH or MACL access prior to operation completion 230

SampleFlags active for a MAC operation 231

Bad combination of BINV and CIN for this operation 232

TPR's LAST, TICKS, and HOLD asserted all at once. 240

TPR.TICK changed before or on TPR.IPH assertion 241

10. Functional Verification

page 182, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

TPR's IPH asserted, then TICKS changed on next cycle 242

TPR's IPH asserted, then LAST asserted on next cycle 243

Setting of TPR.LAST on two contiguous teeth 244

Angle Overflow TCR2 > (TPR.TICKS+1) * TeethPerCycle 245

TBCR.AM changed while MCR.GTBE is enabled 246

Detection Edge (TBCR.TCR2CTL) mismatches CH0 IPAC 247

Bus error 300

Address error 301

Breakpoint instruction encountered 302

Privililedge violation 303

Stack frame error exception 304

Bad Binary Coded Decimal (BCD) number 305

Interrupt with IARB equal to zero 306

Interrupt with duplicate priority & IARB 307

Double Bus Fault 308

Chk/Chk2 exception 309

Ill-formed CHK2 or CMP2 bounds par (b1>b2) 310

Legal illegal instruction 311

Illegal illegal instruction 312

A and F line emulator exceptions 313

Un-initialized jump register 400

Un-initialized subroutine return address register 401

Un-initialized indexed access base address register 402

Out of bounds RAM access 403

Out of bounds CODE access 404

Invalid opcode 405

10. Functional Verification

Full System DevTool IDE, page 183Reference Manual (C) 2012-2024 ASH WARE, Inc.

Set control register bit 'stcrb' instruction when control register is read-only due to
'Control_register_split.cr_shared_ucX' being set

410

Writing the 'Condition Register' (ar) as an ALU result. This register cannot be
written as an ALU result.

411

Executing a new SHIFT or MULTIPLY operation before the not-yet-finished SHIFT or
MULTIPLY operation is complete.

412

Accessing the 'mh' or 'ml' register before the not-yet-finished MULTIPLY or SHIFT
operation is still underway.

413

Shift is out of the valid range which is between 1 and 15 bit positions, 414

ALU Write of the same register being written by the SHIFTER (note: alu result is
overwritten, shifter 'wins')

415

Bad Shortcut 420

Bad Core Clock Configuration. Set 'ck_per' to 3 (SysClk/4) in dual-core mode, or 1
(SysClk/2) in single core mode. See also 'flash_enable.'

421

Core execution not enabled. To enable, set 'Flash_enable.pre_flash_enable' 440

Core execution on second core not enabled. To enable, set
'Flash_enable.en_dual_uc'

441

Code Width too small. Note: 'Flash_enable.Code_width' must be >= 3 442

Checksum failure. See 'Flash_enable.checksum_h' and 'Flash_enable.checksum_l' 443

VBOOST Overvoltage, the VBOOST circuitry has exceeded the maximum allowed
voltage

450

Waiting on un-initialized wait table row 470

Waiting on un-initialized timer 471

Waiting on un-enabled 'Start Event' (register 'Start_config_reg', start6_sens_ucX
through start1_sens_ucX all 0's)

472

Waiting on un-written DAC 473

Waiting on un-settled DAC 474

Waiting on un-settled OP AMP 475

Bad wait table row (row>5) 476

10. Functional Verification

page 184, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

A 'reqi' instruction has been executed while the Software Interrupt Service Routine is
already active or pending

480

A 'iret' instruction has been executed but no Software Interrupt Service Routine is
active

481

A second START interrupt occured prior to completion of an existing SOFTWARE
interrupt

482

Interrupt Service Routine (ISR) has begun but its handler address has not been
written in (Diag_routine_addr, Driver_disabled_routine_addr, or
Sw_interrupt_routine_addr)

483

10.7.3 Preventing Multiple Rebuilds by Forcing 'No Build'

The '-NoBuild' Development Tool command line option prevents code from being rebuilt,
even when if the code image is out of date such that the Full System IDE's internal 'Make'
capability would normally force a code rebuild. This allows (say) a series of tests to be run
on a set of source code without an executable code image getting re-built over and over
again, thereby saving time. Note that this option adds a tad bit of risk that your code could
potentially be out of date and would no longer work correctly if it were to be rebuilt.

Question: Why not just disable the code rebuild by not passing '-AutoBuild' on the the
command line? Answer - when '-AutoBuild' is not specified on the command line a 'Make'
occurs in which a build may (or may not) occur depending on the many files' time stamps.
However the make timestamps (currently) go into the environment file (yuck - this should
be changed) which generally don't get saved as part of a regression test suite. So
generally, even if '-AutoBuild' is NOT specified on the command line, your code is likely
going to get rebuilt on every test run. The '-NoBuild' option overcomes this by forcing your
code to not be rebuilt.

10. Functional Verification

Full System DevTool IDE, page 185Reference Manual (C) 2012-2024 ASH WARE, Inc.

10.8 File Location Considerations

Although this discussion is equally applicable to Full System IDE as a whole it is important
to point out how files are located within the context of Regression Testing.

A "project file relative" approach is used for searching and finding almost all files. This
means that the user should generally locate the project files near the source code and script
files within the directory structure. Consider the following directory structure.

C:\BaseDir\SubDirA\Test.Sim32Project
C:\BaseDir\SubDirB\Test.Cpu32Command

To load the script command file, Test.Cpu32Command, the following option could be used

-s=..\SubDirB\Test.Cpu32Command

By employing this "project file relative" approach the testing environment can be moved
around without having to modify the tests and therefore the files names can be smaller and
easier to use.

Log File

The log file is written to the directory where the project file is located. However, the -
lf5=<LogFileName> does accept relative (or absolute) directory information. For instance,
if the following command line option is specified,

-lf5=..\MySubDir\MyLogFile.log

then the log file will be generated up one directory and then down into directory 'MySubDir'
relative to the project file. So take the following example.

Starting directory where the Full System IDE is called:

c:\WorkingCode\
DevTool.exe -p=MySubDir1\MySubDir2\Proj.ETpuIdeProj -lf5=..
\MySubDir3\MyLogFile.log

Then the log file will be generated in the following directory.

c:\WorkingCode\MySubDir1\MySubDir3\MyLogFile.log

Note that the Full System IDE will continue to use that log file in that directory until it is
closed even if the user manually changes to a different project file in a different directory.

Note that this is different from the way Mtdt worked in that Mtdt always used the 'Current
Working Directory' as the starting point for where the log file is generated.

10. Functional Verification

page 186, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

10.9 Test Termination

Termination of Full System IDE and the passing of the test results to the command line
batch file is a key element of Regression Testing. At the conclusion of a script file, Full
System IDE can be shut down using the exit script command, as described in the System
Commands section. This command causes the Full System IDE's termination error level to
be set to be non-zero if any verification tests failed, or zero if all the tests passed.

The overall strategy in ensuring that a zero error level truly represents that all tests have
run error free and to completion is to treat any unusual situation as a failure. Specifically, a
failing non-zero termination code will result unless the following set of conditions has been
met.

- No verification tests are allowed to fail in any target.

- All targets must have executed all their script commands.

- Full System IDE must terminate through the exit(); script command.
Abnormal termination such as detection of a fatal internal diagnostic error
results in a non-zero error level.

10.10 Cumulative Logged Regression Testing

Cumulative logged regression testing supports the ability to run an entire test suite without
user intervention, even if one or more of the tests fail. This capability overcomes the
problem in which a failure halts the entire test suite until acknowledged by the user. Using
this capability, the alert is logged to a file rather than being displayed in a dialog box.

Test completion occurs when the exit() script command is encountered. At this time, a
PASS or FAIL indicator is appended to the end of the log file. Because it is appended to
the end of the log file, the normal usage would be to delete the log file prior to beginning the
test suite. Then, upon completion of a test run, the log file grows. At the end of the test
suite, the log file can be perused, and any failing tests are quickly identified.

Note that only certain types of failures bypass the normal message dialog box. For
instance, if the failure log file itself cannot be written, then this generates a failure message
in a dialog box which must be manually acknowledged.

This capability is invoked using a combination of two Command Line Parameters, shown
below.

-LF5=MyLogFile.log -Quiet

10. Functional Verification

Full System DevTool IDE, page 187Reference Manual (C) 2012-2024 ASH WARE, Inc.

The first command, -LF5=MyLogFile.log specifies that message are appended to the end of
a log file named, "MyLogFile.log."

The second command, -Quiet, specifies that the dialog boxes that normally carry test errors
or warnings are not displayed. Note that this command only works in conjunction with –
AutoRun, –IAcceptLicense, and –LF5<LogFileName.log.> If any of these options is not
selected, then this –Quite command is ignored. Note also that if the user halts the
simulation, then this option is disabled such that messages shown in dialog boxes will
require manual acknowledgement.

It is convenient to name each test run. That is, when Full System IDE is launched, the
command line parameter shown below applies a name the test run. This name shows up in
the log file. This allows the particular test run that is causing any failures to be easily
identified when perusing the log file.

-tn=<TestName>

Note that command line parameters do not handle spaces will. To include spaces in the
name, enclose the parameter in quotes, as shown below. In the following example, the
name, "Angle Mode" is specified.

"-tn=Angle Mode"

10.11 Regression Test Example

The keys to successful Regression Testing is the ability to launch Full System IDE multiple
times within a batch file that runs in a DOS command line shell and to verify within this
batch file that the tests that were automatically run had no errors. These multiple launches
of Full System IDE, and the tests contained therein, form a test suite.

The following is a batch file used to launch the Full System IDE multiple times. Note that
there is only a single target such that no target must be specified on the command line.
Had this been a test running in a multiple-target environment, the target name would have
to be specified along with each script file.

Note that DEV_TOOL_MC33816_BIN is a system variable set by the installer that allows
regression tests to 'find' the installation directory.

echo off

set EXE=%DEV_TOOL_MC33816_BIN%\Mc33816DevTool.exe

%EXE% -p=MyProj.Spd816IdeProj -AutoBuild -AutoRun -lf5=Sim.Log -q -s=Test1.Spd816Command

if %ERRORLEVEL% NEQ 0 (goto errors)

10. Functional Verification

page 188, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

%EXE% -p=MyProj.Spd816IdeProj -AutoBuild -AutoRun -lf5=Sim.Log -q -s=Test2.Spd816Command

if %ERRORLEVEL% NEQ 0 (goto errors)

echo ***

echo SUCCESS, ALL TESTS PASS

echo ***

goto end

:errors

echo ***

echo YIKES, WE GOT ERRORS!!

echo ***

:end

If the above test were named TestAll.bat then the test would be run by opening a DOS
shell and typing the following command

C:\TestDir\TestAll

11. Action Tags

Full System DevTool IDE, page 189Reference Manual (C) 2012-2024 ASH WARE, Inc.

11
Action Tags

An action tag is an identifier embedded in the source code as a comment that alerts Full
System IDE to perform a specified action when code execution has reached that point in
the source code. The action tag is "@ASH@". When target code is loaded, the Full
System IDE scans the source code for action tags – thus if the source code can not be
located, the associated action tags will not get activated.

The full form of an action tag includes the action – "@ASH@<action>". Code execution
momentarily pauses when the associated source code is reached, and the requested action
is performed. Simulation then re-starts as if nothing happened.

A few of the supported action tag commands are: print action, timer action and write value
actions.

Action tags that are embedded in source code are associated with the underlying
executable code as follows. The search for executable code begins at the line that
contains the action tag and moves downwards in the source code file. If no executable
code is found at or below the line where the action tag appears, then the search continues
upwards. If there is no executable code associated with the source code file at all, then the
action tag fails.

See http://www.etpu.org for an example application.

http://www.etpu.org

11. Action Tags

page 190, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

11.1 Print Action Tag

The Print action command is similar to the "C" languages prinf() function, and has
essentially the same syntax. There are two flavors available - the first being
"print_to_trace". The resulting text appears as a line in the Trace window. When coupled
with the @ASH@ action tag in the source code file looks similar to the following.

// @ASH@print_to_trace("action tag test 1");
/* @ASH@print_to_trace("action tag test 2"); */
// @ASH@print_to_trace("variable A = %d\n", A);

As with the "C" printf, the first argument is the format string. The ASH WARE Print
command uses the same syntax for the format string, which can then be followed by a
varying number of arguments. The Print command checks that the number of conversion
characters in the format string matches the number of parameters that follow the format
string and issues an error if there is a mismatch. The parameters can be constants or
simple expressions (variables). With code compiled using tools that support more advanced
debugging information, simple expressions such as struct.member, structPtr->member,
array[2], and *pointer are supported.

The output of the Print command always goes to the Trace window, and using the
start_trace_stream(); script command it can also be directed to a file. Directing it to a file
can be extremely useful for verification and automated testing.

IMPORTANT NOTE: although the print action command works via the print_to_trace()
script command, it has a slightly different syntax. The print_to_trace() script command
must have its input encapsulated in a single string, while the print action version has its
format string and any additional arguments NOT encapsulated in an enclosing string.

See the Global eTPU Channel variable Access section for information on accessing
channel variables using the format shown below.

@<chan num/name>.<function var name>

The format specifier, %, is used to denote that a parameter value is to be inserted in the
resulting text. The % character must always be followed by a valid conversion character
such as %d. If the % character is not followed by a conversion character then a warning
message is generated and any automated tests will fail. The % character is generated by
two consecutive % characters.

The other flavor of the Print action commands have the same capabilities, but sends their
output to either a message dialog (thereby pausing simulation), or to a log file if autorun
logging is enabled. See the print() and print_pass() script command documentation for
more details.

11. Action Tags

Full System DevTool IDE, page 191Reference Manual (C) 2012-2024 ASH WARE, Inc.

// @ASH@print("action tag print to dialog or log file");
// @ASH@print_pass("output a message without affecting the
simulator exit code");

11.2 Timer Action Commands

The timer action commands provide a method for instrumenting source code to verify that
time critical paths are being met.

// @ASH@timer_start("Test 1");
// @ASH@timer_stop("Test 1");

The passed parameter is the test name and can contain any text with the restriction that
each test must have both a timer_start and a timer_stop action command. In other words,
timer action commands must come in pairs such that each named test has both a start and
a stop. Additionally, only one start and one stop is permitted for each test.

In order for a timing measurement to be considered valid, the following must occur. The
code containing the start tag must be first and the code containing the stop_tag must be
traversed next. In other words, the traversal must occur in pairs of start/stop, start/stop,
etc. If this order is broken (a stop before a start, two starts in a row, or two stops in a
row) then the action timer is invalidated and any verification scripts that thereafter test the
timers will result in verification failures.

The test tag is case sensitive such that the following tag,

// @ASH@timer_start("TestTag");

is a different test from the following tag

// @ASH@timer_start("TESTTAG");

On both target-reset and on code-reload, all timing measurements are reset.

Related Information

Naming timing regions in source code
Verifying traversal times a script command file
View named timing regions timing using the Watch Window

11. Action Tags

page 192, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

11.3 Write Value Action Tag

When the source code containing a write value action tag is traversed, the specified
symbolic write value script command (write_val, write_val_int or write_val_fp) is
exercised.

// @ASH@write_val("s24", "0x123456");
/* @ASH@write_val_int("varui32", 0x10101010); */
// @ASH@write_val_fp("ratio", 0.232323);

See the Print Action Tag section for more information on referencing channel frame
variables.

12. External Circuitry

Full System DevTool IDE, page 193Reference Manual (C) 2012-2024 ASH WARE, Inc.

12
External Circuitry

This section covers external circuitry.

12.1 Logic Simulation

External logic is used to drive one I/O or input pin with other I/O or output pin(s). External
logic can include buffers, inverters, 'and' gates, 'or' gates, 'xor' gates, etc. These external
logic gates are placed using external logic commands within script commands files.

These external logic gates are evaluated on a 'one pass per per instruction cycle' basis and
there is no attempt to elegantly handle a-stable situations. For instance, an inverter that has
both it's input and output connected to the same pin would simply toggle once every
instruction cycle.

There are a number of limitations to the Boolean logic.

- There are only two logic states, one and zero.

- The logic is simulated with a single pass per instruction cycle.

- All output states are calculated before they are written, and therefore all
calculations are based on the pre-calculated states. Thus it takes multiple
passes for state changes to ripple through sequentially connected logic.

- All Boolean logic inputs and outputs must be input, output or I/O pins.

12. External Circuitry

page 194, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

- Behavior of pins connected to Boolean logic outputs and also driven by test
vectors is undefined.

Example 1: Driving a Pin with another Pin

In the following script command the output pin which drives the buffers input is the eTPU's
channel 5 output pin (output pin's start at index 32 so channel 5's is at 37.) The channel
drives the TCR2 pin which is at index 64.

place_buffer(32+5, 64); // eTPU

In the following script command the output pin which drives the buffers input is the
MC33816's 'FLAG1' pin which is at index 1. The pin driven by the buffer's output is the
'START6' pin which is at index 8.

place_buffer(1, 8); // MC33816

Example 2: Driving a Pin with the Logical Combination of
Two Pins

In the following multi-drop communications example eTPU channel 5's output pin is a
communications channel output. eTPU channel 7's output pin is used as a gate to enable
and disable the output. eTPU Channel 1's input pin is the communications input. Since the
eTPU's output pins start at 32, a 32 is added to both arguments to designate these as the
output pins. An idle line is low. An AND gate is instantiated using the

12. External Circuitry

Full System DevTool IDE, page 195Reference Manual (C) 2012-2024 ASH WARE, Inc.

place_and_gate(X,Y,Z) script command. The gate pin causes an idle (LOW) state on the
input by going low. By going high the gate pin causes the state on the output channel to be
driven unto the input channel.

place_and_gate(32+5,32+7,1); // eTPU

In the following multi-drop communications example FLAG0 is a communications channel
output. The FLAG2 pin is used as a gate to enable and disable the output. The START6
pin is the communications input. An idle line is low. An AND gate is instantiated using the
place_and_gate(X,Y,Z) script command. The gate pin causes an idle (LOW) state on the
input by going low. By going high the gate pin causes the state on the output channel to be
driven unto the input pin.

place_and_gate(0,2,8); // MC33816

12.2 Built-in Injector

One or more built-in injectors are created with the place_injector(); script command
specified in the MC33816 Hardware Commands section.

Note if the VBOOST voltage source's voltage is not being generated by the DC to DC
converter circuit then it's voltage should be specified with the set_voltage script command
as described in the MC33816 Hardware Commands section.

12. External Circuitry

page 196, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

12.3 Built-in DC to DC Boost Converter

The DC to DC boost converter external circuit can be created using the
place_dc_dc_converter() script command described in the MC33816 Hardware
Commands section. If not DC to DC boost converter is specified then the VBOOST
voltage should be specified with the set_voltage() command also described in the
MC33816 Hardware Commands section.

12. External Circuitry

Full System DevTool IDE, page 197Reference Manual (C) 2012-2024 ASH WARE, Inc.

12.4 Built-in HBridge

The H-Bridge build-in external circuit shown below is instantiated using a script command
defined in the the MC33816 Hardware Commands section. Note that this is only available
in the MC33816 simulator.

The h-bridge model supply must be the battery. In order for the VDS comparators to work
on HS2 and HS4, they must be configured to monitor the Battery supply which can be done
using the 'slfbk' instruction.

NOTE: The HBridge now supports either HS or LS drivers on the ground side of the
HBridge. This is why the GND-Side diagnostics have both Vds and Vsrc
comparators.

12. External Circuitry

page 198, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

This is the waveform produced by the h-bridge external circuit.

12. External Circuitry

Full System DevTool IDE, page 199Reference Manual (C) 2012-2024 ASH WARE, Inc.

12.5 Built-in Load

The resistive load shown below is instantiated using a script command defined in the the
MC33816 Hardware Commands section. Note that this is only available in the MC33816
simulator.

There are four flavors of the built-in load window, as follows.

- High Side

- High Side, Regulated

- Low Side

- Low Side regulated

The high-side circuit drives the load with one of high-side drivers, HS1-HS5.

The low-side circuit drives the load with one of low-side drivers, LS1-LS5.

The 'Regulated' measures the current using one of the four sense resistors, VSENSE1-
VSENSE4.

Additionally there are two load options.

- Resistor and inductor

- Resistive (only)

Additionally there are two load options.

Load, High-Side (unregulated)

12. External Circuitry

page 200, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Load, Regulated High-Side

12. External Circuitry

Full System DevTool IDE, page 201Reference Manual (C) 2012-2024 ASH WARE, Inc.

Load, Low-Side (unregulated)

12. External Circuitry

page 202, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Load, Regulated Low-Side

13. Workshops

Full System DevTool IDE, page 203Reference Manual (C) 2012-2024 ASH WARE, Inc.

13
Workshops

When debugging multiple targets/cores each will have it's own set of windows. That can be
a lot of windows to keep sorted out! Workshops provide a mechanism to group windows
into workshops ... thereby making it easy to show/hide whole groups of windows all at
once. Consider the situation with five windows. These windows have been assigned to
four workshops, 'All', 'Host', 'eTPU_A', and 'MiscWindows ' as shown below.

13. Workshops

page 204, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Say the Host CPU hits a breakpoint. It's workshop is the 'Host' workshop which becomes
active due to it hitting the breakpoint. Also, all 'Host' workshop window become visible and
windows not in the 'Host' workshop become hidden.

13. Workshops

Full System DevTool IDE, page 205Reference Manual (C) 2012-2024 ASH WARE, Inc.

It is also possible to activate a window simply by clicking on it's workshop button.

'Target-less' workshops are also possible as shown below. The 'MiscWindows ' workshop
has two associated windows.

13. Workshops

page 206, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Closely coupled with workshops is the concept of the active target/core. It is generally
best to associate targets/cores with workshops. Thusly, when the workshop is switched,
the active target/core is also automatically switched to the one associated with the newly
activated workshop. The active target/core is important in that Full System IDE acts on
the active target/core in a variety of situations. For instance, when a single step command
is issued, the active target/core is the one that gets single stepped and all other
targets/cores are treated as slave devices and are stepped however much is required in
order to cause the active target/core's simulation to progress by one step. Full System IDE
makes use of the active target/core when a new executable code image is loaded. Clearly
the user needs to have the ability to select a new executable image into a single specific
target. But which target should this be? The Full System IDE automatically selects the
active target/core as the one into which the executable code image is to be loaded.

To associate workshops with targets, see the Workshops Options Dialog Box section. In
that section there are descriptions of putting workshop buttons on the toolbar, renaming
workshops or automatically giving a workshop the same name of its associated target, and
associating workshops with targets.

When a target is assigned to a workshop, the windows associated with that target are
automatically made visible within the assigned workshop. It is often desirable to override
this, either to make individual windows visible in multiple workshops or to remove window
from specific targets. See the Occupy Workshop Dialog Box section for a detailed
description of how this is done.

14. The Waveform Window

Full System DevTool IDE, page 207Reference Manual (C) 2012-2024 ASH WARE, Inc.

14
The Waveform Window

The Waveform Window displays signals in a graphical format similar to that of a classical
oscilloscope combined with a logic analyzer. Variables, (including color-coded
enumerations,) analog signals, and digital signals can all be displayed displayed.

The following Waveform Window help topics are available:

Running the simulation from the waveform window
Choosing signals to display
Viewing a variable as a waveform
Resizing the waveforms' height and width individually, and all together
Resizing a waveform's amplitude manually
Resizing the waveform's amplitude automatically, very cool!
Controlling the view of time manually
Controlling the view of time automatically, very cool!
Enabling/disabling automatic scrolling, avoid annoyance!
Snapping to a transition
Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc)
Viewing eTPU Thread Activity
Executing to a precise time in the waveform, the 'Holy Grail'!

14. The Waveform Window

page 208, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Digital Signal Waveform

An example of this most basic waveform type is shown below.

14. The Waveform Window

Full System DevTool IDE, page 209Reference Manual (C) 2012-2024 ASH WARE, Inc.

Analog Signal Waveform

An example analog signal waveform is shown below.

14. The Waveform Window

page 210, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

State Machine State Waveform

The state machine's state is automatically available for viewing. Therefore, unlike
variables, there is no need for it to be enabled before it can be viewed.

14. The Waveform Window

Full System DevTool IDE, page 211Reference Manual (C) 2012-2024 ASH WARE, Inc.

14. The Waveform Window

page 212, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

14.1 Running the Simulation

14. The Waveform Window

Full System DevTool IDE, page 213Reference Manual (C) 2012-2024 ASH WARE, Inc.

14.2 The Vertical Cursors and Snapping

14.3 Executing to a Precise Time

14. The Waveform Window

page 214, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

14.4 Enabling/Disabling Automatic Scrolling ... CRITICAL!

This is one of the most inconspicuous, BUT CRITICAL, aspects of the
simulator!!! The author notes, 'when I have auto-scrolled disabled, I really, really
need it disabled. And conversely, when I have it enabled, I really, really, need it
enabled.' We are not quite talking defending the free world from the horde at the gate.
But still, to use the simulator effectively, you really do need to understand how to use this
key feature!

Should 'Auto-Scroll' be enabled?

The answer very 'situational'.

If you want the waveform window to continuously track and display the very most recent
information, then enable 'Auto-Scroll'.

If you want to focus on something that is happening at a specific region of time and want
execute over and over again within that time region, you definitely want to disable 'Auto-
Scroll'.

14.5 Choosing Signals to Display

Click the mouse on any button on the left hand side of the waveform window. The
Waveform Signal Options dialog will open from which any of the available signals can be
viewed.

14. The Waveform Window

Full System DevTool IDE, page 215Reference Manual (C) 2012-2024 ASH WARE, Inc.

On of the most powerful features of this tool
 is the ability to display variables

(and color coded state machine states)
(and color-coded enumerations)

as waveforms alongside the other signals in your simulation!

However, in order for a variable to be viewed, it first must first be enabled which is done
by right-clicking the variable, and select it for viewing as a waveform, in one of the
variable-viewing windows. The variable-viewing windows are the the 'Watch' window,
the 'Local Variable' window, the 'Channel Frame' window and the 'Script Variable'
window.

Note: The state machine state is automatically stored so, unlike normal variables, it does not
need to be first enabled for viewing.

Important: storing variables for viewing can slow the simulation considerably. It is
therefore recommended that this number be limited to under a half dozen. However, if you
do need to view more variables, a great book is 'Boys in the Boat'.

14. The Waveform Window

page 216, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

14.6 Viewing a Variable as a Waveform

Variables are NOT stored to the waveform data buffer by default. Therefore, in order to
be viewed, THE VARIABLE MUST FIRST BE ENABLED FOR VIEWING! This
is done from the 'Watch Window', the 'Local Variable Window', the 'Channel Frame
Window', or the 'Script Variable' window. Right click on the variable and select the
variable for viewing in the popup menu as shown below.

14. The Waveform Window

Full System DevTool IDE, page 217Reference Manual (C) 2012-2024 ASH WARE, Inc.

14.7 Resizing Waveforms Height and Width

Waveforms can be resized individually and all together as a group.

On the left edge of the waveform display area (see below) is a region that allows the
waveforms' width to be resized. When the cursor changes shape as shown below press
and hold down the left mouse button to resize.

14. The Waveform Window

page 218, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

At the bottom edge each waveform there is a region that allows the waveform height to be
resized.

Note that it is possible to resize the height of all of the waveforms together. This is done
(first) by resizing one waveform, then using the 'Equalize Waveforms Height' selection
from the popup menu.Enter topic text here.

14. The Waveform Window

Full System DevTool IDE, page 219Reference Manual (C) 2012-2024 ASH WARE, Inc.

14.8 Resizing a Waveform's Amplitude Manually

14.9 Resizing a Waveform's Amplitude Automatically

14. The Waveform Window

page 220, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

14.10 Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc.)

The eTPU Channel Flag states are (MRL_A, MRLE_A, TDL_B, etc.) displayed as
horizontal color-coded lines. When a line is visible it indicates that the corresponding eTPU
channel flag is set.

14. The Waveform Window

Full System DevTool IDE, page 221Reference Manual (C) 2012-2024 ASH WARE, Inc.

14.11 Viewing eTPU Thread Activity End

Thread activity can be viewed as a waveform as shown below.

14. The Waveform Window

page 222, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

14.12 Controlling the View of Time ... Manually

14. The Waveform Window

Full System DevTool IDE, page 223Reference Manual (C) 2012-2024 ASH WARE, Inc.

14.12.1 Displaying Behavior Verification Data

Behavior Verification Data appears as an overlaid yellow line as shown in the top
waveform.

The _EbvDiff and _EbvError waveforms show where differences and errors in the
behavior verification data. These signals are a logical 'or' of all channels errors such that if
there is an error or difference in any of the channels then the signal is active (high.)

The reason that _EbvError and _EbvDiff are not identical is because of the tolerance that
is allowed in each of these channels. See the Pin Transition Behavior Script Commands
section for a description on setting up global and pin-specific behavior verification
tolerances.

14. The Waveform Window

page 224, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

14.13 Controlling the View of Time ... Automatically

15. Operational Status Windows

Full System DevTool IDE, page 225Reference Manual (C) 2012-2024 ASH WARE, Inc.

15
Operational Status Windows

The target state is displayed in various operational status windows. These windows
correspond to the various functional blocks associated with the specific target. Each of
these windows can be floated, docked, scrolled. Depending on the window type, multiple
instances of each window may be opened.

15.1 Source Code Windows

The source code windows are the focal point of the Full System IDE. Capabilities such as
single stepping, breakpoints, setting and going to bookmarks, dragging variables into the
watch window, and may more are all accessed from source code windows. Some of the
major source code window features are shown below.

15. Operational Status Windows

page 226, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Code Coverage Indicators

Verifying test suite code coverage is a critical aspect of testing your code and is described
in the Functional Verification section. Code coverage indicators provides a quick
visualization of code coverage as shown below. A code coverage indicator box changes
color from white (not executed) to black (fully executed) as shown below. See the Code
Coverage Visual Interface section for more details.

15. Operational Status Windows

Full System DevTool IDE, page 227Reference Manual (C) 2012-2024 ASH WARE, Inc.

Mixed Assembly View

Right-click in any source code window and select the 'Toggle Mixed Assembly' option to
view the source code in mixed source assembly view as shown below.

15. Operational Status Windows

page 228, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

15.2 Script Commands Window

Script commands file perform many of executive tasks required in a simulation such as
initialization, verifying and modifying memory, verifying and modifying registers, etc. A list
of the available script commands functional groups is given in the Script Commands
Groupings section.

Primary Script Commands Files

The primary script commands file is the 'main banana'. It is used to perform most of the
administrative tasks during a simulation such as initialization, specifying behavior
verification files, verifying that operational parameters are met during a simulation, etc.
Most of the debugging capabilities available to source code files such as single stepping,

15. Operational Status Windows

Full System DevTool IDE, page 229Reference Manual (C) 2012-2024 ASH WARE, Inc.

'goto cursor', etc., are available. See the Script Commands File section for more
information.

ISR Script Commands Files

An ISR script commands file is associated with an interrupt and executes when an
interrupt is issued. Multiple ISR script commands files may be open at once, but only a
single ISR script commands can be associated with each eTPU channel. However, each
ISR script commands file can be associated with multiple TPU channels. See the Script
ISR section for more information.

Startup Script Commands Files

Startup script commands run from start to end when the Full System IDE is reset. The
purpose of the startup script commands file is to perform any required initialization prior to
starting the simulation. Startup script commands do not support single stepping, 'goto
cursor', or any other of the other debugging capabilities. Most of the normal script
commands are available to startup scripts, however at_time() and wait_time() are not
supported. Startup script commands are only available to the MC33816 simulator and the
CPU32 simulator

15.3 Watch Windows

The Watches window displays symbolic data specified by the user. Both local and global
variables can be displayed within this window. See the Local Variable window to
automatically display local variables.

The Watches window has a user-specified symbol on the far left. This is the symbol
whose resolved value will be displayed. To the right of the user-defined symbol is an
options button. This button accesses the Watch Options dialog box. In future versions of
this software, this dialog box will allow individual settings for the watch to be specified.

15. Operational Status Windows

page 230, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

To the right of the options button is a vertical separator bar. You can drag the vertical
separator bar left or right using the cursor. To the right of the vertical separator bar is the
symbol resolution field. If a value from the user-specified symbol can be resolved, then this
field is automatically displayed. Otherwise, a message is displayed indicating that the
specified symbol could not be resolved.

The user can edit the user-resolution field. In future versions of this software, this will
cause the actual variable values within the targets to be modified.

Symbolic Data Options

The Watches window supports both global and local variables. Variables are resolved by
looking at the innermost local scope first, followed by any outer scopes, in order, then
followed by any static variables, and finally the global scope.

Currently, a subset of C syntax is supported for the left-hand side symbol input:

- Pointers can be dereferenced with the '*' operator.

- The address of variables can be found with the '&' address operator.

- Array elements can be accessed with the '[]' operator, where the subscript is
an integer.

- Structure members can be accessed via the '.' or '->' operators.

In the current release, only a single operator per watch is supported. Future versions will
support a more full-feature C syntax. Note that code must be compiled with symbolic
debug information for this functionality to be available.

See the Global eTPU Channel variableAccess section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

Viewing Named Timer Region Information

Code can be instrumented with named timing regions. Traversal time information across
these regions can be viewed in the watch window using the following format.

@AshTimer.TimingRegionName

The traversal time and the number of system clocks in the last traversal are listed. Also
the number of times traversed and the cumulative amount of time spend in the regions is
also listed. Depending on the target the number of instruction cycles spend in the traversal
region may also be listed.

Viewing Print Action Command Output

15. Operational Status Windows

Full System DevTool IDE, page 231Reference Manual (C) 2012-2024 ASH WARE, Inc.

Print action commands support instrumentation of code to output code execution
information. Think printf. This information is normally output to the trace buffer, and from
the trace buffer can be piped to trace files for post processing. But it is also possible to
view this information in the watch window using the following command.

@AshTimer.FormatString

Where the format string matches exactly a Print Action Command’s format string from
within the source code.

See the Print Action Command section for more information on how to instrument your
code.

15.4 eTPU Channel Frame Window

The Channel Frame window shows the channel function and static local variables
belonging to a particular channel. Select the channel from the dropdown box.

15. Operational Status Windows

page 232, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

15.5 Memory Dump Window

Miscellaneous capabilities

To access the 'Goto Address' dialog, double click an address box.

General navigation - use the keyboard's up/down, page-up/page-down, Home, End keys.
Also, use the mouse's scroll bar or click anywhere in the markers pane, also, click on a
marker to view it.

To go to the first data in the row - hit the 'Home' key twice.

To go to address zero - hit the 'Home' key three times.

15. Operational Status Windows

Full System DevTool IDE, page 233Reference Manual (C) 2012-2024 ASH WARE, Inc.

To go to the last address in the row - hit the 'End' key twice.

To go to the last address in memory - hit the 'End' key three times.

Editing - Edit any data box to change it's value (only alphanumeric values are accepted).
Edit in the text pane (most keystrokes are supported).

Bookmarks

Bookmarks are used to quickly restore different views into the data memory. Stored view
information includes selected address, the first row in the window, and active row within
the window. The intent is to restore all aspects of the window layout. Bookmarks appear
as little blue boxes in the 'Markers' box.

To toggle a bookmark - double click on any 'Data Box'

To goto a bookmark - click on the marker in the markers window.

Additional bookmark navigation and hot-keys. Right click to bring up the popup
menu the various capabilities and associated hot keys are listed.

Copy/Paste

Multi-Select - Hold the left mouse key down and select desired test. Note that the
address and text fields can also be selected.

Multi-Paste - Multiple data's can be pasted from the window's clipboard. Data must be
white-space or comma separated. Numbers are interpreted as decimal unless either a
leading '0x' is detected or the number contains [a-zA-Z] characters. Out of range numbers
are masked. The paste start is the cursor's address or the first address of the multi-select
(if any).

Example clipboard: 0x1234, 0x4567 abcd

15. Operational Status Windows

page 234, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Pasting text is supported in the 'Text Pane'

Views

Address field can be 1, 2, or 4 bytes per address LSB thereby supporting 'Indexed'
addressing.

Data field can be 1, 2, or 4 bytes wide.

Text Field can be enabled or disabled.

15. Operational Status Windows

Full System DevTool IDE, page 235Reference Manual (C) 2012-2024 ASH WARE, Inc.

15.6 Local Variable Windows

The Local Variables window automatically displays all local variables in the current
context, along with their current values. Variable names are listed in a column on the left-
hand side of the window. Values are displayed in a matching column on the right-hand
side. The displayed format is relevant to the variable type. Additionally, if the variable is
assigned a register, the register is output.

Based upon type, variables are automatically expanded. For example, if a variable is of
type int*, the dereferenced pointer is displayed on the next line as an integer. Default
expansion is up to three levels deep, with pointers, arrays, and structures/unions/bitfields
supported. An alternative expansion level can be specified.

Future enhancements will give the user control over expansion and collapse of variables.
Note that in order for this feature to be available, code must be compiled with symbolic
debug information.

In order for this window to correctly identify and display local variables, the proper options
for each compiler must be chosen. For instance, debugging information needs to be
included and certain stack frame requirements must be met. In certain cases, highly
optimized code may cause erratic behavior in this window. See the ASH WARE Web

15. Operational Status Windows

page 236, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

page for a detailed explanation of the correct compiler settings for each target, and
limitations when using certain specific compiler settings.

Note that as the target executes, the contents of the Local Variables window will usually
change quite a bit. This is because each function generally has a unique set of local
variables that are displayed. As the target moves from function to function, only the local
variables of the currently executed function are displayed.

Global variables are not displayed within this window. See the description of the Watches
window for information on how to display global variables.

15.7 Breakpoint Window

The Breakpoint Window displays all the source and script file breakpoints, and provides
access to enhanced breakpoint capabilities. Breakpoints must initially be toggled on
(created) from within a code/script editor window, by clicking on the left margin at the
desired line. Once created, a breakpoint can be toggled off by left-clicking on the
breakpoint icon. All other breakpoint attributes and capabilities are available within the
Breakpoint Window, once a breakpoint is created.

All breakpoints from all targets and files are listed in the Breakpoint Window. It contains 8
columns. The first column indicates the breakpoint active status - clicking on this item
toggles a breakpoint between enabled and disabled. Disabled breakpoints are ignored
when simulation is running. Note that breakpoints can be completely deleted from within
the window by selecting a breakpoint line (or multiple lines) and hitting the Delete key.

The second and third columns provide the file and line of the breakpoint. Left-clicking on
either of these fields will cause the file to open/pop to the front of a tab, and scroll to the
breakpoint.

The seventh column allows for a conditional expression to be entered for the breakpoint
(source code breakpoints only). When execution reaches the breakpoint, the expression is
evaluated. If it evaluates to a non-zero value, then the breakpoint is considered a "hit",
whereas a zero result means execution continues and the breakpoint is ignored.

15. Operational Status Windows

Full System DevTool IDE, page 237Reference Manual (C) 2012-2024 ASH WARE, Inc.

The fourth to sixth columns provide a hit count capability for breakpoints. This capability
comes into play after a conditional expression is evaluated, if any. The fourth column
displays the number of times the breakpoint has been encountered since simulation reset.
The user can manually edit this field. The sixth column contains the hit limit value for the
breakpoint (default of 1). This value can be used in conjunction with the hit count and the
hit trigger type to determine whether the breakpoint should activate or be skipped. The hit
trigger type is configured in the fifth column. The default is "always", which means the
breakpoint should always activate, regardless of hit count or limit. The other trigger types
are ">=", "==", "<", and "%=0" (modulo). For example, for the first, if hit count >= hit limit,
then activate the breakpoint. The modulo trigger type activates when (hit count % hit limit)
== 0.

The last column allows for the entry of a breakpoint action. This is essentially the same as
the action tag capability, but linked to a breakpoint rather than an @ASH@ tag in the
source code text. If a breakpoint passes its other tests and is set to activate, the logic
checks to see if there is an action to process. If no action, the breakpoint halts execution
as per normal. If there is, the action is processed (see the action tag section for the
available commands), and if it succeeds, the breakpoint does not actually activate and
execution proceeds.

page 238, Full System DevTool IDE

16. Dialog Boxes

Full System DevTool IDE, page 239Reference Manual (C) 2012-2024 ASH WARE, Inc.

16
Dialog Boxes

This section covers the various dialog boxes used throughout the Full System IDE.

16.1 Goto Time Dialog Box

The Goto Time Dialog Box is opened via the Run menu by selecting the Goto Time
submenu. It provides the capability to execute the Full System IDE until a user-specified
time.

There are two types of Goto time options, one of which must be selected.

Goto Until Time

This sets the Full System IDE to execute until an absolute (simulation) time is reached.
The simulation time is initially set to zero. The simulation time is reset to zero via the Run
menu by selecting the Reset submenu.

Goto Current Time, Plus

This sets the Full System IDE to go to the current (simulation) time plus some user-
specified additional time.

16. Dialog Boxes

page 240, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

User-specified time is entered as thousands of seconds (ksec), seconds (secs), milliseconds
(ms), microseconds (us), and nanoseconds (ns). Note that the Full System IDE resolution
is one instruction cycle.

Help

This accesses this help window.

Goto

This closes the Goto Time dialog box and runs the Full System IDE until the specified time.

OK, Save

This closes the Goto Time dialog box and saves any changes. The Full System IDE
remains idle.

Cancel

This closes the Goto Time dialog box without saving any changes.

16.2 Goto Angle Dialog Box

The Goto Angle Dialog Box is opened via the Run menu by selecting the Goto Angle
submenu. It provides the capability to execute the active target until it gets at or beyond
the specified angle. The eTPU must be in angle mode (AM=1) in order for this to function
properly.

This dialog box uses the TCR2 counter, and user-defined angle indices to calculate the
angle. See the eTPU Time Base Configuration Script Commands section for setting the
angle indices.

The ‘Cycles’ field refers to the number of times the angle has rolled over. For example, in
an automobile engine, two rotations constitutes one cycle. The angle therefore goes from 0
degrees, to 720 degrees, then rolls over back to zero degrees. ‘Cycles’ is the count of these
rollovers.

The current angle can be seen in the status bar at the bottom of the IDE.

Goto Until Angle

16. Dialog Boxes

Full System DevTool IDE, page 241Reference Manual (C) 2012-2024 ASH WARE, Inc.

This sets the active target to go to an absolute (simulation) angle. The simulation angle is
initially set to zero. The simulation angle is reset to zero via the Run menu by selecting the
Reset submenu.

Note that if the desired stop cycle and angle has already been traversed, then the Cycles
field is ignored and the simulation is halted the next time the specified angle is traversed, in
either the current or next cycle.

Goto Current angle, Plus

This sets the additional angle to which the active target will be run. The angle to which the
active target will run is the current angle plus the specified delta angle.

Help

This accesses this help window.

OK

This closes the Goto Angle dialog box and runs the simulator until the simulator is at or
beyond the specified angle in the active target.

Cancel

This closes the dialog box without saving any changes.

16.3 Workshop Options Dialog Box

Each window is assigned to one or more Workshops.

Only one Workshop is active at a time.

Only those windows assigned to the active Workshop are visible, all other windows are
hidden.

Each workshop has a button. To change the active workshop, click on it's button. This
changes which windows are visible and hidden.

All windows are visible in the 'All' workshop.

In a multi-target environment, each target get's it's own workshop. When a target stops
(for example when a breakpoint is hit) that target's workshop is automatically activated and
it's associated windows are made visible.

16. Dialog Boxes

page 242, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Related Information

The 'Workshops' section
The 'Workshops Occupy' section on how to assign windows to workshops

16.4 Occupy Workshop Dialog Box

The Occupy Workshop dialog box provides the capability of specifying for individual
windows which workshop(s) the window will be visible.

OK

This closes the dialog box and saves any changes.

Cancel

This closes the dialog box and discards all changes.

Help

16. Dialog Boxes

Full System DevTool IDE, page 243Reference Manual (C) 2012-2024 ASH WARE, Inc.

This accesses this help window.

Occupy All

This causes the window to be visible in all workshops.

Leave All

This causes the window to not be visible in any workshop. This should be treated as a
shortcut for clearing all selections. Note that this is not the same as closing the window as
the window will still exist within theFull System IDE .

Revert

This causes any settings made since the dialog box was opened to be discarded.

Options

This opens the Workshop Options dialog box.

16.5 Message Options Dialog Box

The Message Options dialog box provides the capability to disable the display of various
messages. These messages warn the users in a variety of situations such as a failed script
verification command failure or when suspicious code is encountered.

16.6 Source Code Search Dialog Box

The Source Code Search Options dialog box is opened from the Options menu by selecting
the Source Search submenu.

When the executable image is loaded, there are normally a number of source code files
associated with the executable image that get loaded. The Full System IDE needs to be
able to find these files. This dialog box allows specification of source code directories to be
searched when searching for these source code files.

The search locations can be specified for each individual target, and for all targets globally.
 Specifying global search options is useful in situations in which multiple targets are using
the same directories for their library files.

When searching for a source code file, the following algorithm.

16. Dialog Boxes

page 244, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

· If the path to the file is fully-specified (e.g. c:\SomeDir\SomeFile.c) use that if the
file exists there.

· If the path is partially specified (e.g. ..\OneUpDir\SomeFile.c) resolve the path
relative to the code image file. For instance, if the code image file is at c:
\SomeDir\SubDir\CodeImage.Elf, then check for this file c:
\SomeDir\OneUpDir\SomeFile.c

· If the source file is still not found, use the raw file name (strip any prepended
directory information) and search in the directory where the executable image file is
located.

· If the source file is still not found, use the raw file name (strip any prepended
directory information) and search for the file in the directory(s) listed in the 'Selected
Targets' directory search list, starting from the top-listed directory.

· If file is still not found, use the raw file name (strip any prepended directory
information) and search for the file in the directory(s) listed in the 'All Targets'
directory search list, starting from the top-listed directory.

Add

This button inserts a new directory into the search list.

Modify

This button modifies a previously entered search location.

Delete

This button removes a location from the search list.

Cut

This button removes the currently selected search location from the search list, and places
it into the paste buffer.

Copy

This button adds the currently selected search location to the paste buffer without removing
it from the search list.

Copy

16. Dialog Boxes

Full System DevTool IDE, page 245Reference Manual (C) 2012-2024 ASH WARE, Inc.

This button creates a new search location using the paste buffer.

Move Up

This button moves the currently selected search location higher in the search list such that
this location is searched earlier.

Move Down

This button moves the currently selected search location lower in the search list such that
this location is searched later.

16.7 Waveform Window Options Dialog Box

The Waveform Window Options Dialog box defines the settings associated with the
Waveform Window.

Clocks or Time

Determines if the the Waveform Window should reference target clocks or time.

Display of Time

Determines the timebase and leading/trailing digits for the waveform window's display of
time.

Configure Thread Groups

There are eight thread groups labeled from 'A' to 'H'. This opens the Thread Group Dialog
Box allows configuration of which thread(s) are associated with each of these groups.

16.8 Waveform Signal Options Dialog Box

The waveform dialog box allows a selection of a variety of signals for display in the
waveform window. It also provides a options for viewing.

Alias Name

16. Dialog Boxes

page 246, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The alias name allows the symbol name to be given a more intuitive and application-
relevant name. For example, the underlying '_ch10.out' signal could be renamed to be
'Spark 3'.

Code Variables

In order to display code variables as discrete nodes they first must be configured to be
stored in the waveform data buffer. This is done from the watch window by right clicking
on a symbol and selecting 'Make Waveform a Discrete Node' as shown below.

State Machine State

The state machine's state is automatically added to the waveform data buffer and is
therefore available in the 'variables section'. Note that the State Name will appear if the
mouse is hovered over the waveform as shown below in which the green portion of the
waveform indicates that the 'HOLD_ON' state was active over that period.

16. Dialog Boxes

Full System DevTool IDE, page 247Reference Manual (C) 2012-2024 ASH WARE, Inc.

Thread Groups

Thread activity is one of the most important and useful features of the waveform window.
In the MC33816, thread activity is displayed by selecting the signal named 'Wait'. In the
eTPU, before thread groups are meaningful, they must be configured in the Waveform
Window Dialog.

Both the eTPU and the MC33816 are event response machines such that the Execution
Unit goes idle after servicing an event and become active when an event requiring
servicing occurs. The Thread Groups shows when these event-handling threads occur.

However, the very most powerful and useful feature is the ability to snap the vertical
cursors unto the start of the thread. This takes several steps as listed below.

· Use the up/down keyboard keys to make the thread group the active (red) waveform

· Use the left and right keyboard keys to snap the vertical cursor unto the exact point in
time when the thread servicing begins

· Using the mouse, drag and drop the time listed in the 'Right Cursor' or 'Left Cursor' unto
the waveform.

Wow, ..., what happened? Answer: the simulator was reset, then ran until the point time
listed in the 'Right Cursor' or 'Left Cursor' waveform.

16. Dialog Boxes

page 248, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Analog and Discrete Signals

Analog and discrete signals can modify their vertical range.

The 'Auto Range View' button configures the waveform display visible portion of the
waveform is fully visible in the display.

The 'Auto Range Buffer' button is exactly the same as the 'Auto Range View' button
except that the entire waveform (including that in the buffer which may not be visible) will
fit, vertically, into the display.

Digital Signals

A variety of digital signals can be selected for viewing from the 'Node Selection' tree.

Channel State Overlay Enables

Channel State Overlay Enables allow the channel states to be visible in the waveform.
Note that these are only available in eTPU input and output pins.

16. Dialog Boxes

Full System DevTool IDE, page 249Reference Manual (C) 2012-2024 ASH WARE, Inc.

The waveform below shows the channel State Overlays. The green horizontal line
indicates when MRLE_A is set. The blue horizontal line indicates when MRLE_B is set.

Behavior Verification Overlay

Behavior verification allows waveform data to be stored into a 'Gold File'. The data in the
'Gold File' can be replayed in the simulator and compared against the current simulation
value. When 'Behavior Verification' is checked, any previously stored data is overlayed
unto the current waveform, thereby making highlighting differences in the current
simulation versus the previous simulation as shown below.

· The black waveform is the same signal in the current simulation run.

16. Dialog Boxes

page 250, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

· The yellow waveform is the previously-saved waveform restored from the gold file.
Note that in the waveform shown below, the pulse occurred earlier than in the latest run.

In order to view previously-saved simulation data the following steps are required

· Save waveform data into gold files by adding script commands create_ebehavior_file(),
add_ebehavior_pin(), and close_ebehavior_file() to the the script commands file, then
run a simulation to generate a gold file.

· Replay a previously-saved simulation waveforms from a gold file using the
close_ebehavior_file() script command.

· Enable viewing of the previously saved 'Behavior Verification' waveform by selecting
the 'Enable Behavior Verification Overlay' checkbox.

Note that behavior verification is a big topic. For a complete description, see the Pin
Transition Behavior Verification section of the Functional Verification chapter.

Vector Files

A list of all nodes defined in the vector file is available along with the aliases for those
named nodes. This allows waveforms to be quickly associated with aliases matching those
in the vector file.

Note that unlike previous products, the waveform alias is not tied to the vector file. When
the vector file reloads and the Full System IDE detects that the pin/signal of a waveform
alias matching a vector file alias mismatch, the user will be asked if they want their
waveform alias to update to the new pin/signal. This situation can happen if a user
changes pin assignment in the vector file - the Full System IDE allows the user to easily
update their Waveform configuration to match.

16. Dialog Boxes

Full System DevTool IDE, page 251Reference Manual (C) 2012-2024 ASH WARE, Inc.

16.9 Channel Group Dialog Box

The Channel Group Options Dialog box is used to select groups of one or more channels.
It is accessed in different locations for different purposes.

This dialog box is accessed from the Waveform Options Dialog Box to specify groups for
monitoring of eTPU thread activity. Note that thread group activity is displayed as a
waveform in the Logic Analyzer.

16.10 Trace Options Dialog Box

The Trace Options Dialog Box specifies which types of trace data are stored in the buffer
and which are displayed in the trace window. Once a simulation is run, only data stored in
the trace buffer can be displayed. However, trace data that is configured for storage in the
buffer but not display can later be displayed without re-running the simulation. Data not
configured for storage in the trace buffer cannot be viewed without re-running the
simulation.

A computer's memory is finite and trace data can therefore sometimes overflow the trace
buffer. In this case the oldest trace data is discarded to make room for the most recent
trace data. One way to increase the effective buffer size is to disable certain types of data,
or data from specific targets, from being stored in the trace buffer.

Note that in a multi-target environment 'Target Display' check boxes appear at the top of
the trace window. These check boxes allow the enabling and disabling of all trace data for
the entire target all at once. However, in order to be displayed, a trace type must be
enabled in both the dialog box and in the checkbox at the top of the trace window.

Note that unlike previous simulation, all trace data from all targets is stored in a single trace
buffer. So disabling storage of trace data from one target will increase the effective
storage size of other targets.

Instruction Execution

Selecting this option causes each instruction execution to be logged to the trace buffer.

Instruction Boundary

Selecting this option causes each instruction boundary to be logged in the trace buffer.
While an instruction boundary contains no useful information, the resulting dividing line
makes the trace window easier to read.

16. Dialog Boxes

page 252, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Memory Read

Selecting this option causes each memory read to be logged to the trace buffer.

Memory Write

Selecting this option causes each memory write to be logged to the trace buffer.

Exception

Selecting this option causes each exception to be logged to the trace buffer. This is only
meaningful in the context of CPU targets.

Time Slot Transition

Selecting this option causes each time slot transition to be logged to the trace buffer. This
is only meaningful in the context of eTPU targets.

State End

Selecting this option causes state end to be logged to the trace buffer. This is only
meaningful in the context of TPU targets.

Pin Transition

Selecting this option causes each pin transition to be logged to the trace buffer. This is only
meaningful in the context of TPU targets.

SGL Negation NOP

Selecting this option causes SGL negation NOP to be logged to the trace buffer.

16.11 License Options Dialog Box

This dialog box allows you to enter additional information prior to sending a license file to
ASH WARE Inc. A license file is generated whenever you install an ASH WARE
product. Unfortunately, the license file generated at install time contains very little
information other than a computer identifier. This dialog box allows you to add additional
information such as your name, purchase order number, etc.

16. Dialog Boxes

Full System DevTool IDE, page 253Reference Manual (C) 2012-2024 ASH WARE, Inc.

The license file has been a problem for ASH WARE in that users have sent in license files
for purchased products but we were unable match the license files with the purchase. This
dialog box is intended to reduce this confusion, thereby allowing us to serve you better.

All information is optional. Generally, it is best to include at least your company’s purchase
order number or the ASH WARE invoice number, if available.

16.12 Memory Tool Dialog Box

This tool supports specialized memory functions listed below. The dump file functions are
also accessible from the dump_file script command listed in the File Script Commands
section.

- Fill memory with data or text

- Search for data or text

- Dump to disassembly file

- Dump to Motorola SRecord (SREC) file

- Dump to Intel Hexadecimal (IHEX) file

- Dump to image file

- Dump to "C" structure file

For each function the address space and memory range can be specified. Earlier address
ranges are stored in a buffer and can be retrieved using the recall button. For the file-
dump options, selecting the change button can specify the file name.

In disassembly dump files inclusion of address, raw values, addressing mode information,
and symbolic information can be selected.

When creating an image file or a "C" data structure file, or when using the fill function, the
data word size can of 8, 16, or 32-bits. For the fill function, verification after the fill can be
selected.

The find capability allows a specific byte pattern to be located in memory. Options include
the ability to search for between one and eight sequential bytes, as well as the ability to
search for both a case sensitive or case-insensitive string.

"C" data files can be written with the address included within a comment. Output format
can be either hexadecimal, which is the default, or decimal.

16. Dialog Boxes

page 254, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Selection of endian ordering is available for where the data size is exceeds one byte. This
option is available when dumping to an image or a "C" structure file or when using the find
function. In cases where the selected endian ordering does not match the natural endian
ordering of the target a warning is displayed.

16.13 The 'About' Dialog Box

The Full System IDE (C) 2012-2024 ASH WARE, Inc.. All rights are reserved. Various
national and international laws and treaties protect these rights. Any misuse or other
violation of the copyright will be prosecuted to the full extent of the law.

The Full System IDE media may not be copied or transmitted except for the purpose of
creating a backup copy for archival purposes.

16.14 GTM Configuration Dialog Box

The GTM can have dozens of execution nodes (MCS Channels) which are each treated as
a separate target within the Full System IDE. This can result in an overly cumbersome
simulation environment that might be both confusing and slower to simulate.

To mitigate this, unused MCS channels should be disabled from within the GTM
Configuration Dialog Box.

16. Dialog Boxes

Full System DevTool IDE, page 255Reference Manual (C) 2012-2024 ASH WARE, Inc.

The GTM MCS Configuration Dialog

To Open the Above Dialog

Note that the GTM Configuration Dialog Box is opened from within the Project Window by
right-clicking on the Build Script node (see below) and selecting 'Settings' option from the
popup menu.

16. Dialog Boxes

page 256, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

From the 'Settings' window click on the 'Cluster and MCS Channel Configuration' setting
as shown below.

17. Menus

Full System DevTool IDE, page 257Reference Manual (C) 2012-2024 ASH WARE, Inc.

17
Menus

This section covers the various application menus in the Full System IDE.

17.1 Files Menu

The Recent, ... submenu's

The Recent Project, Source, Script, Vector, and Other submenu's allow recently-opened
files to be readily re-opened.

Open Existing, ... submenu's

Opens a dialog for selection of existing files.

Create New

Creates a brand new file. A dialog opens that allows selection of the new file's filename.
When creating a new Source code files, State Machine, or Primary Script file the new file
can either be blank or created from a template.

Save File

Saves the currently-active file.

Save All Files

17. Menus

page 258, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Saves all open files that have been modified (dirty).

Close

Closes the currently-active file.

Project, Save

Saves the current settings to the project file and the environment file. The project file
contains all the key settings and is typically placed in version control. The environment file
contains all the user settings such as window positions, open files, etc., and is typically
specific to each user and not placed in version control.

Write

A number of files can be generated

The Code Coverage Statics file lists which code has been executed.

The Code Load report gives statics on the currently-loaded code.

The Trace Buffer file shows detailed trace information from the last simulation run.

The Symbol Table file gives detailed symbolic (variable) information on the loaded code.

The Window Snapshot takes a snapshot of the currently active window and saves it to a
file. This is great for documentation.

17.2 Build Menu

Build All

Force a re-build of all code, regardless of whether the source files have been modified or
not

Make

Conditionally re-build code, based on whether or not the source code files and project
settings have changed since the last build.

Compile

Compile (or assemble) the active source code file

17. Menus

Full System DevTool IDE, page 259Reference Manual (C) 2012-2024 ASH WARE, Inc.

Re-Parse Script

Re parse just the script file. Note that the hot-key for this action when editing is
'Ctrl+R' which is the same as 'Reset' when simulating.

Re-Parse Vector

Re parse just the vector file. Note that the hot-key for this action when editing is
'Ctrl+R' which is the same as 'Reset' when simulating.

Help

This accesses this help screen.

17.3 Edit Menu

Goto Error

In the Output Window, errors and warnings from the last build, script parse, and vector
parse are listed. These menu items activates the referenced file and scrolls to the
referenced file line.

Goto Line ...

Opens a dialog to move the cursor to a specific line in a source code file.

Find

Finds text in files. Options are as follows.

· Just a single file or multiple files can be searched

· Included files (using #include) can be searched

· The last search option can be repeated.

· All files in a specific directory can be searched

· Files in sub-directories can be included in the search

Bookmarks

17. Menus

page 260, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Bookmarks can be dropped on to lines of code. These lines of code can be quickly brought
back into view using 'Goto Next Bookkmark'

Select All

Selects all text in an editable file.

Cut, Copy, Paste

Uses the standard windows clipboard to perform 'Cut, Copy and Paste' functions.

Undo, Redo

Undo edits. Redo the undo edits.

Block Indent, Block Un-Indent

Adds or removed indentation from multiple text lines.

Help

This accesses this help screen.

17.4 Step Menu

Into

This runs the active target until one line of source code is executed. If a function is called,
Full System IDE halts on the first instruction within that function. If no instructions
associated with source code lines occur, Full System IDE continues to run until stopped by
selecting the Stop submenu in the Run menu.

Over

This single steps the target by one line of source code, stepping over any function call.
This is the same as the above "Into" function except the "Into" function will halt on a line of
source code within the function that is called. If no instructions associated with source
code lines occur, Full System IDE continues to run until stopped by selecting the Stop
submenu in the Run menu.

Out

17. Menus

Full System DevTool IDE, page 261Reference Manual (C) 2012-2024 ASH WARE, Inc.

This runs the active target until the current function returns. Execution is halted on the
next line of source to be executed in the calling function. If no instructions associated with
source code lines associated with a calling function occur, Full System IDE continues to
run until stopped by selecting the Stop submenu in the Run menu.

Anything

This causes one action to be performed. This action may be execution of a single
instruction, execution of a script command, or simply a tick of the CPU clock. This is
helpful for advancing execution by as small an amount of possible, allowing you to really
zoom in on a problem.

Script

This runs Full System IDE until one script command from the active target is executed. If
no new script commands become available Full System IDE continues to run until stopped
by selecting the Stop submenu in the Run menu.

Thread Start

Runs until the beginning of the core's next thread (a wait-table's event becomes true.)
Execution stops just prior to execution of the first opcode in the thread. If no thread
occurs, execution continues to run until stopped by selecting the Stop submenu in the Run
menu.

Thread End

This command is excellent for running from thread-to-thread.

- If in a thread, run, then stop at the end of the thread.

- If at the end of a thread, run until the beginning of a thread

Thread Start (Time Slot)

Runs until the beginning of the next eTPU thread (time slot transition.) Execution stops just
prior to execution of the first opcode in the thread. If no thread occurs, execution
continues to run until stopped by selecting the Stop submenu in the Run menu.

Thread End

This command is excellent for running from thread-to-thread in the same channel.

- If in a thread, run, then stop at the end of the thread.

17. Menus

page 262, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

- If at the end of a thread, run until the beginning of a thread on the same
channel.

- If no thread is active, run until the beginning of a thread on the last-active
channel.

Angle Tick

When the eTPU is in angle mode, this runs until the next angle tick occurs.

Angle Tooth

When the eTPU is in angle mode, this runs until the angle tooth occurs. The angle tooth
could be generated by a physical tooth, a tooth induced by asserting TPR.IPH, or by the
EAC decrementing TPR.MSCNT.

Assembly

This runs the active target until a single assembly instruction occurs. If instructions occur,
DevTool continues to run until stopped by selecting the Stop submenu in the Run menu.

Assembly, N

This runs the active target until a user-specified number of assembly instructions occur. A
dialog box opens allowing specification of the desired number of assembly instructions. If
no assembly instructions occur, Full System IDE continues to run until stopped by selecting
the Stop submenu in the Run menu.

Help

This accesses this help screen.

17.5 Run Menu

Goto Cursor

This runs Full System IDE until an instruction associated with the current cursor location is
about to be executed or a breakpoint is encountered. A source code window must be
active for this command to work.

Goto Time

This opens the Goto Time dialog box. Runs Full System IDE until the specified time or
until a breakpoint is encountered.

17. Menus

Full System DevTool IDE, page 263Reference Manual (C) 2012-2024 ASH WARE, Inc.

Goto Time, Fast

This behaves exactly like the Goto Time submenu, except the goto time dialog box is not
opened. Instead, the previously specified Goto Time options are used.

Go

This causes Full System IDE to execute indefinitely. Full System IDE executes until a
breakpoint is encountered or until the user terminates execution by selecting the Stop
submenu in the Run menu.

Stop

This causes Full System IDE to stop executing. This is normally used to stop Full System
IDE when the expected event (such as step, breakpoint, time slot transition, etc.) failed to
occur.

Reset and Go

This causes Full System IDE to reset and immediately begin execution. The reset actions
are specified in the Reset Options submenu. Full System IDE will execute until a
breakpoint is encountered or until interrupted by the user selecting the Stop submenu from
the Run menu.

Reset

This causes Full System IDE to reset. The reset actions are specified in the Options
submenu in the Reset menu.

Help

This accesses this help screen.

17.6 Breakpoints Menu

The breakpoints menu controls the various functions associated with the breakpoint
capabilities of the Full System IDE. These capabilities are accessed via the following
submenu's.

Set (Toggle)

This toggles a breakpoint at the source code window’s cursor. If the instruction already
has a breakpoint, then the breakpoint is deleted. A source code window must be active for

17. Menus

page 264, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

this to work. If the source code is in mixed assembly view mode, and the cursor is at a dis-
assembly line, then the breakpoint will be generated for only that address.

Delete All

This deletes all active and all disabled breakpoints.

At Address …

This opens a dialog box which allows placing a breakpoint any user-specified address. This
is useful when debugging code for which there is no line number information, such as GNU
assembly code.

Delete All Script

This deletes all breakpoints that are in the script commands file.

Help

This accesses this help screen.

17.7 View Menu

This menu opens the various Simulator windows for viewing. The Full System IDE allows
multiple instances of each window to be open simultaneously. When there are multiple
targets a submenu for each target appears. Otherwise, all available windows are available
directly within the view menu.

See the Operational Status Windows chapter for a listing of the available windows for each
target.

Help

This accesses this help screen.

17.8 Options Menu

The Options menu provides the user with the capability of setting various Simulator options.
 These are listed below.

Workshop

17. Menus

Full System DevTool IDE, page 265Reference Manual (C) 2012-2024 ASH WARE, Inc.

This opens the Workshops Options dialog box.

Messages

This opens the Message Options dialog box.

Waveform, ...

This opens the Waveform Window Options dialog box

Waveform

This accesses a number of sub-menus used for setting the currently-active waveform in
the waveform window.

Help

This accesses this help screen.

17.9 Help Menu

The Help menu provides the following options.

Contents

Accesses the contents screen of Full System IDE’s on-line help program.

Technical Support

This accesses information on obtaining technical support for this product.

About

This gives general information about Full System IDE.

page 266, Full System DevTool IDE

18. Supported Targets and Available Products

Full System DevTool IDE, page 267Reference Manual (C) 2012-2024 ASH WARE, Inc.

18
Supported Targets and Available

Products

Due to its layered design, Full System IDE supports a variety of both simulated and
hardware targets. Customer requirements dictate that these capabilities to be offered as
specific individual products.

18.1 MC33816/CPU System Simulator

Our MC33816/CPU System Simulator supports instantiation and simulation of an arbitrary
number and combination of MC33816s and CPUs. A dedicated external system modeling
CPU could be used, for instance, to model the behavior of an automobile engine.
Executable code can be individually loaded into each of these targets. Synchronization
between targets is fully retained as the full system simulation progresses.

All CPU engine targets can be used with this system simulation include the CPU32 and
soon-to-be-released, PPC simulation engines.

18.2 eTPU/CPU System Simulator

Our eTPU/CPU System Simulator supports instantiation and simulation of an arbitrary
number and combination of eTPUs and CPUs. A dedicated external system modeling
CPU could be used, for instance, to model the behavior of an automobile engine.

18. Supported Targets and Available Products

page 268, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Executable code can be individually loaded into each of these targets. Synchronization
between targets is fully retained as the full system simulation progresses.

All CPU engine targets can be used with this system simulation include the CPU32, and
soon-to-be-released, PPC simulation engines.

18.3 MC33816 Stand-Alone Simulator

This product is a single-target version that uses only the MC33816 simulation engine.
Because it is a stand-alone product the user must use script commands files to act as the
host and test vector files to act as the external system.

The MC33816 Stand-Alone Simulator is a superset of the MC33816/CPU System
Simulator in that purchase of the Stand Alone Simulator license allows installation of a
fully-functional Stand-Alone Simulator product as well as the full System Simulator
configuration.

18.4 eTPU2 Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our eTPU2
simulation engine. Because it is a stand-alone product the user must use script commands
files to act as the host and test vector files to act as the external system.

The eTPU2 Stand-Alone Simulator is a superset of the eTPU Stand Alone Simulator in
that purchase of the eTPU2 Stand Alone Simulator license allows installation of a fully-
functional eTPU Stand-Alone Simulator product as well as an eTPU2 Stand-Alone
Simulator product.

18.5 eTPU Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our eTPU
simulation engine. Because it is a stand-alone product the user must use script commands
files to act as the host and test vector files to act as the external system.

This product simulates the original eTPU1 from NXP. For simulation of the new eTPU2,
see the eTPU2 Stand-Alone Simulator product.

18. Supported Targets and Available Products

Full System DevTool IDE, page 269Reference Manual (C) 2012-2024 ASH WARE, Inc.

18.6 CPU32 Stand-Alone Simulator

Our CPU32 Stand-Alone Simulator allows you to load code into a single simulated CPU32.

18.7 MC33816 Simulation Engine Target

The MC33816 is an twelve channel gate driver IC for automotive engine control, motor
control, and other applications that can take advantage of the integration of the four
microsequencers in the same device as the power drivers. The IC consists of five external
MOSFET high side pre-drivers and six external MOSFET low side pre-drivers. The
MC33816 provides a flexible solution for MOSFET’s gate drive with a versatile control and
optimized latency time. Gate drive, diagnosis, and protection are managed through four
independent microcores, and two Code RAM and two Data RAM banks.

The MC33816 simulation engine can be used both as a stand-alone device and in
conjunction with other targets including multiple CPUs. When used in stand-alone mode, of
primary importance are script commands files and test vector files.

18.8 eTPU2 Simulation Engine Target

The Enhanced Time Processing Unit Two, or ‘eTPU2’, is a microsequencer sold by
STMicroelectronics and NXP Semiconductor on a variety of microcontrollers including the
SPC563Mxx. This is sold as a stand alone product and also as a system simulator in which
it is co-simulated along with one or more CPU targets.

The eTPU2 simulation engine can be used both as a stand-alone device and in conjunction
with other targets including multiple TPUs. When used in stand-alone mode, of primary
importance are script commands files and test vector files.

18.9 eTPU Simulation Engine Target

The Enhanced Time Processing Unit, or eTPU, is a microsequencer sold by NXP on a
variety of microcontrollers.

18. Supported Targets and Available Products

page 270, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

18.10 CPU32 Simulation Engine Target

The CPU32 is sold on a number of NXP microcontrollers, including the very popular
68332. The CPU32 Simulation Engine can be used both in stand-alone mode and in
conjunction with other CPUs and peripherals including multiple CPU32s.

19. Building the Target Environment

Full System DevTool IDE, page 271Reference Manual (C) 2012-2024 ASH WARE, Inc.

19
Building the Target Environment

The simulated or hardware development environment is specified in special MtDt build
script files. ASH WARE provides standard build scripts for all its products. In the vast
majority of cases these build scripts are sufficient and therefore effectively transparent to
the user. But occasionally a user may desire to modify the simulation environment to
unlock advanced capabilities. This chapter describes how to do so.

A complete system may consist of multiple CPUs, eTPUs, peripherals, and non-electrical
devices such as automobile engines. The Full System IDE supports simulation of such
advanced systems using MtDt build script files. MtDt build script files are used to create
the targets and specify how they interact.

Theory of Operation

Full System IDE is capable of instantiating and simulating multiple targets, allowing them to
interact via shared memory while maintaining the correct synchronization and relative
timing. In addition, a rich set of debugging capabilities normally associated with single
target systems has been extended to this multiple target environment.

Each target loads and runs its own executable code image.

Each target can have primary and startup script commands files. TPU targets can also
have ISR files that are associated with and activated by specific interrupts, and test vector
file that can be used to wiggle the TPU's I/O pins.

19. Building the Target Environment

page 272, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The relative timing of targets is maintained with one femto-second precision. Each target
has its own atomic execution step size that must be a multiple of the femto-second
precision. Negative numbers and zero are valid steps sizes. Since the currently-supported
targets are all execution cycle simulators, the step size is equal to the amount of simulated
time it takes to execute a single opcode.

As each target executes it is advanced by the amount of time the last opcode took to
execute. It is then scheduled to execute again when the simulation time is equal to the
target's next scheduled time. The current simulation time is defined as the time that the
next scheduled target will execute.

Although all the currently-supported targets are execution-cycle simulation engines, this is
not a fundamental restriction of MtDt. In fact, MtDt can support targets that have much
finer execution granularities. This would allow, for instance, a VHDL target that properly
models inter-target interaction down to the transistor level.

Debugging Capabilities

All standard single-target debugging capabilities such as single stepping, breakpoints, goto
cursor, etc., are available in the multiple target debugging environments. For instance, if
breakpoints are injected and activated within multiple targets, the simulation halts on
whichever breakpoint is encountered first.

A concept of an "active target" is employed to support specifically single-target capabilities
such as single stepping. When the active target is single-stepped, the entire system
simulation proceeds until the active target completes the commanded single step.

With an essentially limitless number of targets, and with the large number of possible
windows per target, the vast number of windows can become unwieldy, to say the least.
Actually, without some mechanism to bring order to the chaos of having way too many
windows, MtDt becomes unusable. Workshops bring order to this chaos and are therefore
a key enabling feature that makes MtDt usable. Each target can be associated with a
specific workshop. Those target's windows are displayed only when the workshop
associated with that target is activated. Individual windows can be overridden to appear in
more than one target.

A target other than the active target can halt a simulation. In this situation the workshop is
changed to one associated with the halting target. This can be caused, for instance, if a
breakpoint is encountered in a non-active target. In this case, the simulation is halted, the
halting target becomes the active target, and the workshop is switched to the one
associated with the newly-active target.

19. Building the Target Environment

Full System DevTool IDE, page 273Reference Manual (C) 2012-2024 ASH WARE, Inc.

Building the MtDt Environment

With MtDt an entire hardware or simulation environment can be built. This is done using a
dedicated build script file that gets loaded when the project file is loaded. A detailed
description of each command that can be used within MtDt build script files is found in the
MtDt Build Script Commands File section. That section explains how a complete system is
defined using these build script commands.

MtDt Simulated Memory

Simulated targets require memory for executing code, for holding data, and for providing
capabilities supported in a simulated environment. The following is a list of simulated
memory characteristics supported by MtDt memory.

- Multiple address spaces

- Memory sizing

- Read only or read/write accesses

- Shared memory

- Byte, word, and long-word access widths

- Access speed based on even or odd access addresses

- Privilege violations

- Bus faults

- Address faults

- Banking

- Mirroring

The ASH WARE MtDt simulated memory model supports all of these characteristics
though at the cost of increased complexity. The good news is that for many applications
the standard memory models work just fine so a detailed understanding of memory
modeling is not required. In the vast majority of other cases only a small percentage of
these capabilities are required.

Memory Block

19. Building the Target Environment

page 274, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

Whereas a simulated memory map can support a large variety of characteristics that might
change from one memory range and address space to the next, a memory block is a range
of memory that has a single uniform set of characteristics.

A target's address space comprises a finite number of memory blocks. For instance, a 3
wait state RAM could reside at address 0 to FFFF hexadecimal. A 0 wait state ROM
could reside at address 1000 to 1FFFF. The rest of memory, from 1000 to FFFFFFFF
hexadecimal, could be empty.

There are a number of rules associated with memory blocks. A build of MtDt simulated
memory will succeed only if both of the following rules are met:

Memory blocks must cover all memory.
Memory blocks may not occupy both the same address and address space.

A report file for each build attempt provides a detailed listing of the memory map, including
the information required to fix any problems.

The following is an example script commands sequence.

#define MEM_DEVICE_STOP 0xffff
#define BLANK_START MEM_DEVICE_STOP + 1
#define MEM_END 0xffffffff
instantiate_target(SIM32, "MySim32");
add_mem_block("MySim32", 0, MEM_DEVICE_STOP,
 "RAM", ALL_SPACES);
add_non_mem_block("MySim32", BLANK_START, MEM_END,"OFF",
 ALL_SPACES);

In this example a single CPU32 CPU is instantiated. A 64K simulated memory device is
added between addresses 0 and FFFF hexadecimal and is assigned the name "RAM." The
device resides in all address spaces. A second memory block, also residing in all address
spaces, fills the rest of memory between 1000 hexadecimal and FFFFFFFF hexadecimal
and is assigned the name "OFF." This block is blank and as such takes up no physical
memory on your computer.

Address Spaces

All Full System IDE simulated memory supports eight address spaces. The function of
each address space depends entirely on the particular target and how it is specified in the
build script file. For instance, a simulated TPU target makes use of three address spaces:
Code, Data, and Pins. By treating its I/O pins as shared memory the simulated TPU
exposes its pins to other targets. This allows, for instance, a simulated engine model to
read and modify the TPU's pins.

19. Building the Target Environment

Full System DevTool IDE, page 275Reference Manual (C) 2012-2024 ASH WARE, Inc.

With the nearly universal acceptance of the superiority of a single, unified, large address
space why does MtDt still support non-unified memory space architecture? The answer is
twofold. First, the MtDt supports older but still popular architectures such as CPU32 in
which a split code/data and space might actually be employed. Second, the multiple
address space model provides the required mechanism for support of advanced simulation
features. These mechanisms do not necessarily exist in the actual hardware. For example,
an engine modeling CPU might be set up to query and modify TPU channel I/O pins. To
support this, the TPU pins have been exposed in a purely theoretical "PINS" address
space. The Full System IDE can be configured so that a read or write in the engine
modeling CPU's DATA_SPACE occurs in the eTPU's PINS space, thus allowing the
engine modeling CPU to react to and drive the TPU's pins. This mechanism does not have
a hardware corollary, but it provides the powerful capability of simulating the full system.

In many cases a uniform address model is desirable. This is achieved by mapping all
address spaces to the same physical memory.

The following diagram depicts the address spaces accessed by the TPU simulation engine.

(Unused)

TPU Pins Space

0

FFFFFFFF

3

TPU CODE Space

0

FFFFFFFF

1FFF

(Unused)

TPU DATA Space

0

FFFFFFFF

1FF

(Unused)

The TPU simulation model fetches code between 0 and 1FFF hexadecimal from its CODE
space. It accesses its parameter RAM and host interface registers between 0 and 1FF
hexadecimal of its DATA space. And it accesses its channel pins in the first four bytes of
a simulated PINS space. Note that its code banks are "unrolled" and placed linearly in
memory.

19. Building the Target Environment

page 276, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

In order for accesses to these spaces to behave properly, simulated memory devices must
be placed into these address spaces. The following build script commands create the
required memory for a stand-alone TPU Simulation engine.

// Create a target TPU
instantiate_target(TPU_SIM, "TpuSim");
// Create a simulated memory block
// for the TPU's code (microcode)
add_mem_block("TpuSim", 0, 0x1fff, "Code",
 TPU_CODE_SPACE);
add_non_mem_block("TpuSim", 0x2000, 0xFFFFFFFF,
 "UnusedCode", TPU_CODE_SPACE);

// Create a simulated memory block
// for the TPU's data (host interface)
add_mem_block("TpuSim", 0, 0x1ff, "Data",
 TPU_DATA_SPACE);
add_non_mem_block("TpuSim", 0x200, 0xFFFFFFFF,
 "UnusedData", TPU_DATA_SPACE);

// Create a simulated memory block for the TPU's pins
// (channel pins and TCR2 counter pin)
add_mem_block("TpuSim", 0x0, 0x3, "Pins",
 TPU_PINS_SPACE);
add_non_mem_block("TpuSim", 0x4, 0xFFFFFFFF,
 "UnusedPins", TPU_PINS_SPACE);

// Be sure to provide a non_mem block
// for the unused address spaces
add_non_mem_block("TpuSim", 0x0, 0xffffffff, "B4",
 TPU_UNUSED_SPACE);

In this example the TPU's code, data, and pins address spaces are filled with the memory
devices required for proper operation. Unused space above and below the simulated
devices is filled in with blank blocks. This is required, as all space must be filled in; even
unused space must be provided with memory block(s).

Memory Block Size

Each memory block has a specific size. The size is equal to the stop address minus the
start address plus one. A common error is to overlap by one byte the end of one device
with the start of the next device. MtDt cannot support multiple devices occupying the
same address in the same address space so this causes an error. One method for avoiding

19. Building the Target Environment

Full System DevTool IDE, page 277Reference Manual (C) 2012-2024 ASH WARE, Inc.

this error is to cascade ‘#define’ directives and thereby ensure that contiguous devices
form the proper zero-byte seam.

#define FLASH_SIZE 0x10000 /* 64K FLASH device */
#define RAM_SIZE 0x8000 /* 32K RAM device */
#define FLASH_START 0
#define FLASH_END FLASH_START + FLASH_SIZE - 1
#define RAM_START FLASH_END + 1
#define RAM_END RAM_START + RAM_SIZE - 1
#define BLANK_START RAM_END + 1
#define BLANK_END FFFFFFFF
instantiate_target(SIM32, "MyCpu");
add_mem_block("MyCpu", FLASH_START, FLASH_END,
 "Flash", ALL_SPACES);
add_mem_block("MyCpu", RAM_START, RAM_END, "RAM",
 ALL_SPACES);
add_non_mem_block("MyCpu", BLANK_START, BLANK_END,
 "Empty", ALL_SPACES);

In this example, two devices are created in such a way that a zero-byte seams between
them is guaranteed. All memory for every address spaces is covered. Notice that the
FLASH and RAM sizes can be changed at a single location and that the devices will
remain contiguous in memory.

Memory Block Access Control

The purpose of the memory block access control is to make a simulated model match the
behavior of real hardware. For instance you might want to make a ROM read-only, such
that reads are simply ignored or perhaps cause a bus fault. An odd access may cause an
address fault or an additional wait state. Memory block access control allows the required
level of control to achieve this. This section serves as a high-level guide rather than a
detailed description.

Each memory block supports the following access types.

8-bit read
8-bit write
16-bit read
16-bit write
24-bit read
24-bit write
32-bit read
32-bit write
64-bit read

19. Building the Target Environment

page 278, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

64-bit write
128-bit read
128-bit write

For each access type, the user can specify a number of parameters. The following
parameters are available.

Clocks per even access
Clocks per odd access
Odd access causes bus fault yes/no?
Bus fault yes/no?
Blank access yes/no?
Dock offset (applicable docked accesses only!)
Dock function code (applicable to docked accesses only)

In addition, there is a block-wide default, "blank access value." This is the value that is
returned on a read access to a memory block that has been marked as blank.

Read/Write Control

It is possible to disable specific types of memory accesses.

In this example a memory device is configured as read only. A write to this memory
device will not cause the values in memory to change. This read only behavior could be
used to model a ROM device.

#define ROM_STOP 0xffff
#define BLANK_START ROM_STOP + 1
#define MEM_END 0xffffffff
instantiate_target(SIM32, "MyCpu");
add_mem_block("MyCpu", 0, ROM_STOP, "Rom", ALL_SPACES);
add_non_mem_block("MyCpu", BLANK_START, MEM_END, "Empty",
 ALL_SPACES);
// Turn off READ access for the ROM device
#define WRITE_ALL RW_WRITE8 + RW_WRITE16 + RW_WRITE32
set_block_to_off("MyCpu", "Rom", ALL_SPACES, WRITE_ALL);

The command specifies that for all address spaces, all write accesses will be "empty."
Despite this being an "empty" access, other parameters such as clocks per even cycle
remain valid. The last two arguments specify the address spaces and access types
affected by this script command. It is possible to indicate specific address spaces and a
specific type of access. For instance, using this script command, one could specify 32-bit
writes to user data space.

Clocks per Access Control

19. Building the Target Environment

Full System DevTool IDE, page 279Reference Manual (C) 2012-2024 ASH WARE, Inc.

For each memory block and type of access, the clocks per even access and the clocks per
odd access can be specified. This capability effectively provides the capability of setting
the number of wait states.

set_block_timing("MyCpu", "Rom", ALL_SPACES, RW_ALL, 2, 3);

In this example even accesses are set to two clocks per access and odd accesses are set
to three clocks per access. In this example these settings apply to all address spaces and
for all read and write accesses, though it is possible to indicate the specific set of address
spaces and access types for which this applies.

Address Fault Control

For each address space and access type an address fault can be set to occur on odd
accesses. Note that this is generally not applicable to 8-bit accesses, though it is still
available.

#define CODE_SPACE CPU32_SUPV_CODE_SPACE \
 + CPU32_USER_CODE_SPACE
set_block_to_addrs_fault("MyCpu", "Rom", CODE_SPACE,
 READ_ALL);

In this example, odd read accesses to the memory block's code space are configured to
cause an address fault.

Bus Fault Control

For each address space and access type a bus fault can be set to occur.

set_block_to_bus_fault("MyCpu", "Rom",
 CPU32_USER_CODE_SPACE, RW_ALL);

In this example, any access while at the user privilege level result in a bus fault. This might
be useful in a protected system in which a user process is prevented from accessing
hardware.

Sharing Memory

A fundamental aspect of multiple target simulation is the ability to share memory. MtDt
employs "docking" to implement shared memory. If two targets are to share memory, one
target must dock memory blocks to another target.

There is a fundamental and important lack of symmetry in that one target must provide the
"dock-from" block and the other target must be the "dock-to." The "dock-to" target is

19. Building the Target Environment

page 280, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

relatively unaffected by being the recipient of a dock, other than that its physical memory
might be modified on occasion.

On the other hand, there are numerous effects to the "dock-from" target. First and
foremost, it must be able to support extrinsic, or externally mapped, memory. In other
words, it must be able to project its memory access outside of itself and to a different
target.

Note that this command must match exactly the memory bounds of an existing memory
block for the docking device, but not for the "dock-to" target. In fact, the "dock-to" target
could be any target such as a MC68332 across a BDM port. In fact, the "dock-to" target
could be itself, and this is the recommended way of modeling multiple image memory.
Although memory accesses are fully re-entrant, legal, and often necessary, it is possible to
create an infinitely cyclic access that would, without guards, cause a stack overflow on
your computer. To guard against this, MtDt has limited memory accesses re-entrance to a
depth of 100.

The following build script command is presented in a later example.

// ...
set_block_to_dock("HostCpu", "TpuDataDock", ALL_SPACES,
 "Tpu", 0-0x80000);
// ...

In the above command a previously-added blank block is docked to memory contained in a
target named "TPU." The last argument, ALL_SPACES, is potentially problematic, as will
be discussed later.

Shared Memory Address Space Transformation

No assumptions should be made about address spaces between or among dissimilar
targets. In other words, the code space of a CPU32 may not map to the code space of
memory shared with a TPU. For memory docks between dissimilar target types it is
critical to fully specify all address spaces from the docking memory block. Due to the lack
of symmetry, this is not true for the dockee. The following script command should be used
to fully define all docked address spaces between dissimilar targets.

When docking a CPU to a TPU the following address space transformation such as that
shown in the following figure is often required.

19. Building the Target Environment

Full System DevTool IDE, page 281Reference Manual (C) 2012-2024 ASH WARE, Inc.

TPU PINS Space

0

FFFFFFFF

Other TPU Spaces

0

FFFFFFFF

All Modeling CPU Spaces

0

FFFFFFFF

C0003

3

C0000

The following build script commands generate the address space transformations shown in
the above figure. If the modeling CPU does a read from its address C0000 hexadecimal,
the read will actually access the shared memory with the TPU in its PINS space.

set_block_dock_space("ModelingCpu", "TpuPinsDock",
 ALL_SPACES, RW_ALL, TPU_PINS_SPACE);

In this example all address spaces from a docked block of a modeling CPU are set to the
TPU's PINS address space. This is an eight-to-one transformation in that an access in any
of the CPU's address spaces becomes an access to the TPU's PINS space. For example
if the CPU performs a data read within this block, the value of the TPU's channel pins will
be what actually gets read.

Shared Memory Address Offset

Shared memory need not appear in the same address from the perspective of each target.
Indeed, shared memory usually appears at different addresses for each target that is
sharing that memory. The following illustrates this.

set_block_to_dock("HostCpu", "TpuDataDock", ALL_SPACES,
 "Tpu", TPU_DOCK_OFFSETT);

In this example an offset of TPU_DOCK_OFFSETT is applied to any HostCpu access
within the docking block. For example if the docking block is at address FFE00

19. Building the Target Environment

page 282, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

hexadecimal and an offset of -FFE00 hexadecimal is applied by defining
TPU_DOCK_OFFSETT to this value, a CPU access at address FFE20 occurs at address
20 within the TPU.

Shared Memory Timing

Timing transformations allow the clock per access to be specified for the docking block.
For instance a shared memory block between a TPU and a CPU might take the CPU two
clocks to access, but might take the TPU only a single clock.

There is no special method for doing this. The timing parameters specified by each of the
targets own dock block apply to the docking target.

A Complete Shared Memory Example

The example in this section creates a TPU simulation engine, a host CPU simulation
engine, and a modeling CPU simulation engine. The shared memory architecture from the
following figure is generated.

19. Building the Target Environment

Full System DevTool IDE, page 283Reference Manual (C) 2012-2024 ASH WARE, Inc.

C0003

C0004

D0003

7FFFF

FFFFF

Modeling CPU All Spaces

TPU PINS Space

Host CPU All SpacesTPU DATA Space

3

0

FFFFFFFF

1FF

0

FFFFFFFF

C0000

0

FFFFFFFF
70000

0

FFFFFFFF

FFE00

The following build script commands instantiate the shared memory architecture found in
the above figure.

#define MEM_END 0xffffffff

// Create a target TPU
instantiate_target(TPU_SIM, "Tpu");

// Create a simulated memory block
// for the TPU's code (microcode)
add_mem_block("Tpu", 0, 0x1fff, "Code", TPU_CODE_SPACE);
add_non_mem_block("Tpu", 0x2000, MEM_END, "B1",

19. Building the Target Environment

page 284, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

 TPU_CODE_SPACE);

// Create a simulated memory block
// for the TPU's data (host interface)
add_mem_block("Tpu", 0, 0x1ff, "Data", TPU_DATA_SPACE);
add_non_mem_block("Tpu", 0x200, MEM_END, "B2",
 TPU_DATA_SPACE);
// Create a simulated memory block for the TPU's pins
// (channel pins and TCR2 counter pin)
add_mem_block("Tpu", 0x0, 0x3, "Pins", TPU_PINS_SPACE);
add_non_mem_block("Tpu", 0x4, MEM_END, "B3",
 TPU_PINS_SPACE);
// Be sure to provide a non_mem block
// for the unused address spaces
add_non_mem_block("Tpu", 0x0, MEM_END, "B4",
 TPU_UNUSED_SPACE);

//***************** END OF TPU *************************

// Create a target host CPU
instantiate_target(SIM32, "HostCpu");

// Add a half-meg RAM
add_mem_block("HostCpu", 0, 0x7FFFF, "RAM", ALL_SPACES);

// Add three empty spaces
add_non_mem_block("HostCpu", 0x80000, 0xFFDFF, "B1",
 ALL_SPACES);
add_non_mem_block("HostCpu", 0xFFE00, 0xFFFFF,
 "TpuDataDock", ALL_SPACES);
add_non_mem_block("HostCpu", 0x100000, MEM_END, "B2",
 ALL_SPACES);

// Set the middle empty block to dock with the TPU target
set_block_to_dock("HostCpu", "TpuDataDock", ALL_SPACES,
 "Tpu", 0-0x80000);
// Make sure that no matter which space
// the TPU accesses within this dock
// the TPU's data space is always accessed
set_block_dock_space("HostCpu", "TpuDataDock",
 ALL_SPACES, RW_ALL, TPU_DATA_SPACE);

//***************** END OF HOST CPU *********************

19. Building the Target Environment

Full System DevTool IDE, page 285Reference Manual (C) 2012-2024 ASH WARE, Inc.

// Create a CPU for modeling the external system
instantiate_target(SIM32, "ModelCpu");

// Add a half-meg RAM
add_mem_block("ModelCpu", 0, 0xBFFFF, "RAM", ALL_SPACES);

// Add three empty spaces
add_non_mem_block("ModelCpu", 0xC0000, 0xC0003,
 "TpuPinsDock", ALL_SPACES);
add_non_mem_block("ModelCpu", 0xC0004, 0xD0003,
 "CpuCpuShare", ALL_SPACES);
add_non_mem_block("ModelCpu", 0xD0004, MEM_END, "B2",
 ALL_SPACES);

// Set the lowest empty block to dock with the TPU target
set_block_to_dock("ModelCpu", "TpuPinsDock", ALL_SPACES,
 "Tpu", 0-0xC0000);

// Make sure that no matter which space
// the TPU accesses within this dock
// the TPU's pins space is always accessed
set_block_dock_space("ModelCpu", "TpuPinsDock",
 ALL_SPACES, RW_ALL, TPU_PINS_SPACE);

// Set the middle empty block to dock with the HOST CPU
set_block_to_dock("ModelCpu", "CpuCpuShare", ALL_SPACES,
 "HostCpu", 0x70000-0xC0000);

//***************** END OF MODELING CPU *****************

In this example the shared memory architecture from the above figure is generated.

Simulating Mirrored Memory

Mirrored memory is memory that is accessible at multiple address ranges within a memory
map. This can occur, for instance, when not all address bits are decoded for a memory
device. The following figure depicts an 8K memory device that resides in a 64K memory
system. Assume it is an 8-bit wide device. Since the 8K device is on a byte wide bus, the
device itself decodes the lower 13 address bits, A12 through A0. Assume that the memory
controller decodes only the upper two address bits, A15 and A14, and enables the device

19. Building the Target Environment

page 286, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

when both are zero. This means that nothing decodes A13, and thus the memory device is
activated when A15 and A14 are zero, regardless of the state of A13.

All Spaces

FFFFFFFF

2000

0

1FFF

3FFF
The memory here

is mirrored here

This mirrored memory architecture is created by implementing a dock from the address
space to itself as follows.

instantiate_target(SIM32, "MyCpu");
add_non_mem_block("MyCpu", 0x0, 0x1FFF, "Mirror",
 ALL_SPACES);
add_mem_block("MyCpu", 0x2000, 0x3FFF, "RAM",
 ALL_SPACES);
add_non_mem_block("MyCpu", 0x4000, 0xFFFFFFFF, "B1",
 ALL_SPACES);

// Create a mirror at the lowest 8K of the next higher 8K
set_block_to_dock("MyCpu", "Mirror", ALL_SPACES, "MyCpu",
 0x2000);

In this example the previously-described memory architecture with mirrored memory is
implemented.

19. Building the Target Environment

Full System DevTool IDE, page 287Reference Manual (C) 2012-2024 ASH WARE, Inc.

Computer Memory Considerations

MtDt uses your computer's memory to model the memory devices belonging to your target.
 There is roughly a one-to-one correspondence between the total amount of memory
occupied by the simulated devices and the amount of your computer's memory that is
required. In the examples shown in the previous sections, simulated memory totals a few
hundred kilobytes. This is a trivial amount of memory for a modern computer. When
many megabytes are required, you are limited to the amount of virtual memory available for
the MtDt application that your computer can provide. If you attempt to simulate a 100-
gigabyte memory device, for example, but have only 50-gigabytes of available virtual
memory on your computer, the build script file will fail to execute.

Note that since modern computer systems employ virtual memory, the amount of simulated
memory can exceed the amount of RAM actually in your computer. Adjusting the
available amount of virtual memory on your computer can increase the total amount of
memory devices that you can simulate. A description of how to increase the swap file size
of your computer is beyond the scope of this manual.

19.1 The Build Script File

Full System IDE supports both debugging and simulation of a variety of targets. Since Full
System IDE can both simulate and debug a variety of simulation and hardware targets,
how does Full System IDE know what to do?

Build batch files provide the instructions that Full System IDE requires to create and glue
together the various copies of hardware and simulation targets. Although the user is
encouraged to modify copies of these files when required, in many cases the standard build
batch files loaded during Full System IDE installation will suffice.

Typical build script files might instantiate a CPU and a eTPU, then instantiate RAM and
ROM for the CPU, and then cause the eTPU's memory to reside in the CPU's address
space.

MtDt Build Script Commands File Naming Conventions

In order to prevent future installations of ASH WARE software from overwriting build
script files that you have created or modified, ASH WARE recommends that you follow
the following naming convention.

- Build script files from ASH WARE begin with "zzz."

- Build script files not from ASH WARE don't begin with "zzz."

19. Building the Target Environment

page 288, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

The string "zzz" was chosen so that these files would appear at the end of a directory listing
sorted by file name. ASH WARE recommends that when you modify a build batch file
you remove the letters "zzz" from the file name. When you create a new file, ASH WARE
recommends that the file name not begin with the string "zzz." The following is a list of
some of the build batch files loaded by the ASH WARE installation utility.

zzz_1Gtm.MtDtBuild

zzz_1ETpuSim.MtDtBuild

zzz_1Mc33816.MtDtBuild

zzz_1Sim32.MtDtBuild

zzz_1Sim32_1ETpuSim.MtDtBuild

zzz_1Sim32_1GTM.MtDtBuild

zzz_1Sim32_1Mc33816.MtDtBuild

zzz_1Sim32_3ETpuSim_MPC5676.MtDtBuild

zzz_1Sim32_3ETpuSim_MPC5777.MtDtBuild

How would you modify the zzz_1Sim32.MtDtBuild file to create a larger RAM? ASH
WARE recommends the following procedure.

Copy file zzz_1Sim32.MtDtBuild to file BigRamSim32.BuildScript

Modify file BigRamSim32.BuildScript

19.2 Custom Build Script File Pathing

When creating a Custom Build Script the question arises of, "where should the custom build
script file be placed? There are three options discussed here.

Option 1, Installation Location. Place your Custom Build Script in the Build Scripts
directory in the installation directory where the standard build scripts are located.

C:\Program Files (x86)\ASH WARE\Full System DevTool IDE

V2_20A\BuildScripts

Advantage. Works seamlessly with the toolset.

Disadvantages. Every user needs to place the file into their installation directory and does
not work well with CVS.

19. Building the Target Environment

Full System DevTool IDE, page 289Reference Manual (C) 2012-2024 ASH WARE, Inc.

Option 2, Project-File Relative . If the custom build script is placed in the same
directory tree as the project file in which it is referenced then only the 'relative path' to the
project file is used.

Project File: c:\SomeDir\MyProjectDir\MyProject.GtmIdeProj

Custom Build Script File: c:

\SomeDir\MyCustomBuildScripts\MyCustomSimCfg.MtDtBuild

Then in the project file the following pathing will be used to find the build script.

..\MyCustomBuildScripts\MyCustomSimCfg.MtDtBuild

Advantage. Works well with CVS and projects are easily relocatable as long as the Build
Script is retained and it relative pathing spot.

Option 3, Independent Directory. If the custom build script is placed in a separate
directory tree as the project file in which it is referenced then only the complete fully-
qualified path is stored in the project file.

Project File: c:\SomeDir\MyProjectDir\MyProject.GtmIdeProj

Custom Build Script File: c:\Tools\MyCustomSimCfg.MtDtBuild

Then in the project file the following pathing will be used to find the build script.

c:\Tools\MyCustomSimCfg.MtDtBuild

Advantage. Eliminates confusion on the location of the custom build script.

Disadvantages. Difficult to maintain.

Pathing Search Rules

If the path is fully qualified, file must be at the fully-qualified location. Otherwise, first the
'BuildScripts' directory is used. If the file is not found, then the directory of the project file
is searched.

When saving, if the file is in the BuildScripts directory then the path is fully removed.
Otherwise, if the file is in the same directory tree as the BuildScripts directory then the file
is saved relative to the BuildScripts directory. Otherwise, if the file is in the same directory
tree as the Project file then the file is saved relative to the Project File. Otherwise, the file
along with it's fully-qualified directory is saved.

19. Building the Target Environment

page 290, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

GTM Register Definitions File .

The GTM Register Definitions file allows each vendor's memory mapping to match that of
the actual target hardware.Since each vendor can have a different memory mapping, the
GTM Register Definition file allows the mapping of each vendors device within the Host
CPU's address space. The pathing rules described above also apply to this file.

19.3 Build Script Commands

instantiate_target_ex1(enum TARGET_TYPE,
 enum TARGET_SUB_TYPE,
 "TargetName");

This command instantiates a target enum TARGET_TYPE and assigns it the name
TargetName. The enum TARGET_SUB_TYPE specifies target/core-specific settings.
Subsequent references to this target use the target name specified in this command.

Of particular interest to the eTPU is file "zzz_eTpuVersions.Dat," which is found in the
build directory. This file supports selection of the eTPU version (and associated errata and
memory sizes) via a #define. The #define is specified in the project.

Of particular interest to the MC33816 is file "zzz_mc33816Versions.Dat," which is found in
the build directory. This file supports selection of the MC33816 core via a #define. The
#define is specified in the project.

instantiate_target_ex1(SIM32, MC33816, "Host");
instantiate_target_ex1(ETPU_SIM, MPC5554_B_1, "eTPU_A");

This example instantiates two simulation models, a CPU32 simulation model, and an eTPU
simulation model. The name Host is assigned to the CPU32 and the name eTPU_A is
assigned to the eTPU. Subsequent build script commands use these names when referring
to these targets. These names are also referenced in a variety of other places such as in
workshops and the menu system.

add_mem_block("TargetName", StartAddress, StopAddress,
 "BlockName", enum ADDR_SPACE);

This command adds a memory block to a range of simulated memory. The memory
appears between stopAddress and startAddress in the memory space ADDR_SPACE.

19. Building the Target Environment

Full System DevTool IDE, page 291Reference Manual (C) 2012-2024 ASH WARE, Inc.

The name BlockName is assigned to this block and is used by other script commands when
referencing this block. The block name must be unique within its target, but other targets
can have a block with this same block name. The size of the memory block is equal to one
plus stopAddress minus startAddress. Only a single copy of this memory is created,
regardless of how many address spaces the block occupies.

add_mem_block("Host", 0, 0xFFFF, "RAM1", ALL_SPACES);

In this example a 64K block of simulated memory is created and the name "RAM1" is
assigned to this memory block. This memory is accessible from all of the CPU's address
spaces.

add_non_mem_block("TargetName", StartAddress, StopAddress,
 enum ADDR_SPACE);

This command adds a blank block of simulated memory to the target TargetName. It
indicates that no physical memory exists in the specified memory range and specified
address spaces, ADDR_SPACE. The name BlockName is assigned to this block and is
used by other script commands when referencing this block. The block name must be
unique within its target, but other targets can have a block with this same block name.

Since no memory is actually modeled by this command, it effectively uses almost none of
your computer’s virtual memory. This is important since the entire four GB address space
must be represented by memory blocks, regardless of whether or not the simulation target
actually supports this large of an address space.

#define DATA_SPACE CPU32_SUPV_DATA_SPACE \
 + CPU32_USER_DATA_SPACE
add_non_mem_block("Host", 0x1000, 0xffffffff,
 "Empty", DATA_SPACE);

This example specifies that no physical memory exists above the first 64K for both user
and supervisor data spaces. Data space is defined by the define declaration as consisting
of a combination of the supervisor data space and the user data space.

set_block_to_off("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE);

This command allows accesses of a simulated memory blocks can be turned off using this
script command. Using this command a read-only memory device such as a ROM can be
created. Accesses to target TargetName within the block BlockName and specified
address spaces ADDR_SPACE and read and/or write cycles <enum READ_WRITE>
are turned off. A turned-off write access behaves exactly like a normal write access
except the actual memory is not written. A turned-off read cycle behaves exactly like a
regular read cycle except that the value returned is the OFF_DATA constant defined for

19. Building the Target Environment

page 292, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

the entire block. The affected address spaces and read/write cycles must be subsets of
the referenced memory block.

add_mem_block("Host", 0, 0xFFFF, "ROM", ALL_SPACES);
#define ALL_WRITES RW_WRITE8 + RW_WRITE16 + RW_WRITE32
set_block_to_off("Host", "ROM", ALL_SPACES, ALL_WRITES);

This example creates a 64K memory device and configures it to be a read-only or "ROM"
memory device.

set_block_off_data32("TargetName", "BlockName",
 enum ADDR_SPACE, OFF_DATA);
set_block_off_data("TargetName", "BlockName",
 enum ADDR_SPACE, OFF_DATA);

These commands specify that read cycles to the target TargetName within the block
BlockName return the data <OFF_DATA> but only if the block is either a "non_mem"
block or a block in which the read cycles have been set to off. The affected address
spaces must be a subset of the address spaces to which the referenced memory block
applies. The first command sets an eight bit value, the second sets a 32-bit value.

add_non_mem_block("eTPU_A", 0x4000, 0xFFFFFFFF,
"UnusedCode",
 ETPU_CODE_SPACE);
set_block_off_data32("eTPU_A", "UnusedCode",
ETPU_CODE_SPACE,
 0xF7F757FA);

In this example the address space between 0x4000 and FFFFFFFF hexadecimal is
specified to contain no memory. Quad read cycles to this block will return the specified off
data, 0xF7F757FA hexadecimal, at every quad address.

set_block_to_bus_fault("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE);

This command results in bus faults for accesses to the target TargetName within the block
BlockName for the applicable address spaces, ADDR_SPACE, and read/write cycles
enum READ_WRITE. The effected address spaces must be a subset of the spaces to
which the referenced memory block applies.

add_mem_block("Host", 0x10000,0xFFFFFFFF, "Unused",
 ALL_SPACES);
set_block_to_bus_fault("Host", "Unused", ALL_SPACES,
RW_ALL);

In this example, a memory block has been added to represent the unused address space
above 64K. Any access to this memory block results in a bus fault.

set_block_to_priv_viol("TargetName", "BlockName",

19. Building the Target Environment

Full System DevTool IDE, page 293Reference Manual (C) 2012-2024 ASH WARE, Inc.

 enum ADDR_SPACE, enum READ_WRITE);

This command results in privilege violations for accesses to the target TargetName for the
memory block BlockName for the applicable address spaces ADDR_SPACE, and read
and/or write cycles enum READ_WRITE. The affected address spaces must be a subset
of the address spaces to which the referenced memory block applies.

#define ALL_DATA_SPACE CPU32_SUPV_DATA_SPACE \
 + CPU32_USER_DATA_SPACE
add_mem_block("Host", 0x10000,0x1FFFF, "Protected",
 ALL_DATA_SPACE);
set_block_to_priv_viol("Host", "Protected",
 CPU32_USER_DATA_SPACE, RW_ALL);

In this example, data space accesses to the simulated memory while at the supervisor
privilege level will succeed whereas accesses at the user privilege level will result in a
privilege violation.

set_block_to_addrs_fault("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE);

This command results in address faults for odd accesses to the target TargetName within
the block BlockName for the applicable address spaces ADDR_SPACE, and read and/or
write cycles enum READ_WRITE. The affected address spaces must be a subset of the
address spaces to which the referenced memory block applies. Even accesses will not
result in an address fault.

set_block_to_addrs_fault("Host", "EvenMem",
 CPU32_CODE_SPACE, RW_ALL);

In this example code space accesses to odd addresses are configured to result in an
address fault.

set_block_timing("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE,
 ClockPerEvenAccess, ClocksPerOddAccess);

This command sets the timing for the target TargetName in the block BlockName. This
command applies only to memory spaces ADDR_SPACE, and for the read and/or write
cycles enum READ_WRITE. Even accesses are set to ClocksPerEvenAccess while odd
accesses are set to ClocksPerOddAccess.

#define NOT_DATA_SPACE ALL_SPACES - CPU32_DATA_SPACE
add_mem_block("Host", 0, 0xFFFF, "SlowMem", ALL_SPACES);
set_block_timing("Host", "SlowMem", CPU32_DATA_SPACE,
 RW_READ, 4, 8);
set_block_timing("Host", "SlowMem", CPU32_DATA_SPACE,
 RW_WRITE, 2, 3);

19. Building the Target Environment

page 294, Full System DevTool IDE Reference Manual(C) 2012-2024 ASH WARE, Inc.

set_block_timing("Host", "SlowMem", NOT_DATA_SPACE, RW_ALL,
 5, 6);

In this example the even data reads are set to take four clocks while odd data reads are set
to take eight clock cycles. Even data writes take two clock cycles while odd accesses
take three. All non-data even reads and writes take five clocks while odd take six.

This example illustrates an important aspect of timing design. A separate copy of the
timing data is kept for each address space and for both read and write cycles. So even
though only a single memory block was created in this example, timing data for each
address space is able to be individually specified.

set_block_to_dock("FromTargetName", "BlockName",
 enum ADDR_SPACE, "ToTargetName",
 AddressOffset);

This script establishes a memory share between a docking target FromTargetName and a
"docked-to" second target ToTargetName. Memory accesses for the docking target
actually occur in the second target, while this command has no effect on the second
target's accesses.

Docking target accesses within the block BlockName in the address space
ADDR_SPACE are projected to the "docked-to" target at on offset address
AddressOffset.

The address range corresponds exactly to a previously defined block within the docking
target. There is no such requirement for the "docked-to" target.

//--------------------
// CHANNEL 2, CORE 0
add_mem_block("Ch2_Core0", 0, MC33816_DATA_SIZE-1,
"Ch2Data", MC33816_DATA_SPACE);
//--------------------
// CHANNEL 2, CORE 1
add_non_mem_block("Ch2_Core1", 0, MC33816_DATA_SIZE-1,
"ch2_ram_dock_a", MC33816_DATA_SPACE);
set_block_to_dock("Ch2_Core1", "ch2_ram_dock_a",
MC33816_DATA_SPACE, "Ch2_Core0", 0);

In this example a memory share is setup between targets Ch2_Core0 and Ch2_Core1.
The memory that is shared resides in Ch2_Core0.

set_block_dock_space("TargetName", "BlockName",
 enum ADDR_SPACE DockFromSpace,
 enum READ_WRITE,
 enum ADDR_SPACE DockToSpace);

19. Building the Target Environment

Full System DevTool IDE, page 295Reference Manual (C) 2012-2024 ASH WARE, Inc.

This command supports an address space transformation for a docked memory access.
Read and/or write cycles enum READ_WRITE from target TargetName between within
the block BlockName in the address spaces enum ADDR_SPACE DockFromSpace are
transformed to occur in address space enum ADDR_SPACE DockToSpace. The
DockToSpace argument must specify a single space.

It is important to fully specify all shared memory accesses between dissimilar targets.
Docks with unspecified address space transformations result in indeterminate results. For
instance, a eTPU sharing memory with a CPU32 could easily result in a opcode being
fetched out of data space, even though both targets have both code and data spaces.
Assumptions about similarity of address spaces between dissimilar targets simply should
not be made.

add_non_mem_block("Host", 0x1000, 0x1003, "ShareRange",
 ALL_SPACES);
set_block_to_dock("Host", "ShareRange", ALL_SPACES,
 "eTPU_A", 0-0x1000);
set_block_dock_space("Host", "ShareRange", ALL_SPACES,
 RW_ALL, TPU_PINS_SPACE);

In this example a target Host is docked to target eTPU_A. An address space
transformation is specified such that accesses to any of the CPU's address spaces occur in
the TPU's PINS address space.

check("TargetName", "ReportFileName");

This command does a check on the simulated memory for a target TargetName and
creates a report file ReportFileName. The check invoked by this command occurs
whether or not this script command is included in the script file. Use of this command
allows you to specify the name of the report file and limit the scope of the check to a single
target.

check("Host", "C:\\Temp\\CpuBuildReport.txt");
check("eTPU_A", "TpuBuildReport.txt");

In this example report files named C:\\Temp\\CpuBuildReport.txt and TpuBuildReport.txt
are generated for the Host and eTPU_A targets, respectively. Note that C-style double
backslashes are required when separating directory names.

	1 Overview
	1.1 On-Line Help Contents

	2 Demo Descriptions
	3 Software Upgrades
	3.1 Handling Multiple Versions
	3.2 Using Non-Installed ETEC Versions

	4 IDE and Editors
	4.1 IDE Options
	4.2 Panel Layout Options
	4.3 Code Auto-Completion

	5 The Project
	5.1 Ide Settings
	5.2 The Project Files
	5.3 The Pre-Build Windows' Console '.BAT' File

	6 Integrated Build
	6.1 Internal Build
	6.1.1 Building MC33816 Assembly
	6.1.2 Host Target Build

	6.2 External Build
	6.3 Disabled Build

	7 Source Code Files
	7.1 Source Code Search Rules
	7.2 Supported Compilers and Assemblers

	8 Script Commands Files
	8.1 The Primary Script Command Files
	8.2 ISR Script Commands Files
	8.3 The Startup Script Commands File
	8.4 The "ETEC_cpp.exe" Preprocessor
	8.5 Enhanced Scripting Capabilities
	8.5.1 Enumeration Declarations
	8.5.2 Script Variables
	8.5.3 Expression Statements
	8.5.4 Selection Statements
	8.5.5 Loop and Jump Statements

	8.6 File Format and Features
	8.6.1 Multiple-Target Scripts
	8.6.2 Script Directives, Define, Ifdef, Include
	8.6.3 Script Enumerated Data Types
	8.6.4 Script Integer Data Types
	8.6.5 Referencing Memory in Script Files
	8.6.6 Assignments in Script Commands Files - DEPRECATED
	8.6.7 Operators and expressions in Script Commands Files
	8.6.8 Syntax for global access of eTPU Function Variables
	8.6.9 Syntax for eTPU Channel Hardware Access
	8.6.10 Syntax for eTPU ALU Register Access
	8.6.11 String within a string supports formatted symbolic information
	8.6.12 Comments in Script Commands Files
	8.6.13 Decimal, Hexadecimal, and Floating Point Notation in Script Files
	8.6.14 String Notation

	8.7 Script Commands
	8.7.1 Timing
	8.7.1.1 Timing Script Commands
	8.7.1.2 Verify Timing Script Commands
	8.7.1.3 Clock Control Script Commands
	8.7.1.4 Thread Script Commands

	8.7.2 MCU Configuration
	8.7.2.1 eTPU System Configuration Commands
	8.7.2.2 eTPU Timing Configuration Commands
	8.7.2.3 eTPU Host Service Request Register Script Commands
	8.7.2.4 eTPU Channel Address Script Commands
	8.7.2.5 eTPU Channel Function Select Register Commands
	8.7.2.6 eTPU Event Vector Entry Condition (Standard/Alternate) Commands
	8.7.2.7 eTPU Channel Function Mode Script Command
	8.7.2.8 eTPU Channel Priority Register Commands
	8.7.2.9 eTPU Shared Subsystem Script Commands
	8.7.2.10 eTPU STAC Bus Script Commands
	8.7.2.11 eTPU Link Script Command
	8.7.2.12 eTPU Interrupt Script Commands
	8.7.2.13 eTPU Interrupt Association Script Commands
	8.7.2.14 MC33816 Hardware Commands

	8.7.3 Variable, Memory, and Register Modification and Verification
	8.7.3.1 Memory Read Script Commands
	8.7.3.2 Memory Modify Script Commands
	8.7.3.3 Memory Verify Script Commands
	8.7.3.4 Register Write Script Commands
	8.7.3.5 Register Verify Script Commands
	8.7.3.6 Symbol Write Script Commands
	8.7.3.7 Verify Symbol Value Script Commands
	8.7.3.8 eTPU Engine Data Script Commands
	8.7.3.9 eTPU Channel Data Script Commands
	8.7.3.10 eTPU Global Data Write/Verify Commands
	8.7.3.11 MC33816 SPI Data Write/Verify Commands
	8.7.3.12 MC33816 Register Script Commands

	8.7.4 Pin and Node Modification and Verification
	8.7.4.1 Pin Window Verification Commands
	8.7.4.2 Pin Verification and Control Script Commands
	8.7.4.3 Pin Transition Behavior Script Commands
	8.7.4.4 External Logic Commands
	8.7.4.5 MC33816 Verification Script Commands

	8.7.5 Code
	8.7.5.1 Code Coverage Script Commands
	8.7.5.2 Code Warning Script Commands

	8.7.6 Files
	8.7.6.1 Trace Buffer and Files
	8.7.6.2 File Script Commands
	8.7.6.3 MC33816 SPI and Configuration File Creation Script Commands
	8.7.6.4 CSV Data Import/Export

	8.7.7 System Script Commands
	8.7.8 Trace Script Commands
	8.7.9 Math Script Commands
	8.7.10 Simulation Configuration

	8.8 Automatic and Pre-Defined Define Directives
	8.9 Listing of Script Enumerated Data Types
	8.9.1 Script FILE_TYPE Enumerated Data Type
	8.9.2 Script VERIFY_FILES Enumerated Data Type
	8.9.3 Script FILE_OPTIONS Enumerated Data Type
	8.9.4 Trace Options Enumerated Data Types
	8.9.5 Code Coverage Listing Options Enumerated Data Type
	8.9.6 Base Time Options Enumerated Data Type
	8.9.7 Build Script TARGET_TYPE Enumerated Data Type
	8.9.8 Build Script TARGET_SUB_TYPE Enumerated Data Type
	8.9.9 Build Script ADDR_SPACE Enumerated Data Type
	8.9.10 Build Script READ_WRITE Enumerated Data Type
	8.9.11 Assignment Operation Enumerated Data Type
	8.9.12 eTPU Register Enumerated Data Types
	8.9.13 Pin and Node Enumerated Type
	8.9.14 MC33816 Reset Source Enumerated Type
	8.9.15 CPU32 Register Enumerated Data Types
	8.9.16 MC33816 Register Enumerated Data Types
	8.9.17 Script CSV_CONTROL Enumeated Data Type

	9 Test Vector Files
	9.1 Node Command
	9.2 Group Command
	9.3 State Command
	9.4 Frequency Command
	9.5 Wave Command
	9.6 Engine Example, eTPU
	9.7 Direct Injection Example, MC33816

	10 Functional Verification
	10.1 Data Flow Verification
	10.2 Pin Transition Behavior Verification
	10.2.1 Deprecated Pin Transition Behavior Verification

	10.3 Pin Transition Verification Example
	10.4 Code Coverage Analysis
	10.5 Regression Testing (Automation)
	10.6 Testing with a Specific Compiler Version
	10.7 Command Line Options
	10.7.1 Using the –d (define) Option and Escape Characters
	10.7.2 Warning Suppresion Command Line Options
	10.7.3 Preventing Multiple Rebuilds by Forcing 'No Build'

	10.8 File Location Considerations
	10.9 Test Termination
	10.10 Cumulative Logged Regression Testing
	10.11 Regression Test Example

	11 Action Tags
	11.1 Print Action Tag
	11.2 Timer Action Commands
	11.3 Write Value Action Tag

	12 External Circuitry
	12.1 Logic Simulation
	12.2 Built-in Injector
	12.3 Built-in DC to DC Boost Converter
	12.4 Built-in HBridge
	12.5 Built-in Load

	13 Workshops
	14 The Waveform Window
	14.1 Running the Simulation
	14.2 The Vertical Cursors and Snapping
	14.3 Executing to a Precise Time
	14.4 Enabling/Disabling Automatic Scrolling ... CRITICAL!
	14.5 Choosing Signals to Display
	14.6 Viewing a Variable as a Waveform
	14.7 Resizing Waveforms Height and Width
	14.8 Resizing a Waveform's Amplitude Manually
	14.9 Resizing a Waveform's Amplitude Automatically
	14.10 Viewing eTPU Channel Flags (MRL, TDL, MRLE, etc.)
	14.11 Viewing eTPU Thread Activity End
	14.12 Controlling the View of Time ... Manually
	14.12.1 Displaying Behavior Verification Data

	14.13 Controlling the View of Time ... Automatically

	15 Operational Status Windows
	15.1 Source Code Windows
	15.2 Script Commands Window
	15.3 Watch Windows
	15.4 eTPU Channel Frame Window
	15.5 Memory Dump Window
	15.6 Local Variable Windows
	15.7 Breakpoint Window

	16 Dialog Boxes
	16.1 Goto Time Dialog Box
	16.2 Goto Angle Dialog Box
	16.3 Workshop Options Dialog Box
	16.4 Occupy Workshop Dialog Box
	16.5 Message Options Dialog Box
	16.6 Source Code Search Dialog Box
	16.7 Waveform Window Options Dialog Box
	16.8 Waveform Signal Options Dialog Box
	16.9 Channel Group Dialog Box
	16.10 Trace Options Dialog Box
	16.11 License Options Dialog Box
	16.12 Memory Tool Dialog Box
	16.13 The 'About' Dialog Box
	16.14 GTM Configuration Dialog Box

	17 Menus
	17.1 Files Menu
	17.2 Build Menu
	17.3 Edit Menu
	17.4 Step Menu
	17.5 Run Menu
	17.6 Breakpoints Menu
	17.7 View Menu
	17.8 Options Menu
	17.9 Help Menu

	18 Supported Targets and Available Products
	18.1 MC33816/CPU System Simulator
	18.2 eTPU/CPU System Simulator
	18.3 MC33816 Stand-Alone Simulator
	18.4 eTPU2 Stand-Alone Simulator
	18.5 eTPU Stand-Alone Simulator
	18.6 CPU32 Stand-Alone Simulator
	18.7 MC33816 Simulation Engine Target
	18.8 eTPU2 Simulation Engine Target
	18.9 eTPU Simulation Engine Target
	18.10 CPU32 Simulation Engine Target

	19 Building the Target Environment
	19.1 The Build Script File
	19.2 Custom Build Script File Pathing
	19.3 Build Script Commands

