
ASH WARE, Inc.

by

Version 4.91

4/11/2018

(C) 1994 ASH WARE, Inc.

Multi Target Development Tool

John Diener, Andrew Klumpp, Tony Zabinski,
Keith Kroker, and Michael Schwager

Reference Manual

page 2, Multi Target Development Tool

Multi Target Development Tool, page 3

Multi Target Development Tool

Table of Contents

Foreword 13

Part 1 Overview 15

.. 181.1 On-Line Help Contents

Part 2 Demo Descriptions 19

Part 3 Software Upgrades 23

.. 253.1 Version 3.0 to 4.3 Enhancements

Part 4 The Project 31

.. 324.1 The Pre-Build Windows' Console '.BAT' File

Part 5 Source Code Files 33

.. 345.1 Source Code Search Rules

.. 355.2 Supported Compilers and Assemblers

Part 6 Script Commands Files 37

.. 386.1 The "ETEC_cpp.exe" Preprocessor

.. 396.2 The Primary Script Command Files

.. 396.3 ISR Script Commands Files

.. 426.4 The Startup Script Commands File

.. 426.5 File Format and Features

... 43Multiple-Target Scripts

... 44Script Directives, Define, Ifdef, Include

... 45Script Enumerated Data Types

... 45Script Integer Data Types

... 46Referencing Memory in Script Files

... 46Assignments in Script Commands Files

... 47Operators and expressions in Script Commands Files

... 48Syntax for global access of eTPU Function Variables

Multi Target Development Tool

page 4, Multi Target Development Tool

... 48Syntax for eTPU Channel Hardware Access

... 51Syntax for eTPU ALU Register Access

... 52String w ithin a string supports formatted symbolic information

... 53Comments in Script Commands Files

... 53Decimal, Hexadecimal, and Floating Point Notation in Script Files

... 53String Notation

.. 546.6 Script Commands Groupings

... 55Clock Control Script Commands

... 56Timing Script Commands

... 58Verify Timing Script Commands

... 59Memory Modify Script Commands

... 59Memory Verify Script Commands

... 60Register Write Script Commands

... 60Register Verify Script Commands

... 61Symbol Write Script Commands

... 62Verify Symbol Value Script Commands

... 64System Script Commands

... 66File Script Commands

... 68Trace Script Commands

... 70Code Coverage Script Commands

... 74RAM Test Script Commands

... 76Channel Function Select Register Commands

... 76Channel Priority Register Commands

... 76Pin Control Script Commands

... 78Pin Transition Behavior Script Commands

... 81Thread Script Commands

... 82Disable Messages Script Commands

... 82eTPU System Configuration Commands

... 83eTPU Timing Configuration Commands

... 84eTPU STAC Bus Script Commands

... 85eTPU Global Data Write/Verify Commands

... 87eTPU Channel Data Script Commands

... 88eTPU Channel Address Script Commands

... 88eTPU Engine Data Script Commands

... 90eTPU Channel Function Mode Script Command

... 90eTPU Event Vector Entry Condition (Standard/Alternate) Commands

... 91eTPU Interrupt Script Commands

... 92eTPU Shared Subsystem Script Commands

... 93eTPU Link Script Command

... 93TPU Parameter Ram Script Commands

... 94eTPU/TPU Host Service Request Register Script Commands

... 94TPU Channel Interrupt Service Register Commands

... 95TPU Host Sequence Request Register Commands

... 95TPU Clock Control Script Commands

Multi Target Development Tool, page 5

Multi Target Development Tool

... 97TPU Bank and Mode Control Script Commands

... 98TPU Match, Transition & Link Script Commands

... 99eTPU/TPU Interrupt Association Script Commands

... 100External Logic Commands

.. 1026.7 Automatic and Pre-Defined Define Directives

.. 1066.8 Listing of Script Enumerated Data Types

... 107Script FILE_TYPE Enumerated Data Type

... 107Script VERIFY_FILES Enumerated Data Type

... 107Script FILE_OPTIONS Enumerated Data Type

... 108Trace Options Enumerated Data Types

... 109Code Coverage Listing Options Enumerated Data Type

... 109Base Time Options Enumerated Data Type

... 110Build Script TARGET_TYPE Enumerated Data Type

... 110Build Script TARGET_SUB_TYPE Enumerated Data Type

... 111Build Script ADDR_SPACE Enumerated Data Type

... 112Build Script READ_WRITE Enumerated Data Type

... 113eTPU Register Enumerated Data Types

... 114TPU Register Enumerated Data Types

... 114CPU32 Register Enumerated Data Types

Part 7 Trace Buffer and Files 117

Part 8 Test Vector Files 119

.. 1218.1 Node Command

.. 1238.2 Group Command

.. 1238.3 State Command

.. 1248.4 Frequency Command

.. 1248.5 Wave Command

.. 1258.6 Engine Example, eTPU

Part 9 Functional Verification 129

.. 1309.1 Data Flow Verification

.. 1329.2 Pin Transition Behavior Verification

.. 1379.3 Code Coverage Analysis

.. 1419.4 Regression Testing (Automation)

.. 1429.5 Testing with a Specific Compiler Version

.. 1439.6 Console Mode

Multi Target Development Tool

page 6, Multi Target Development Tool

.. 1439.7 Command Line Options

... 148Using the –d (define) Option and Escape Characters

... 149Preventing Multiple Rebuilds by Forcing 'No Build'

.. 1499.8 File Location Considerations

.. 1509.9 Test Termination

.. 1509.10 Cumulative Logged Regression Testing

.. 1519.11 Regression Test Example

Part 10 Action Tags 153

.. 15410.1 Print Action Tag

.. 15510.2 Timer Action Commands

.. 15610.3 Write Value Action Tag

Part 11 External Circuitry 157

.. 15711.1 Logic Simulation

Part 12 Integrated Timers 161

Part 13 Workshops 163

Part 14 The Logic Analyzer 165

.. 16614.1 Executing to a Precise Time

.. 16714.2 Waveform Selection

.. 16814.3 The Active Waveform

.. 16814.4 Left and Right Vertical Cursors

.. 17014.5 Displaying Behavior Verification Data

.. 17014.6 Mouse Functionality

.. 17114.7 Vertical Yellow Context Time Cursor

.. 17214.8 Scroll Bars

.. 17314.9 Display Pane Boundary Time Indicators

.. 17314.10 Data Storage Buffer Start Indicator

.. 17314.11 Current Time Indicator

Multi Target Development Tool, page 7

Multi Target Development Tool

.. 17314.12 Auto Scroll

.. 17314.13 Button Controls

.. 17414.14 Timing Display

.. 17514.15 Data Storage Buffer

Part 15 Operational Status Windows 177

.. 18015.1 Generic Windows

... 180Source Code Windows

... 182Script Commands Window

... 184Watch Windows

... 186Local Variable Windows

... 187Call Stack Window

... 188Thread Window

... 193Trace Window

... 195Complex Breakpoint Window

... 196Memory Dump Window

... 197Timers Window

... 198Background Debug Mode (BDM) Hardware Window

.. 19915.2 eTPU-Specific Windows

... 199eTPU Configuration Window

... 201eTPU Channel Frame Window

... 201eTPU Global Timer and Angle Counters Window

... 203eTPU Host Interface Window

... 204eTPU Channel Hardware Window

... 206eTPU Scheduler Window

... 207eTPU Execution Unit Registers Window

.. 20815.3 TPU-Specific Windows

... 208TPU Configuration Window

... 210TPU Host Interface Registers Window

... 211TPU Scheduler Window

... 211TPU Micro Sequencer Registers Window

... 213TPU Execution Unit Window

... 214TPU Channel Window

... 216TPU Parameter RAM Window

.. 21715.4 CPU32-Specific Windows

... 217CPU32 Simulator Configuration Window

... 218CPU32 Simulator Busses Window

... 218CPU32 Simulator Interrupt Window

... 219BDM32 Configuration Window

... 220CPU32 Register Window

... 220CPU32 Disassembly Dump Window

Multi Target Development Tool

page 8, Multi Target Development Tool

.. 22015.5 SIM Module Windows

... 221SIM Main Window

... 222SIM Ports Window

... 223SIM Chip Selects Window

.. 22315.6 QSM Module Windows

... 223QSM Main Window

... 224QSM Port Window

... 225QSM and QSPI Window

... 226QSM and SCI (UART) Window

.. 22615.7 TPU Module Windows

... 226TPU Emulation RAM Window

... 227TPU Main Window

... 227TPU Host Interface Window

... 228TPU Parameter RAM Window

.. 22815.8 GPT Module Windows

... 229GPT Main Window

... 229GPT Input Captures Window

... 230GPT Output Compares Window

... 230GPT Pulse Accumulation Window

... 231GPT Pulse Width Modulation Window

.. 23115.9 CTM4/CTM6 Module Windows

... 231CTM4/CTM6 Bus Interface and Clocks Window

... 232CTM4/CTM6 Free-Running Counter Submodule Window

... 232CTM4/CTM6 Modulus Counter Submodule Window

... 233CTM4 Double-Action Submodule Window

... 233CTM4 Pulse Width Modulation Window

... 234CTM6 Single-Action Submodule Window

... 234CTM6 Double-Action Submodule - Modes Window

... 235CTM6 Double-Action Submodule Bits Window

.. 23515.10 QADC Module Window

... 236QADC Main Window

... 237QADC Ports Window

... 238QADC Channel Window

.. 23915.11 Miscellaneous Module Windows

... 239TouCAN Main Window

... 240TouCAN Buffers Window

... 240Masked ROM Window

... 241Standby RAM Submodule Window (68336/68376)

... 241Static RAM Submodule Window (68338)

... 241Parallel Port I/O Submodule (PIOSM) Window

... 242Real Time Clock (RTC) Window

Multi Target Development Tool, page 9

Multi Target Development Tool

Part 16 Dialog Boxes 243

.. 24416.1 File Open, Save, and Save As Dialog Boxes

.. 24616.2 Auto Build Batch File Options Dialog Boxes

.. 24716.3 Goto Time Dialog Box

.. 24816.4 Goto Angle Dialog Box

.. 24916.5 IDE Options Dialog Box

.. 25116.6 Workshop Options Dialog Box

.. 25216.7 Occupy Workshop Dialog Box

.. 25216.8 MtDt Build Options Dialog Box

.. 25416.9 Message Options Dialog Box

.. 25616.10 Source Code Search Dialog Box

.. 25716.11 Reset Options Dialog Box

.. 25916.12 Logic Analyzer Options Dialog Box

.. 26016.13 Channel Group Dialog Box

.. 26016.14 Complex Breakpoint Conditional Dialog Box

.. 26016.15 Trace Options Dialog Box (MtDt)

.. 26216.16 Local Variable Options Dialog Box

.. 26216.17 License Options Dialog Box

.. 26316.18 BDM Options Dialog Box

.. 26316.19 Memory Tool Dialog Box

.. 26416.20 Insert Watch Dialog Box

.. 26516.21 Watch Options Dialog Box

.. 26516.22 The 'About' Dialog Box

.. 26516.23 BDM Port Dialog Box

Part 17 Menus 267

.. 26717.1 Files Menu

.. 27017.2 Stepping

.. 27117.3 Running

.. 27317.4 Breakpoints

.. 27417.5 Workshops

Multi Target Development Tool

page 10, Multi Target Development Tool

.. 27417.6 View Menu

.. 27517.7 Window Menu

.. 27517.8 Options Menu

.. 27717.9 Help Menu

Part 18 Hot Keys, Toolbar, Status
Window 279

Part 19 Supported Targets and Available
Products 281

.. 28119.1 MC33816 Hardware Debugger

.. 28219.2 MC33816/CPU System Simulator

.. 28219.3 eTPU/CPU System Simulator

.. 28319.4 TPU CPU32 Full System Simulator

.. 28319.5 MC33816 Stand-Alone Simulator

.. 28319.6 eTPU2 Stand-Alone Simulator

.. 28419.7 eTPU Stand-Alone Simulator

.. 28419.8 TPU Stand-Alone Simulator

.. 28419.9 683xx Hardware Debugger

.. 28519.10 CPU32 Stand-Alone Simulator

.. 28519.11 683xx Hardware Debugger

.. 28519.12 eTPU2 Simulation Engine Target

.. 28519.13 eTPU Simulation Engine Target

.. 28619.14 TPU Simulation Engine Target

.. 28819.15 CPU32 Simulation Engine Target

.. 28919.16 CPU32 Hardware across a BDM Port

Part 20 Building the Target Environment 291

.. 30720.1 The Build Script File

.. 30820.2 Custom Build Script File Pathing

.. 31020.3 Build Script Commands

Multi Target Development Tool, page 11

Multi Target Development Tool

page 12, Multi Target Development Tool

Multi Target Development Tool, page 13

Multi Target Development Tool

page 14, Multi Target Development Tool

1. Overview

Multi Target Development Tool, page 15Reference Manual (C) 1994 ASH WARE, Inc.

1
Overview

This introductory section provides a high level overview of some of the key aspects of the
simulator/debugger. More detail is provided in the remainder of this manual.

A variety of products are derived from the Multiple Target Development Tool (Mtdt)
technology. This manual covers all the current MtDt products. These products include
single and multiple target simulators and hardware debuggers.

MtDt has been developed using an object orientated and layered approach such that the
bulk of the code within MtDt can be applied to any target. It matters little if the target is
big endian or little endian; 8, 16, 32, or 64 bits; hardware debugger or simulation engine.
This allows us to quickly and inexpensively provide support for additional targets.

Targets and Products

From a tools development standpoint there is very little to differentiate one target from
another. CPUs execute code while peripherals have a host interface and wiggle and
respond to I/O pins. Hardware interfaces provide different means to the same end.
Current MtDt targets include a MC33816 simulation engine an eTPU2 simulation engine,
an eTPU simulation engine, a TPU simulation engine, a CPU32 simulation engine, and a
CPU32 across a BDM port. Support for additional targets continue to be added.

But from a customer's standpoint there are specific requirements that must be met.
Individual products are therefore derived from MtDt to meet these customer requirements.

1. Overview

page 16, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

 As single target products we offer a MC33816 Stand-Alone Simulator, an eTPU2Stand-
Alone Simulator, an eTPU Stand-Alone Simulator, a TPU Stand-Alone Simulator, a
CPU32 Stand-Alone Simulator, and a 683xx Hardware Debugger. As full system
simulation products we offer a CPU32/MC33816 System Simulator a CPU32/eTPU
System Simulator, and a CPU32/TPU System Simulator.

Although not offered as a specific product, MtDt supports mixing hardware and simulated
targets. This would allow, for instance, a software model of a new CPU to be linked to a
real peripheral across a BDM Port. Driver code could be developed for a CPU that exists
only as a software model but controls real hardware.

Source Code Files

Source code files are built using a compiler or an assembler and the resulting executable
image is loaded into the target/core code space. When executing code, it is actually the
executable image that gets executed. Source level debugging information cross references
the source code files' line numbers and variables with the underlying executable image
thereby supporting key debugging capabilities such as breakpoints, single stepping, viewing/
modifying variables in watch windows, etc. Source code must be built external to Mtdt and,
once built, loaded into the executable memory using the <Ctrl E> hotkey.

Script Commands Files

Script commands files have several purposes. The primary script file used to automate
things like loading code, initialization, and functional verification. ISR script files can be
associated with specific interrupts and execute only when that interrupt is activated.
Startup script commands files (available to the MC33816 and CPU) are executed following
a reset or when the simulator/debugger is initially launched. The purposes of the startup
script commands file is initialization and getting the target/core into the correct state for
loading code when simulator/debugger is launched. MtDt build script files instantiate and
connect targets. For most users no knowledge of MtDt build script files is required
because the standard build script files provided by ASH WARE provide all the required
features. But power users may tailor the MtDt build script files to take advantage of
MtDt's advanced full-system simulation capabilities.

Test Vector Files

Test vector files provide the user with one means of exercising input and I/O pins with

1. Overview

Multi Target Development Tool, page 17Reference Manual (C) 1994 ASH WARE, Inc.

complex test patterns. While a script commands file functionally represents the CPU or
Host-MCU interface, a test vector file represents the external interface. And whereas a
script commands file provides a broad range of functions, the test vector file provides the
narrow but powerful capability of driving nodes to "high" or "low" states and assigning
application-specific names to nodes and node groups.

Concurrently Developing Code for Multiple Targets/Cores

Code for multiple targets/cores can be developed, and debugged, concurrently.
Interactions between and among multiple targets/cores are modeled precisely and
accurately. All the normal debugging techniques such as single stepping, setting
breakpoints, stepping into functions, etc., are available for each target/core. The IDE
supports instantaneous target/core switching such that it is possible in the system simulator,
for example, to run to a CPU breakpoint, and then switch to a eTPU or MC33816 core and
single step it. All the while, all targets/cores are kept fully synchronized.

The NXP eTPU and TPU

Of special interest are the Enhanced Time Processor Unit (eTPU) and TPU from NXP.
For those wishing more information on the eTPU, refer to the NXP user manuals. For this
wishing to develop their own eTPU Code, it is highly recommended that you obtain the
book "eTPU Programming Made Easy" from AMT Publishing. For those wishing to
develop their own TPU microcode, it is highly recommended that you obtain the book “TPU

Microcoding for Beginners” from AMT Publishing. Do not be misled by the title. This book
is essential for beginners and experts alike. The eTPU and TPU training seminars are also
highly recommended.

Sharing Memory between Multiple Targets

The key ingredient to the full system simulation capability is shared memory. Targets
expose their address spaces to other targets. Two levels of address space exposure are
possible: extrinsic and intrinsic.

Extrinsic exposure is the most powerful but is not supported by all targets. Extrinsically
mapped address spaces allow memory accesses to that section of the memory map to
occur in a target different from the one in which the access originated. For example, a
simulated TPU might perform a write to data memory. The section of data memory could
be extrinsically mapped to a CPU32 across a BDM port. The access would be transferred

1. Overview

page 18, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

across the BDM port and would actually occur in the CPU32's address space.

Intrinsic exposure is less powerful but is supported by all targets. A target that cannot
redirect a memory access to another target is said to be intrinsic. For example a CPU32
hardware such as a 68332 exposed across a BDM port is intrinsic. All memory accesses
initiated by the CPU32 must occur within the address space of that CPU32, and cannot,
for example, be redirected to memory owned by a simulated TPU.

Miscellaneous Capabilities

The simulator/debugger has a number of additional features not yet mentioned. These
include project sessions, source code files, functional verification, external logic simulation,
integrated timers, multiple workshops, a rich set of dialog boxes, a menu system, and an
IDE with hot keys, a toolbar, and target status indicators.

1.1 On-Line Help Contents

The following help topics are available.

Overview
Software Deployment, Upgrades, and Technical Support
Version 4.30, 4.00 and 3.70 through 3.00 Enhancements
Supported Targets and Available Products
Project Sessions
Source Code Files
Script Commands Files
Script Commands Groups
Test Vector Files
Functional Verification
External Logic Simulation
Integrated Timers
Workshops
Operational Status Windows
Dialog Boxes
Menus
Hot Keys, Toolbar, Status Window
Building the Target Environment

2. Demo Descriptions

Multi Target Development Tool, page 19Reference Manual (C) 1994 ASH WARE, Inc.

2
Demo Descriptions

Note that Youtube videos covering several of these demos as well as feature tutorial
demos are available on our website at www.ashware.com/product_videos.htm.

The following eTPU demos install by default with simulator/debugger. Several of these
demos will also build using the ETEC compiler/linker toolset run from the command line.

NXP Set 1 - UART Demo

Use of the NXP's Set12 UART function..

Use of header file, 'etec_to_etpuc_uart_conv.h' to convert between the
automatically generated 'MyCode_defines.h' and the standard NXP API interface
file.

NXP Set 2 - Engine Demo - AN4907 (NEW)

Use of the NXP's latest Set2, Cam, Crank, Fuel, Spark, Knock functions.

Note that this is the NEW SET2 function, often referred as 'AN4907'.

NXP Set 2 - Engine Demo (OLD)

2. Demo Descriptions

page 20, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Use of the NXP's Set2, Cam, Crank, Fuel, Spark, Knock functions.

Note that this is the original SET2 function, a more recent version is available.

NXP Set 3 - ASDC Demo

Use of the NXP's Set3 ASDC, PWMF, and PWMMDC functions.

Use of the identical auto-generated headers that NXP uses for it's host-side API

NXP Set 4 - ASAC Demo

Use of the NXP's Set12 ASAC, PWMF, and PWMMAC functions.

Use of ASH WARE's auto-defines file, 'MyCode_defines.h'.

Data Types Demo

A variety of data types and data scopes commonly used in the eTPU.

Run-time initialization of data using the ETEC-generated initialization file,
'DataTypes_idata.h'.

Auto-Defines Demo

Use of file the compiler auto-generated file, 'MyCode_defines.h', to write & verify
eTPU settings such as channel settings, variables, etc.

Templates Demo

A variety of templates (empty code) which and are excellent starting point when
developing new eTPU functions.

Legacy and ETEC mode functions.

Standard and Alternate entry tables.

2. Demo Descriptions

Multi Target Development Tool, page 21Reference Manual (C) 1994 ASH WARE, Inc.

Worst Case Latency Demo

An (optional) 'System Configuration' file sets the system parameters such as clock
frequency, processor family, which functions run on which channels, channel
priority, etc.

The maximum allowed worst case latency (WCL) for each channel is specified in
the System Configuration file

Build fails if WCL requirements are not met.

Analyses file shows resulting system behaviours such as WCL and WCTL for
each channel.

Stepper Motor System Simulator Demo

System simulator demo (both CPU and eTPU are simulated)

NXP's host-side API on a simulated CPU.

The ASH WARE <>_defines file used in the host-side API.

NXP's Set 1 Stepper Motor (SM) function.

UART ETEC Mode System Simulator Demo

System simulator demo (both CPU and eTPU are simulated.)

Use of the superior ETEC mode style of programming.

Conversion of NXP's UART function to ETEC mode.

NXP's host-side API used on a simulated CPU.

The Auto-generated header files similar to those used in the NXP standard
functions.

The ASH WARE generated '<>_idata.h' file for initializing DATA memory.

2. Demo Descriptions

page 22, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The ASH WARE generated '<>_scm.h' file for initializing CODE memory.

3. Software Upgrades

Multi Target Development Tool, page 23Reference Manual (C) 1994 ASH WARE, Inc.

3
Software Upgrades

World Wide Web Software Deployment

All ASH WARE software is now deployed directly from the World Wide Web. This is
done using the following procedure.

- Download and install a demo version of the desired software product. All
software products are available at a demonstration level.

- Purchase the software product(s) either from ASH WARE or one of our
distributors.

- E-mail to ASH WARE the license file, named "AshWareComputerKey.ack",
found in the installation directory.

- Wait until you receive an e-mail notification that the information from your
license file has been added to the installation utility.

- Download and re-install again. The software product(s) you purchased are
now fully functional. All other software products are still available at a
demonstration level.

World Wide Web Software Upgrades

All versions since 2.1 can be upgraded directly through the World Wide Web. The

3. Software Upgrades

page 24, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

following procedure is required when performing this upgrade. Note that versions prior to
2.1 cannot be upgraded via the World Wide Web.

- Upon receiving notification from ASH WARE that a new version of the
simulator/debugger is available, download and re-install.

After the initial software upgrade, ASH WARE no longer requires a new software key.

Network Floating Licenses

Version 4.30 and above support a floating license capability. A central License Server has
a pool of one or more licenses. Client computers request floating licenses from the
License Server. The License Server issues licenses until its pool of licenses has been
depleted. When a client computer no longer needs a license it becomes available for the
License Server to distribute to a different client.

When a client requests a license it normally exits if no license is available. However, it
may choose instead to wait a certain user-defined amount of time for a license to become
available. If a license does become available the software is able to operate. If, after the
user-specified amount of time is exceeded, no license becomes available then the software
exits. This is especially useful in automated testing where the test would otherwise fail if
no floating license were available. The amount of time to wait for a floating license to
become available is specified by the -NetworkRetry parameter passed on the command
line. See the Command Line Parameters section for specifying this parameter.

Dongle Licensing

A dongle is a physical device that attaches to a USB port on your computer. With a
dongle license you can run the software in a fully-functional mode as long as the dongle is
connected to your computer. If you unplug the dongle, then the software will run only in a
demo-limited mode.

A dongle effectively replaces the license file in that you can move the software and dongle
to a different computer and it will run in fully-functional mode without any interaction with
ASH WARE. This is particularly valuable in (say) aerospace in which the software must
be functional for many decades. Since the software can be moved between computers
with no interaction with ASH WARE, this constitutes a stable long-term development and
maintenance scenario.

3. Software Upgrades

Multi Target Development Tool, page 25Reference Manual (C) 1994 ASH WARE, Inc.

Hearing about Software Releases

In order to be notified about ASH WARE's software releases, be sure to provide your e-
mail address to ASH WARE. This will ensure that you are automatically alerted to
production and beta software releases. Otherwise you will have to periodically check the
ASH WARE Web site to find out about new software releases. Note that your e-mail
address and other contact information will never be released outside of ASH WARE.
Further, ASH WARE will only add you to our e-mail list if you specifically request us to do
so.

The simulator/debugger automatically displays an informational message when your
software subscription is close to expiration. Note that the software license has no
expiration so it is legal to use the simulator/debugger beyond the software subscription
expiration date. The software subscription entitles you to free technical support and Web-
based software upgrades.

Technical Support Contact Information

With the purchase of this product comes a one-year software subscription and free
technical support. This technical support is available through Email, the World Wide Web,
and telephone. Contact information is listed below.

- (503) 533-0271 (phone)

- www.ashware.com

- support@ashware.com

3.1 Version 3.0 to 4.3 Enhancements

 Version 4.30 Enhancements

 Support for Network Floating Licensing.
 Support for Dongle Licensing.

 Version 4.00 Enhancements

eTPU2 script commands to write/verify Global Data.
eTPU2 Stand-Alone Simulator Product (status=PRODUCTION)
Support for the new STMicroelectronics/NXP SPC563Mxx eTPU2
microcontrollers

3. Software Upgrades

page 26, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

eTPU2 script commands to write Engine Relative RAM.
Script commands to write the STAC bus which support sharing of the TCR1 and
TCR2 global counters across eTPU engines.

Version 3.80 Enhancements

eTPU2 script command to write the Engine Relative Base Address register.

Version 3.70 Enhancements

CRITICAL CHANGE: eTPU Engine ‘A’ and ‘B’ ISR Auto-define
eTPU2 Stand-Alone Simulator Product2_SIM (status=ALPHA)
Support for the new STMicroelectronics/NXP SPC563Mxx eTPU2
microcontrollers

Version 3.60 Enhancements.

In Dual-eTPU simulation configurations, one eTPU engine can drive the I/O pins
of the other eTPU Engine. See the eTPU/TPU External Logic Commands
section for more information.
Added support for MPC5553, MPC5534, MPC5565, MPC5567, and MCF5270/1
derivatives.
Instrument your code with named timersTIMER_ACTION_HELP to verify that
critical timing indices are met. Use timing verification script commands to verify
that traversal times meet application requirements. View the latest traversal
times in the Watch window.

Version 3.50 Enhancements.

.eTPU-C provides a built-in type called chan_struct that allows access to such
channel-specific settings as IPAC, OPAC, PDCM, TBS, etc. This symbolic
access to channel settings has now been exposed in the eTPU Simulator. For
example, to issue an TDL event on channel five, write_val(“@5.ASHchannel.
TDLA”, “1”);
.eTPU-C register types are now supported in symbolic processing - watch
windows, print_to_trace(), verify_val(), write_val(), etc. For example, ertA, tcr1,
p15_0, etc.
.A verify_str_ex() script command has been added. It is very much like the
verify_str() script command with the addition of a fourth argument – a length.
Think strncmp.
.The verify_str() script command now supports the >= and <= operators.
Added system macros for determining the Byte Craft compiler version,
__COMPILER_VERSION__, and the ASH WARE simulator version,
__MTDT_VERSION__, which are useful in script command used to verify or
report this information.

3. Software Upgrades

Multi Target Development Tool, page 27Reference Manual (C) 1994 ASH WARE, Inc.

print_to_trace(“Using compiler version %s\n”, __COMPILER_VERSION__);

print_to_trace(“Using simulator version %s\n”, __MTDT_VERSION__);

Added an at_code_tag_ex() script command to add a timeout thereby handling
more cleanly the situation in which the tag is never hit.
Added the eTPU/CPU System Simulator product
Added a “@ASH@print_to_trace” capability whereby formatted symbolic
information (think printf) can be exported to the trace window every time an area
of your code is traversed. GREAT FOR AUTOMATED TESTING!
Extended the existing print_to_trace() script command to support formatted
symbolic information using a new “string within a string” format.
Added global eTPU ChannelVariable access support to the Watches window
and various script commands.
Added a new “String within a String” format to extend the print(); and
print_to_trace(); script commands such that they now support formatted
symbolic information.
Added the GNU CPP pre-processor, “cpp.exe”, to script command files, thereby
supporting capabilities such as global variable and static local initialization, among
other things!
Added the ability to pass multiple #defines from the command line, and also to
define strings and values (previously on a single value-less #define was
supported.)
Added a command line switch that suppresses the “Source Code Missing”
message when running automated tests
Improved tracing data by adding such things as the ME (Match Enable) bit value
to the trace file, thereby supporting our companion latency analyses tool (see our
website for a description.)
Added a verify_version(); script command to warn the user if there are
dependencies on a particular simulator version.

Version 3.42 Enhancements

Improved the “Drag-And-Drop” of time in the logic analyzer window
The dump_file(); script can now append to any existing file.
The verify_files(); script is useful for logged regression testing using a “gold file”.
When building the simulation environment using an eTPU simulation model, the
eTPU sub-type can be specified. This supports version-specific features and
bug simulation.
Added the ability to specify the target Version (such as MPC5554 eTPU).
Specify the full 32-bit read result on unused memory.
Added a new auto-define that helps conditional parsing of script command files.
Run the simulator until a channel’s thread boundary

3. Software Upgrades

page 28, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Version 3.41 Enhancements

Display current angle on status bar
Execute to a user-specified angle
Extended eTPU code coverage to include event vectors
Inferred event vector coverage
Accumulate coverage over multiple tests
View channel nodes
Write and verify chan_data16(); commands
View critical thread execution indices
Clear Worst Case Thread Indices Commands
Resizing the Pin Transition Buffer Testing
Cumulative Logged Regression Testing

Version 3.40 and 3.30 Enhancements

Added a new Complex Breakpoint Window
eTPU Stand-Alone Simulator Product
Multiple target scripting
Added ability to view thread group activity in the logic analyzer window
Improved Regression Testingsection
Added the #include directive to script commands files
Added #ifdef, #ifndef, #else, #endif preprocessing to script command files
Added automatic defines to script command files

Version 3.20 Enhancements

Testing automation via command line capabilities
Verification and modification of symbolic data
Superior Logic Analyzer Window including precise event timing measurement
Improved simulation speed by between 2x and 2.6x depending on loading
conditions
Superior tracing including pin transitions, parameter RAM I/O, and capture/
match events saved to the trace buffer
Trace data can be saved to a file.
The application-wide font can be specified.

Version 3.10 Enhancements

Replaced the set_cpu_frequency(); command with the set_clk_period(); script
command
Additional script commands
New call stack window
Improved local variables window
Improved trace window

3. Software Upgrades

Multi Target Development Tool, page 29Reference Manual (C) 1994 ASH WARE, Inc.

Additional 683xx Hardware Debugger support for 68331, 68336, 68338, and
68376
New TPU Standard Mask Simulator supports 683xx and MPC5xx
New local variable options dialog box
Additional IDE options
Additional operation status windows

Version 3.0 Enhancements

Source code search rules
Enhanced script files
Definitions using #define declaration
Enumerated types
Simple expressions
Improved assignment operators
Breakpoints
Complete grammar check at load-time
Editable register style windows
Integrated timersTIMERS_HELP
Watch, local variable, and memory dump windows
Workshops

page 30, Multi Target Development Tool

4. The Project

Multi Target Development Tool, page 31Reference Manual (C) 1994 ASH WARE, Inc.

4
The Project

The Project Open and project Save As dialog boxes allow association of the simulator/
debugger configuration with a project file. All settings are stored in this file, including the
active source code, script file, selected font spaces per tab, enabled/disabled messages,
etc.

To open an existing project file, either double click on the file from Microsoft Windows
Explorer or, from the Files menu, select the project Open submenu. Then select the name
and existing project file. Various settings from the just-opened project file are loaded into
the simulator/debugger. Note that before opening the new project file, you are given the
option to save the currently-active settings to the currently-active project file.

To create a new project file, from the Files menu, select the Save As submenu. Then
specify a new file name.

At startup, global settings are retrieved from the last-active project file, assuming that no
project file was passed on the command line. Otherwise, the project file passed on the
command line is opened.

The paths to all other files are stored and retrieved relative to the project file. This allows
the entire set of project files to be bundled and moved together as a group.

Whenever the simulator/debugger is exited, the configuration is automatically written to the
active project file.

4. The Project

page 32, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

4.1 The Pre-Build Windows' Console '.BAT' File

A pre-build Windows' console '.BAT' file can be specified from within the project window
by right-clicking on the Build Folder (pointed to in the picture seen below by the green
arrow) and selecting 'Settings. The Settings windows then becomes visible and the '.BAT'
file can be entered as seen by the blue arrow. Text which is echoed from the '.Bat' file is
displayed in DevTool's Output Window as shown by the lower red arrow. Note that the '.
BAT' file can return a pass by exiting with a '0' exit code thereby allowing the build to
proceed. However in the example shown below, the '.BAT' file's exit code is '-1' thereby
preventing the build or make from proceeding.

5. Source Code Files

Multi Target Development Tool, page 33Reference Manual (C) 1994 ASH WARE, Inc.

5
Source Code Files

Source code files is built using code build tools. For TPU, NXP’s TPU Microcode
Assembler must be used. For CPU32 targets, industry standard compilers such as Introl,
Diab-Data, or GNU can be used. For the eTPU the ASH WARE ETEC compiler or the
Byte Craft compiler is used to build the code.

These executable files are loaded into the target/core's memory space. The simulator/
debugger also loads the associated source code files and displays them in source code
windows, highlighting the line associated with the instruction being executed. Several hot
keys allow the user to set breakpoints, execute to a specific line of code, or execute until a
point in time.

The executable code is loaded by selecting the Executable, Open submenu from the Files
menu and following the instructions of the Load Executable dialog box. The loaded source
code file is then displayed in a context window. The window can be scrolled, re-sized,
minimized, etc. Help is available for the source code file window and is accessed by
depressing the <F1> function key when the window is active.

Theory of Operation

The simulator/debugger associates the user’s source code with the executable code
generated by the compiler, assembler, and linker. This ability provides the following
important functionality.

5. Source Code Files

page 34, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- Highlight the active instruction

- Set/toggle breakpoints

- Execute to cursor

In order for the simulator/debugger to read the executable code, the source code must be
compiled, assembled, and linked. The resulting executable file can then loaded into the
simulator/debugger. The name of the executable file varies quite a bit from one vendor
and tool to another. Generally, TPU microcode executable files have a .LST suffix while a
compiler/linker might produce a file named A.OUT.

5.1 Source Code Search Rules

Source code files may be contained in multiple directories. In order to provide source-level
debugging, the simulator/debugger must be able to locate these files. Source code search
rules provide the mechanism for these files to be located.

The search rules are as shown below. These rules are performed in the order listed. If
multiple files with the same name are located in different directories the first encountered
instance of that file, per the search rules, will be used.

- Search relative to the directory where the main build file, such as A.OUT is
located.

- Search relative to the directories established for the specific target associated
with the source code.

- Search relative to the global directories established for all targets.

In the search rules listed above the phrase "search relative to the directory . . ." is used.
What does this mean? It means that if the file is specified as "..\Dir1\Dir2\FileName.xyz",
start at the base directory and go up one, then look down in directory "Dir2" and search in
this directory for the file, "FileName.xyz".

Note that the search rules apply only to source code files in which an exact path is not
available. If an exact path is available, the source code file will be searched only at that
exact path. If an exact path is provided and the file is not located at that exact path, the
search will fail.

The Source Code Search Options dialog box allows the user to specify the global
directories search list as well as the search lists associated with each individual target.

Absolute and Relative Paths

5. Source Code Files

Multi Target Development Tool, page 35Reference Manual (C) 1994 ASH WARE, Inc.

The simulator/debugger accepts both absolute and relative paths.

An absolute path is one in which the file can be precisely located based solely that path.
The following is an absolute path.

C:\Compiler\Libary\

A relative path is one in which the resolution of the full path requires a starting point. The
following is an example of a relative path.

..\ControlLaws\

Relative paths are internally converted to absolute paths using the main build file as the
starting point. As an example, suppose the main build file named A.OUT is located at the
following location.

C:\MainBuild\TopLevel\A.out

Now assume that in the search rules the following relative path has been established.

..\ControlLaws\

Now assume that file Spark.C is referenced from the build file A.OUT. Where would the
simulator/debugger search for this file? The following location would be searched first
because this is where the main build file, A.OUT, is located.

C:\MainBuild\TopLevel\

If file Spark.C were not located at the above location, then the following location would be
searched. This location is established by using the location of the main build file as the
starting location for the ..\ControlLaws\ relative path.

C:\MainBuild\ControlLaws\

5.2 Supported Compilers and Assemblers

We will be adding support for compilers and assemblers based on customer demand. A list
of these can be found on our Web site.

page 36, Multi Target Development Tool

6. Script Commands Files

Multi Target Development Tool, page 37Reference Manual (C) 1994 ASH WARE, Inc.

6
Script Commands Files

Overview

Script commands files provide a number of important capabilities. Script commands files
provide a mechanism whereby actions available within the GUI can be automated. Build
script commands are used by the simulator/debugger to build a full system out of various
targets/cores.In the eTPU Simulator, Script commands can be used in place of the host
CPU.

Each script commands file is arranged as a sequential array of commands, i.e., the
simulator/debugger executes the script commands in sequential order. This allows the
simulator/debugger to know when to execute the commands. Timing commands cause the
simulator/debugger to cease executing commands until a particular point in time. At that
point in time, the simulator/debugger begins executing subsequent script commands until it
reaches the next timing script command. Timing commands are not allowed in startup or
MtDt build script files.

The following script help topics are found later in this section.

- Script Commands File Format

- Script Command Groups

- Multiple Target Scripts

- Automatic and Predefined #define Directives

6. Script Commands Files

page 38, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- Predefined Enumerated Data Types

- Enhanced Scripting capabilities (variables, loops, etc)

Types of Script Commands Files

The different types of script commands files are as follows.

- The Primary Script Commands Files

- ISR Script Commands Files

- The Startup Script Commands File

- The MtDt Build Commands File

It is best to just have a single primary script command associated with just one target/core.
Alternatively, in a multi-target/core simulation, each target/core can have it's own primary
script commands file. ISR script commands files are associated with interrupts. Although
each interrupt may have only a single associated ISR script commands file, it is important
to note that each script commands file may be associated with multiple interrupts. The
simulator/debugger can have only a single active MtDt build batch file.

Similarities to the C Programming Language

The script commands files are intended to be a subset of the "C" programming language.
In fact, with very little modification these files will compile under C.

6.1 The "ETEC_cpp.exe" Preprocessor

The ETEC C PrePprocessor (ETEC_cpp.exe) provides enhanced preprocessing
capabilities that significantly increase the power of the scripting language. In most cases
this capability is transparent to the user, though one side affect is that the preprocessing
stage is case sensitive.

This feature defaults to being active, though it can be disabled, see the IDE Options dialog
box.

One application of the preprocessor is to support initialization of global variables in the
eTPU. This is done as follows. The Byte Craft compiler supports a macro capability that
results in a series of macros as shown below for global variable initialization.

__etpu_globalinit32(0x0000,0x70123456)
__etpu_globalinit32(0x0004,0x71ABCDEF)
__etpu_globalinit32(0x0008,0x72000000)

6. Script Commands Files

Multi Target Development Tool, page 39Reference Manual (C) 1994 ASH WARE, Inc.

The example above was output into the auto-generated header files by the following Byte
Craft command:

#pragma write h, (::ETPUglobalinit32);

Using the following macro expansion, it is possible change the above macros into a form
supported by ASH WARE.

#define __etpu_globalinit32(location, value) \
 *((ETPU_DATA_SPACE U32 *) location) = value;

The eTPU Simulator then sees the following script commands which it can handle.

*((ETPU_DATA_SPACE U32 *) 0x0000) = 0x70123456;
*((ETPU_DATA_SPACE U32 *) 0x0004) = 0x71ABCDEF;
*((ETPU_DATA_SPACE U32 *) 0x0008) = 0x72000000;

6.2 The Primary Script Command Files

The simulator/debugger automatically executes a primary script commands file if one is
open. A new or alternate script commands file must be opened before it is available to the
simulator/debugger for execution. The desired script commands file is opened via the Files
menu by selecting the Scripts, Open submenu and providing the appropriate responses in
the Open Primary Script File dialog box. The simulator/debugger displays the open or
active script commands file in the target's configuration window. Only one primary script
commands file may be active at one time. Help is available for this window when it is
active and can be accessed by depressing the <F1> function key.

6.3 ISR Script Commands Files

Currently, the ability to associate a script commands file with an interrupt is limited to the
eTPU and TPU simulation targets.

Script commands files can be associated with interrupts. When the interrupt associated
with a particular eTPU/TPU channel becomes asserted the ISR script commands file
associated with that channel gets executed.

In the eTPU, ISR script commands files can be associated with channel and data interrupts
as well as with the global exceptions.

6. Script Commands Files

page 40, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

There are some differences between the primary script commands file and ISR script
commands files. Some important considerations are listed below.

- ISR script commands files are associated with channels using the load_isr,
and similar script commands.

- The primary script commands file begins execution after a simulator/debugger
reset whereas ISR script commands files execute when the associated
interrupt becomes both asserted and enabled.

- The primary script commands file is preempted by the ISR script commands
files.

- ISR script commands files are not preempted, even by other ISR script
commands files and even if the (discouraged) use of timing commands with
these ISR script commands files is adapted.

- Only a single primary script commands file can be active at any given time.
Each interrupt source can have only a single ISR script commands file
associated with it.

- Within the TPU's interrupt service routine the ISR script commands file
should clear the interrupt. This is accomplished using the clear_cisr(X), the
clear_this_cisr(), or similar script command. Failure to clear the interrupt
request causes an infinite loop.

- Within the eTPU's interrupt service routine the ISR script commands file
should clear the interrupt. This is accomplished using the clear_chan_intr(X),
the clear_this_intr(), or similar script command. Failure to clear the interrupt
request causes an infinite loop.

- A single ISR script commands file can be associated with multiple interrupt
sources such as eTPU/TPU channels. To make the ISR script commands
file portable across multiple channels be sure to use the clear_this_intr() or
similar script command.

- Do not use the clear_this_intr() script command in the primary script
commands file because the primary script commands file does not have an
eTPU/TPU channel context.

- Use of timing commands within an ISR script commands file is discouraged.
This would be analogous to putting delays in a CPU’s ISR routine. Such a
delay would have a detrimental effect on CPU latency and in the case of the
eTPU/TPU Simulator would be considered somewhat poor form.

- eTPU/TPU channels need not have an association with an ISR script
commands file.

6. Script Commands Files

Multi Target Development Tool, page 41Reference Manual (C) 1994 ASH WARE, Inc.

There is an automatic define that can be used to determine which channel the script
command is associated with. This script command appears as follows.

#define _ASH_WARE_<TargetName>_ISR_ X

Where TargetName is the name of the target (generally TpuSim, eTPU_A, or eTPU_B),
and X is the number of the channel associated with the executing script. The following
shows a couple examples of its use.

#ifdef _ASH_WARE_TPUSIM_ISR_
print("this is an ISR script running on a target TPUSIM");
#else
print("this is not an ISR running on TPUSIM");
#endif

write_par_ram(_ASH_WARE_TPUSIM_ISR_,2,0x41);
write_par_ram(_ASH_WARE_TPUSIM_ISR_,3,8);
clear_this_cisr();

Critical Change in Version 3.70 and Later!

Beginning with MtDt Version 3.70, support for the NXP and ST Microelectronics eTPU2
forced a change in the eTPU engine naming convention that affects the ISR auto #define.
NXP originally referred to the two eTPU engines as eTPU1 and eTPU2. Unfortunately,
this naming convention clashes with the name of the new eTPU derivative, ‘eTPU2.’ The
original eTPU is referred to as ‘eTPU’ and the new eTPU2 is referred to as ‘eTPU2.’

Automatically-defined #defines within ISR script commands running on eTPU ‘Engine A’
and ‘Engine B’ are now as follows.

Is:

#define _ASH_WARE_ETPU_A_ISR_ <ChanNum>
#define _ASH_WARE_ETPU_B_ISR_ <ChanNum>

Was:

#define _ASH_WARE_ETPU1_ISR_ <ChanNum>
#define _ASH_WARE_ETPU2_ISR_ <ChanNum>

6. Script Commands Files

page 42, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

6.4 The Startup Script Commands File

Startup scripts provide the capability to get the target into a known state following the
simulator/debugger controlled reset. It is particularly useful for the case in which the
simulator/debugger is configured to load an executable image when launched. In the 683xx
Hardware Debugger, for instance, startup scripts can be used to configure the SIM
registers so that the executable image can be immediately loaded when it is launched.

Each target can have an associated startup script. Make sure the desired target is active.
From the Files menu select the Scripts, Startup submenu.

A report file is generated each time the startup script is executed. This file has the same
name as the startup script; its extension is "report."

There are some restrictions to startup scripts. These are listed below.

- No windows are supported.

- Flow control, such as breakpoints and single step, is not supported.

- Certain script commands are not supported. Restricted commands are noted
as such in the reference section.

6.5 File Format and Features

The script commands file must be ASCII text. It may be generated using any editor or
word processor (such as WordPerfect or Microsoft Word) that supports an ASCII file
storage and retrieval capability.

The following is a list of script command features.

- Multiple-target scripts

- Directives

- Enumerated data types

- Integer data types

- Referenced memory

- Assignment operators

- Operators and expressions

- Comments

- Numeric Notation

6. Script Commands Files

Multi Target Development Tool, page 43Reference Manual (C) 1994 ASH WARE, Inc.

- String notation

Script Commands Format

The command is case sensitive (though this is currently not enforced) and, in general, has
the following format:

command([data1,][data2,][data3]);

The contents within the parenthesis, data1, data2, and data3, are command parameters.
The actual number of such data parameters varies with each particular command. Data
parameters may be integers, floating point numbers, or strings. Integers are specified using
either hexadecimal or decimal notation. Floating point parameters are specified using
floating point notation, and strings are specified using string notation. Hexadecimal and
decimal are fully interchangeable.

6.5.1 Multiple-Target Scripts

In a multiple target environment it is generally best to have just a single script file in the
first target/core found in the project.

Script commands executed in this target/core affect specifically that core. For example, the
following script command will affect just this first target/core.

write_reg32(0x400,REG_PC);
write_chan_hsrr(TEST_CHAN, 7);

So how can scripts control other targets/cores besides the (default) one with which the
script file is associated? For a script to operate on a specific target/core the target name is
prepended to the script as follows.

<TargetName>.<ScriptCommand>

The specific target for which a script command will run is specified as shown above.

eTPU_B.write_chan_hsrr (LAST_CHAN, 1);
wait_time(10);
verify_mem_u32(ETPU_DATA_SPACE, SLAVE_SIGNATURE_ADDR,
 0xfffffF, DATA_TRANSFER_INTR_SIGNATURE);
eTPU_B.verify_data_intr(LAST_CHAN, 1);
eTPU_A.verify_data_intr(LAST_CHAN, 0);

In this example, a host service request is applied to target eTPU_B. Ten microseconds
later script commands verify that the host service request generated a data interrupt on
eTPU_A but not eTPU_B.

6. Script Commands Files

page 44, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

6.5.2 Script Directives, Define, Ifdef, Include

The #define directive

Script commands files may contain the C-style define directive. The define directive starts
with the pound character "#" followed by the word "define" followed by an identifier and
optional replacement text. When the identifier is encountered subsequently in the script
file, the identifier text is replaced by the replacement text. The following example shows
the define directive in use.

#define THIS_CHANNEL 8
#define THIS_FUNC 4
set_chan_func(THIS_CHANNEL, THIS_FUNC);

Since the define directive uses a straight text replacement, more complicated replacements
are also possible as follows.

#define THIS_SETUP 8,4
set_chan_func(THIS_SETUP);

There are a number of automatic and predefined define directive as described in the like-
named section.

The #include <FileName.h> directive

Allows inclusion of multiple files within a single script file. Note that included files do not
support things like script breakpoints, script stepping, etc.

#include "AngleMode.h"

In this example, file AngleMode.h is included into the script commands file that included it.

The #ifdef, #ifndef, #else, #endif directives

These directives support conditional parsing of the text between the directives.

//========== That is all she wrote!!
#ifdef _ASH_WARE_AUTO_RUN_
exit();
print else
 ("All tests are done!!");
#endif // _ASH_WARE_AUTO_RUN_

The above directive is commonly found at the very end of a script commands file that is

6. Script Commands Files

Multi Target Development Tool, page 45Reference Manual (C) 1994 ASH WARE, Inc.

part of an automated test suite. It allows behavior dependent on the test conditions. Note
that _ASH_WARE_AUTO_RUN_ is automatically defined when the simulator/debugger
is launched in such a way that it runs without user input. In this case, upon reaching the
end of the script file the simulator/debugger is closed when it is part of an automated test
suite and otherwise a message is issued to the user.

6.5.3 Script Enumerated Data Types

Many defined functions have arguments that require specific enumerated data as
arguments. Internally enumerated data types are defined for many script commands and
the tighter checking and version independence provided by enumerated data types make
them an important aspect of script files.

In general, the enumerated data types are defined for each specific target or script file
application. The following is an example of an internally defined enumeration.

enum TARGET_TYPE {
TPU_SIM,
ETPU_SIM,
SIM32
BDM32,
};

Note that in C++ it would be possible to pass an integer as the first argument and at worst
a warning would be generated. In fact, in C++, even the warning could be avoided by
casting the integer as the proper enumerated data type. This is not possible in a script file
because of tighter checking and because casting is not supported.

6.5.4 Script Integer Data Types

In order to maximize load-time checking, script command files support a large number of
integer data types. This allows "constant overflow" warnings to be identified at load-time
rather than at run-time. In addition, since the scripting language supports a variety of
CPUs with different fundamental data sizes, the script command data types are designed
to be target independent. This allows use of the same script files on any target without the
possibility of data type errors related to different data sizes.

The following is a list of the supported data types along with the minimum and maximum
value.

- U1 valid range is 0 to 1

6. Script Commands Files

page 46, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- U2 valid range is 0 to 3

- U3 valid range is 0 to 7

- U4 valid range is 0 to 15

- U5A valid range is 0 to 16

- U5B valid range is 0 to 31

- U8 valid range is 0 to 0xFF

- U16 valid range is 0 to 0xFFFF

- U32 valid range is 0 to 0xFFFFFFFF

- U64 valid range is 0 to 0xFFFFFFFFFFFFFFFF

6.5.5 Referencing Memory in Script Files

Memory can be directly accessed by referencing an address. Two parameters must be
available for this construct: an address and a memory access size. In addition, there is an
implied address space, which for most targets is supervisor data. For some targets the
address space may be explicitly overridden.

- (U8 *) ADDRESS // References an 8-bit memory location

- (U16 *) ADDRESS // References a 16-bit memory location

- (U32 *) ADDRESS // References a 32-bit memory location

- (U64 *) ADDRESS // References a 64-bit memory location

- (U128 *) ADDRESS // References a 128-bit memory location

The following are examples of referenced memory constructs. Note that these examples
do not form complete script commands and therefore in this form would cause load errors.

*((U8 *) 0x20 // Refers to an 8-bit byte at addr 0x20
*((U24 *) 0x17) // Refers to a 24-bit word at addr 0x17
*((U32 *) 0x40 // Refers to a 32-bit word at addr 0x40

6.5.6 Assignments in Script Commands Files

Assignments can be used to modify the value of referenced memory, a practice commonly
referred to as "bit wiggling." Using this it is possible to set, clear, and toggle specific
groups of bits at referenced memory. The following is a list of supported assignment
operators.

6. Script Commands Files

Multi Target Development Tool, page 47Reference Manual (C) 1994 ASH WARE, Inc.

- = Assignment

- +=, -= Arithmetic addition and subtraction

- *=, /=, %= Arithmetic multiply, divide, and remainder

- <<=, >>= Bitwise shift right and shift left

- &=, |=, ^= Bitwise "and," "or," and "exclusive or"

- <<=, >>= Bitwise "shift left" and "shift right"

The following examples perform assignments on memory.

// Writes a 44 decimal to the 8 bit byte at address 17
*((U8 *) 0x17) = 44;
// Writes a 0xAABBCC to the 24 bit word at address 0x31
*((U24 *) 0x31) = 0xAABBCC;
// Sets bits 31 and 15 of the 32-bit word at addr 0x200
*((U32 *) 0x200) |= 0x10001000;
// Increments by one the 16-bit word at address 0x3300
*((U16 *) 0x3300) += 1;

Using an optional memory space qualifier, memory from a specific address space can be
modified. See the Build Script ADDR_SPACE Enumerated Data Type section for a
listing of the various available address spaces.

// Sets the TPU I/O pins for channel 15 and channel 3
*((TPU_PINS_SPACE U16 *) 0x0) |= ((1<<15) + (1<<3));
// Sets the TPU’s HSQR bits such that channel 7’s is a 11b
*((TPU_DATA_SPACE U32 *) 0x14) |= (3<<(7*2));
// Injects a new opcode into the TPU’s code space
*((TPU_CODE_SPACE U32 *) 0x20) = 0x12345678;

NOTE: Because the use of the ADDR_SPACE Enumerated Data Type as in the above
expressions is not legal C syntax, the use of such in a script commands file disables the
code reference capability. It is recommended that the write_global_data[8/16/24/32]() and
write_global_bits[8/16/24/32]() script commands be used instead whenever possible.

6.5.7 Operators and expressions in Script Commands Files

Operators can be used to create simple expressions in script commands files. Note that
these simple expressions must be fully resolved at load time. The precedence and ordering
is the same as in the C language. The following is a list of the supported operators.

- +, - Arithmetic addition and subtraction

- *, /, % Arithmetic multiply, divide and remainder

6. Script Commands Files

page 48, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- &, |, ,̂~ Bitwise AND, OR, and EXCLUSIVE OR

- <<, >> Bitwise shift left and shift right

The following example makes use of simple expressions to specify the channel base.

#define PARAMETER_RAM 0x100
#define BYTES_PER_CHAN 16
#define SPARK_CHAN_ADDR PARAMETER_RAM + BYTES_PER_CHAN * 5
// Write a 77 (hex) byte to address 150 (hex)
*((U8 *) SPARK_CHAN_ADDR) = 0x22+0x55;

The normal C precedence rules can be overridden using brackets as follows.

write_chan_func(1, 3+4*2); // Set chan 1 to function 11
write_chan_func(1, (3+4)*2); // Set chan 1 to function 14

6.5.8 Syntax for global access of eTPU Function Variables

Although eTPU channel variables reside in statically allocated memory, scope-wise within
eTPU-C they are treated more like local variables. The syntax covered in this section
allows developers to. access channel variables at any time, for debug or verification
purposes, not just when within function scope.

The following syntax supports global reference of channel variables by symbolic name.
The syntax has the form @<channel # / name>.<function var name>. Either a raw
channel number can be used, or the name assigned to the channel in the Vector file works
to reference channel variables on a channel.

@PWM3.DutyCycle
@5.Period
verify_val(“@PWM2.DutyCycle”, “==”, “3500”);
// @ASH@print_to_trace(“PPWA channel 3 high time = 0x%x\n”, @3.
HighTime);

This syntax can be used with the symbolic script commands such as verify_val();, in the
Watch window, as well as in the @ASH@print_to_trace(); action command.

6.5.9 Syntax for eTPU Channel Hardware Access

eTPU-C provides a built-in type called chan_struct that allows access to such channel-
specific settings as IPAC, OPAC, PDCM, TBS, etc. This symbolic access to channel
settings has now been exposed in the eTPU Simulator. Typically, a chan_struct variable is
defined in a standard header file (etpuc.h), e.g.

6. Script Commands Files

Multi Target Development Tool, page 49Reference Manual (C) 1994 ASH WARE, Inc.

chan_struct channel;

This variable channel can then be used to access channel settings in the watch window, or
script command such as print_to_trace() and verify_val(), with the syntax:

channel.OPACA
channel.PDCM

In addition to any chan_struct variables explicitly defined in the code, the Simulator always
predefines a variable called ASHchannel of type chan_struct. Thus this special access is
available even when the predefined headers are not used. This is shown in the watch
window, below.

When a chan_struct variable is accessed as described above, e.g.,

print_to_trace(“\”Current channel PDCM is %d\”, ASHchannel.
PDCM”);

the value accessed is always from the current channel, as indicated by the chan register.
There are times where it is useful to access channel fields for other than the active
channel. The following script commands could be used to help test thread handling when
both TDLA and a link service request (LSR) are set:

write_val(“ASHchannel.TDLA”, “1”);
write_val(“ASHchannel.LSR”, “1”);

As written above, they only apply to the current channel, or whatever the chan register is
currently set to if no thread is active. Similar to channel variables, the channel relative
syntax can be applied to chan_struct type variables -

@<channel number / channel vector name>;. Setting TDLA and LSR on channel 5, which
for example we assume is named “P_IN” in the vector file, the script should be something
like as follows:

write_val(“@5.ASHchannel.TDLA”, “1”);
write_val(“@P_IN.ASHchannel.LSR”, “1”);

Note that when writing channel settings, great care must be taken. For example, setting
TDLB without setting TDLA may result in undefined behavior. Not all channel fields
described in the chan_struct type definition are supported, and several additional ones have

6. Script Commands Files

page 50, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

been added - the supported list is as follows:

IPACA
IPACB
LSR
MRLA
MRLB
MTD
OPACA
OPACB
PDCM
TBSA
TBSB
FLAG0
FLAG1
FM0
FM1
PRSS
PSS
FM0_CHAN
FM1_CHAN
PRSS_CHAN
PSS_CHAN
PSTI
PSTO
TDLA
TDLB
MATCHA
MATCHB
CAPTUREA
CAPTUREB

Note that the fields FM0, FM1, PRSS and PSS refer to time-slot-transition (TST)sampled
values and thus only apply to the current channel and thread (TST). PSS is also re-sampled
when the chan register is written. To access the per-channel values for these fields, use
the corresponding <>_CHAN field names. Note that PRSS_CHAN and PSS_CHAN
reference the last sampled values for a specified channel.

6. Script Commands Files

Multi Target Development Tool, page 51Reference Manual (C) 1994 ASH WARE, Inc.

6.5.10 Syntax for eTPU ALU Register Access

eTPU-C register types are now supported in symbolic processing in script commands such
as print_to_trace(), verify_val(), write_val(), etc., and also in the watch window as shown
below.

In order for this to work, the registers must be exposed in a header file.

In standard the eTPU-C headers (etpuc.h) several register variables are exposed by
default as follows:

register_chan chan;
register_erta erta;
register_ertb ertb;
register_tcr1 tcr1;
register_tcr2 tcr2;
register_tpr tpr;
register_trr trr;
register_chan_base chan_base;

Others can be defined per the eTPU-C syntax, for example:

register_diob diob;
register_mach mach ;
register_p15_0 p15_0; // lower 16 bits of p register

See the standard eTPU-C headers for details on the syntax of the register types. Once
defined, such variables can be referenced in the watch window or symbolic script
commands just like other variables.

print_to_trace(“\”Current channel is %d\””, “chan”);

Note that write-only registers like link do not provide meaningful data.

In addition, the ALU and MDU condition codes are exposed to the symbolic script
commands via the CC symbol:

struct {
unsigned int V : 1; // ALU overflow condition code
unsigned int N : 1; // ALU negative condition code

6. Script Commands Files

page 52, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

unsigned int C : 1; // ALU carry condition code
unsigned int Z : 1; // ALU zero condition code
unsigned int MV : 1; // MDU overflow condition code
unsigned int MN : 1; // MDU negative condition code
unsigned int MC : 1; // MDU carry condition code
unsigned int MZ : 1; // MDU zero condition code
unsigned int MB : 1; // MDU busy flag
unsigned int SMLCK : 1; // semaphore locked flag

} CC;

This allows for script access such as the examples below:

print_to_trace("CC.N = %d", CC.N);
verify_val("CC.N", "==", "1");
verify_val("CC.Z", "==", "0");
verify_val("CC.SMLCK", "==", "0");
print_to_trace("CC.MZ = %d", CC.MZ);
verify_val("CC.MN", "==", "0");
verify_val("CC.MZ", "==", "1");

6.5.11 String within a string supports formatted symbolic information

The “string within a string” formatted supports generation of formatted symbolic
information by certain script commands. The format is a “C” string with a second
embedded C string. The embedded sting must use the backslash escape character to begin
and end the embedded string. Two example uses of this are shown below.

write_chan_hsrr (TEST1_CHAN, 5);
wait_time(0.12);
// Send the results to the trace window
print_to_trace("\"TEST RESULTS (trace):\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");
// Same as above ... but to the screen
print ("\"TEST RESULTS (screen):\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");

6. Script Commands Files

Multi Target Development Tool, page 53Reference Manual (C) 1994 ASH WARE, Inc.

6.5.12 Comments in Script Commands Files

Legacy "C" and the new "C++" style comments are supported, as follows.

// This is a comment.
set_tdl(3);

/* This is a legacy C-style comment.
This is also a comment.
This is the end of the multiple-line comment. */
set_tdl(/* more comment */ 3);

6.5.13 Decimal, Hexadecimal, and Floating Point Notation in Script Files

Decimal and Hexadecimal notation are interchangeable.

357 // Decimal Notation
0x200 // Hexadecimal Notation

In certain cases floating point notation is also supported.

3.3e5 // Floating Point

6.5.14 String Notation

The following is the accepted string notation.

"STRING"

The characters between the first quote and the second quote are interpreted as a string.

"File.dat"

This denotes a string with eight characters and termination character as follows, 'F', 'i', 'l',
'e', '.', 'd', 'a', 't', '\0'.

Concatenation

It is often desirable to concatenate stings. The following example illustrates a case in
which this is particularly useful.

#define TEST_DIR "..\\TestDataFiles\\"
read_behavior_file (TEST_DIR "Test.bv");
vector(TEST_DIR "Example");

C-Style Escape Sequences

6. Script Commands Files

page 54, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

In the C language, special characters are specified within a string using the backslash
character, '\'. For instance, a new-line character is specified with the backslash character
followed by the letter "n", or '\n'. The character following the backslash character is
treated as a special character. The following special characters are supported.

\\ References a backslash character
"..\\File.dat"

Planned Obsolescence of Single Backslash within Strings

In previous versions of this software a C-style escape sequence was not supported and a
single backslash character was treated as a just that, a single backslash character. In
anticipation of future software versions supporting enhanced C-style escape sequences, the
single backslash character within a string now causes a warning. ASH WARE
recommends using a double-backslash to ensure compatibility with future versions of this
software.

//The following string causes a warning.
"..\File.dat"

6.6 Script Commands Groupings

Listed below are the available script command functional groups.

All Target Types Script Commands

Clock control script commands
Timing script commands
Verify traversal time commands
Modify memory script commands
Verify memory script commands
Register write script commands
Register verification script commands
Symbol value write script commands
Symbol value verification script commands
System script commands
File script commands
Trace script commands
Code coverage script commands
RAM test script commands

eTPU/TPU Script Commands

Channel function select register script commands

6. Script Commands Files

Multi Target Development Tool, page 55Reference Manual (C) 1994 ASH WARE, Inc.

Channel priority register script commands
Host service request register script commands
Interrupt association script commands
External boolean logic script commands
Pin control and verification script commands
Pin transition behavior script commands
Disable messages script commands
Clear Worst Case Thread Indices Commands

eTPU Script Commands

System configuration commands
Timing configuration commands
STAC Bus commands
Global Data Commands
Channel data commands
Channel base address commands
Engine data commands
Channel function mode (FM) commands
 Channel event vector entry commands
Interrupt script commands
Shared Subsystem Script Commands
Link Injection Script Command

TPU Script Commands

TPU parameter RAM script commands
TPU channel interrupt service register script commands
TPU host sequence request register script commands
TPU clock control script commands
TPU bank and mode control script commands
TPU match, transition, and link script commands

Build Script Commands

Build script commands

6.6.1 Clock Control Script Commands

The script commands described in this section provide control over the clock and
frequency settings.

The set_cpu_frequency(); script command has been deprecated. Instead, use the
set_clk_period() script command described in this section. A warning message is

6. Script Commands Files

page 56, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

generated when this command is used. This message can be disabled from the Message
Options dialog box.

set_clk_period(femtoSecondPerClkTick);

The script command listed above sets the target’s clock period in femto-seconds per clock
tick. Note that one femto second is 1e-15 of a second or one billionth of a micro-second.
A simple conversion is to invert the desired MHz and multiply by a billion.

// 1e9/16.778 = 59601860 femto-seconds
set_clk_period(59601860);

In this example the CPU clock frequency is set to 59,601,860 femto-seconds, which is
16.778 MHz.

Many NXP MC683xx microcontrollers use an external low-frequency crystal to generate
the CPU’s clock source. This crystal generally has a frequency of 32.768 KHz or 2 to the
15th cycles per second. A crystal of this frequency is known as a "watch" crystal because
a simple 15-bit ripple counter can be used to generate a one second clock tick. A phase
lock loop within the 683xx microcontroller uses this to synthesize the main CPU clock.

The simulator/debugger assumes that this external crystal oscillates at 32768 cycles per
second and a number of calculations (such as TPU frequency, QSM frequency, etc.) are
based on this assumption. Unfortunately, the simulator/debugger has no way of verifying
that this is, in fact, the correct crystal frequency so the following script command allows
the user to override the default.

set_crystal_frequency(cylesPerSecond);

This code sets the assumed external clock frequency to cyclesPerSecond. Note that the
cyclesPerSecond must be a decimal or hexadecimal number. A floating point number will
not work.

set_crystal_frequency(34000);

The code in this example overrides the default external clock crystal value and sets it
instead to 34 KHz.

6.6.2 Timing Script Commands

at_code_tag(TagString);
at_code_tag_ex(TagString, Timeout, TimeoutAction);

These commands prevent subsequent commands from executing until the target hits the
source code that contains the string, <TagString>. Note that all source code files are
searched and that the string should be unique so that it is found at just one location (for

6. Script Commands Files

Multi Target Development Tool, page 57Reference Manual (C) 1994 ASH WARE, Inc.

otherwise the command will fail).

at_code_tag("$$MyTest1$$");
verify_val("failFlag", "==", "0");

In the example above, the target executes until it gets to the point in the source code that
contains the text, $$MyTest1$$ and then verifies that the variable named failFlag is equal
to zero. It is important to note that the variable could be local to the function that contains
the tag string such that it may be only briefly in scope. The only scoping requirement is
that the variable is valid right when the target is paused to examine this variable.

The extended version of the command, at_code_tag_ex(), also supports a timeout (in
microseconds) such that if the tagged source code is not traversed in the amount time
specified by Timeout, then the action specified by TimeoutAction will occur. Supported
actions are FAIL_ON_TIMEOUT, FAIL_ON_TAG, and ALWAYS PASS.
FAIL_ON_TIMEOUT causes a verification failure (and subsequent test suite failure) if
the tagged code is not traversed in the specified time. FAIL_ON_TAG is just the opposite
and is used when the tagged code is NOT expected to be traversed. ALWAYS_PASS
allows the script command execution to proceed on the first of either the tagged code being
traversed or on the timeout, and no verification error is generated in either case.

at_code_tag_ex("$$MyTest2$$", 4.5, FAIL_ON_TIMEOUT);

In example above, the target executes until the point in the source code is traversed that
contains the text, $$MyTest2$$. If in 4.5 microseconds the tagged code has NOT yet
been traversed than a verification failure results. Script command execution continues on
the first of the tagged text being traversed (the expected case) or the timeout (the failing
case.)

at_time(T);

When this command is reached, no subsequent commands are executed until T
microseconds from the simulation’s start time. At that time the script commands following
the at_time statement are executed.

wait_time(T);

No script commands are executed until the simulation’s current time plus the T
microseconds.

wait_time(33.5); // (assume current time=50 microseconds)
set_link(5);
wait_time(100.0);
set_link(2);

In this example at 83.5 microseconds (from the start of the simulation) channel 5’s Link
Service Latch (LSL) will be set. No script commands are executed for an additional 100

6. Script Commands Files

page 58, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

microseconds. At 183.5 microseconds (from the start of the simulation) channel 2’s LSL
will be set.

6.6.3 Verify Timing Script Commands

The verify timing script command verifies that timing requirements are met. The format is
as follows.

verify_timer_clks("TimingTag", MinSysClks, MaxSysClks);

The “ActionTag” parameter is a string that must match a similarly-named timing region
within your code. The MinSysClk and MaxSysClk parameters describe the allowable
minimum and maximum number of system clocks (inclusive) that execution of the code is
allowed to take in order for the verification test to pass. If the code takes less time than
the minimum or more time than the maximum to execute then a verification error occurs.

If the code has been traversed multiple times than the verification command verifies the
last full traversal.

The following is an example of a region of code marked for timing. See the Timer Action
Commands section for more information on naming timing regions.

int MyFunc(int x)
{

int y; // @ASH@timer_start("Test A");
y = x + 25;
return y // @ASH@timer_stop("Test A");

}

In the following example, the last full traversal of the above code is verified to have taken
between 10 and 20 system clocks. A verification error occurs if the code has never been
fully traversed, if the last traversal took 9 or fewer system clocks, or if the last traversal
took 21 or more system clocks.

verify_timer_clks("Test A", 10, 20);

Note that on the eTPU there are two system clocks per instruction cycle, so the following
#define can improve the test’s readability.

#define CYCLES *2 // A cycle is two clocks on the eTPU
verify_timer_clks("Test A", 5 CYCLES, 10 CYCLES);

Related Information

Naming timing regions in source code
Verifying traversal times a script command file

6. Script Commands Files

Multi Target Development Tool, page 59Reference Manual (C) 1994 ASH WARE, Inc.

View named timing regions timing using the Watch Window
List named timing regions in the Insert Watch Dialog Box

6.6.4 Memory Modify Script Commands

Memory can be modified within script commands using the assignment operator. See the
Assignments in Script Commands Files section for a description. Note that since the
assignment syntax is not actually C-compatible, it is recommended that memory
modification script commands be used instead, as the non-C assignment syntax causes
script file code references not to be available.

6.6.5 Memory Verify Script Commands

Verify memory script commands provide the mechanism for verifying the values of the
target memory. The first argument is an address space-enumerated type. The second
argument is the address at which the value should be verified. The third argument is a
mask that allows certain bits within the memory location to be ignored. The fourth
argument is the value that the memory location must equal.

verify_mem_u8(enum ADDR_SPACE, U32 address, U8 mask, U8 val);

verify_mem_u16(enum ADDR_SPACE, U32 address, U16 mask, U16 val);

verify_mem_u24(enum ADDR_SPACE, U32 address, U24 mask, U24 val);

verify_mem_u32(enum ADDR_SPACE, U32 address, U32 mask, U32 val);

This command uses the following algorithm.

- Read the memory location in the specified address space and address.

- Perform a logical "and" of the mask with the value that was read from
memory.

- Compare the result to the expected value.

- If the expected value is not equal to the masked value, generate a verification
error.

The following example verifies the value of an 8-bit (byte) memory location.

verify_mem_u8(ETPU_DATA_SPACE, 0x7, 0xc0, 0x80);

The example above verifies that the two most significant bits found at address 0x7 are
equal to 10b. The lower 6 bits are ignored. If the bits are not equal to 10b, a script failure
message is generated and the target's script failure count is incremented.

verify_mem_u16(ETPU_DATA_SPACE, 0x10, 0xffff, 0x55aa);

6. Script Commands Files

page 60, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

In the example above, a 16-bit (two-byte) memory at address 10h is verified to equal
0x55aa. By using a mask of FFFFh, the entire word is verified.

verify_mem_u24(ETPU_DATA_SPACE, 0x101, 0xffffff, 0x555aaa);

In the example above, a 24-bit (three-byte) memory at address 101h is verified to equal
0x555aaa. By using a mask of 0xFFFFFF, the entire word is verified.

verify_mem_u32(ETPU_DATA_SPACE, 0x20, 1<<27, 1<<27);

In the example above, bit 27 of a 32-bit (four-byte) memory location at address 20h is
verified to be set. All other bits except bit 27 are ignored.

Related Topics

See the eTPU Channel Data Script Commands section which covers both
writing and verifying eTPU memory.

6.6.6 Register Write Script Commands

Write register script commands provide the mechanism for changing the values of the
target registers. The first argument is the value to which the register will be set. The
second argument is a eTPU register-enumerated type CPU32 register-enumerated type
with a definition that depends on the specific target and register width on which the script
command is acting.

write_reg4(U4, enum REGISTERS_U4);
write_reg8(U8, enum REGISTERS_U8);
write_reg16(U16, enum REGISTERS_U16);
write_reg24(U24, enum REGISTERS_U24);
write_reg32(U32, enum REGISTERS_U32);
write_reg64(U64, enum REGISTERS_U64);

write_reg16(0x5557, REG_DIOB);

In the above script command example 5557 hexadecimal is written to register DIOB.

6.6.7 Register Verify Script Commands

Verify register script commands provide the mechanism for verifying the values of the
target registers. The first argument is aeTPU register-enumerated type CPU32 register-
enumerated type with a definition that depends on the specific target and register width on
which the script command is acting. The second argument is the value against which the

6. Script Commands Files

Multi Target Development Tool, page 61Reference Manual (C) 1994 ASH WARE, Inc.

register will be verified.

verify_reg1(enum REGISTERS_U1, U1);
verify_reg4(enum REGISTERS_U4, U4);
verify_reg5(enum REGISTERS_U5, U5);
verify_reg8(enum REGISTERS_U8, U8);
verify_reg16(enum REGISTERS_U16, U16);
verify_reg32(enum REGISTERS_U32, U32);
verify_reg64(enum REGISTERS_U64, U64);

verify_reg16(REG_DIOB, 0x5557);

In the script command example above, register DIOB is verified to be 5557 hexadecimal.
If not, a script failure message is generated and the script failure count is incremented.

6.6.8 Symbol Write Script Commands

Write symbol value script commands provide a mechanism for writing data to simulated/
target memory using the symbolic names from the source code. The write_val() command
is for writing data of a basic type to a symbolically referenced memory location.

write_val(“symbolExprString”, “exprString”);

The expression string (exprString) can be a numerical constant or a simple symbolic
expression. Constants can be supplied as decimal signed integers, unsigned hexadecimal
numbers (prepended with ‘0x’), floating point numbers, or as a character (e.g. ‘A’). A
symbolic expression can be just a local/global symbol or a simple expression such as *V
(de-reference), &V (address of V), V[constant], V.member or V->member, where V is a
symbol of the appropriate type. The special @ channel variable (eTPU only) reference
syntax is also supported. "symbolExprString" must be a symbolic expression as described
above, an "l-value" in compiler parlance. The type of the symbolic expression must be a
basic type – char, int, float, etc. If the types of the two sides differ then C type conversion
rules are followed before writing the data to memory.

Two other forms of the write symbol value script command are also supported that directly
take the numerical value to write as an argument.

write_val_int(“symbolExprString”, U32 val);
write_val_fp(“symbolExprString”, double val);

These forms allow the value to be input as a constant expression, perhaps using a series of
macros, thereby providing more flexibility.

6. Script Commands Files

page 62, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The write_str() command is provided as a shorthand way to write a string into the memory
pointed to by a symbolic expression of pointer type..

write_str(“pointerExprString”, “stringExprString”);

The pointer expression string (pointerExprString) is symbolic expression as described
above, but of type pointer rather than a basic type. It can be a pointer to any type, and is
implicitly type-cast to the char* type. “stringExprString” can either be a string constant, or
it can be of type char array or char pointer. In either case, write_str() function like the C
library function strcpy(). Use write_str with caution; no effort is made to check that the
destination buffer has sufficient space available, and the resulting bug induced by such a
buffer overflow can be extremely difficult to debug.

A key concept is that of symbol scope. A variable defined within a particular function
goes out of scope if that function is not being executed. To get around this, a script
command can be set to execute when the function becomes active using the at_code_tag
(); script command. See the Timing Script Commands section for a description.

at_code_tag("&&Test1Here&&");
write_val("FailFlag", "0");

In the above example the target is run until it gets to the address associated with the source
code that contains the text &&Test1Here&&. Once this address is reached, symbol
FailFlag is set equal to zero.

at_code_tag("&&Test23Here&&");
write_str("PlayerBuffer", "Michael Jordan");

In this case the string "Michael Jordan" is written to the buffer named "PlayerBuffer". If
the buffer has insufficient space to hold this string, a bug that is difficult to identify would
result.

See the Global eTPU Channel variableAccess section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

6.6.9 Verify Symbol Value Script Commands

These verify symbol value commands have a similar syntax to those commands described
in the Write Symbol Value Script Command section.

verify_val("exprString", "testOpString", "exprString");

The expression strings (exprString) can be a numerical constant or a simple symbolic
expression. Constants can be supplied as decimal signed integers, unsigned hexadecimal

6. Script Commands Files

Multi Target Development Tool, page 63Reference Manual (C) 1994 ASH WARE, Inc.

numbers (prepended with ‘0x’), floating point numbers, or as a character (e.g. ‘A’). A
symbolic expression can be just a local/global symbol or a simple expression such as *V
(de-reference), &V (address of V), V[constant], V.member or V->member, where V is a
symbol of the appropriate type. The special @ channel variable (eTPU only) reference
syntax is also supported. If the types of the two sides differ, C type conversion rules are
followed before performing the test operation.

"testOpString" is a C test operator. Supported operators are ==, !=, >, >=, <, <=, &&, and
||.

If the result of the specified operation on the expressions is 0, or false, a verification error
is generated.

at_code_tag("&&Test1Here&&");
verify_val("FailFlag", "==", "0");

In the example above, the target is run until it gets to the address associated with the
source code that contains the text &&Test1Here&&. Once this address is reached, the
value of symbol FailFlag is read and a verification error is generated if it does not equal
zero.

Two other forms of the verify symbol value script command are also supported that
directly take the numerical value to compare against as an argument.

verify_val_int("exprString", "testOpString", U32 val);
verify_val_fp("exprString", "testOpString", double val);

These forms allow the test value to be input as a constant expression, perhaps using a
series of macros, thereby providing more flexibility.

Separate script commands are available to compare and verify string values.

verify_str(“expr1, “testOp”, “expr2”);
verify_str_ex(“expr1”, “testOp”, “expr2”, len);

The “expr1” and “expr2” parameters can either be a string constant, or can be of type
char array or char pointer. If strings are resolved from both parameters then they are
compared using the comparator specified in "testOp". If the outcome of this is true (non-
zero), the verification test passes; otherwise a failure is reported. Supported comparator
operators are ==, !=, >, and <, >= and <=. Greater-than and less-than operations follow
the same rules as the strcmp() standard library function.

The extended version of this command, verify_str_ex(); also support a length specifier, len.
 Think strncmp where the comparison acts only on the first “len” characters and the
remainder are ignored.

6. Script Commands Files

page 64, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

at_code_tag("^^StringTest1^^");
verify_str("somePtr", "==", "Hello World");

In the example above, the target is run until it gets to the address associated with the
source code that contains the text ^^StringTest1^ .̂ Once this address is reached, the
ASCII values are read until the terminating character, a byte of value zero, is reached.
The resulting string is compared, case-sensitively, with the string "Hello World". If the two
strings are not equal, a verification error is generated.

at_code_tag("^^StringTest2^^");
verify_str_ex("somePtr", "<=", "Hello World", 5);

In the example above, the first five letters of two strings are compared and verification
error results unless somePtr is less than or equal to “Hello”.

See the Global eTPU Channel variableAccess section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

6.6.10 System Script Commands

system(commandString);
verify_system(commandString, returnVal);

These commands invoke the operating system command processor to execute an operating
system command, batch file, or other program named by the string, <commandString>.
The first command, system, ignores the return value, while the second command,
verify_system, verifies that the value returned is equal to the expected value, returnVal. If
the returned value is not equal to the expected value than a script verification error is
generated.

system("copy c:\\temp\\report.txt check.txt");
verify_system("fc check.txt expected.txt", 0);

In this example the operating system is invoked to generate a file named check.txt from a
file named report.txt. The file check.txt is then compared to file expected.txt using the fc
utility. A script verification error is generated if the files do not match.

exit();

This shuts down the simulator/debugger and sets the error level to non-zero if any
verification tests failed. If all tests pass, the error level is set to zero. The error level can
be examined by a batch file that launched the simulator/debugger, thereby supported
automated testing. See the Regression Testing section for a detailed explanation of and
examples showing how this command can be used as part of an automated test suite.

print(messageString);

6. Script Commands Files

Multi Target Development Tool, page 65Reference Manual (C) 1994 ASH WARE, Inc.

print_pass(messageString); // does not affect exit code in
auto-run mode

These commands are geared toward promoting camaraderie between coworkers. These
commands cause a dialog box to open that contains the string, <messageString>. The truly
devious practical joker will find a way to combine this script command with sound effects.

print("Hit any key to fuse all P-wells "
 "with all N-substrates in your target silicon");

In the example above, your coworker at the adjacent lab bench pauses for a certain
amount of healthy introspection. A well-placed and timed bzilch-chord can significantly
enhance its effect.

print("\"TEST RESULTS:\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");

The print_pass() print command is identical to the print() script command except print_pass
() leaves the error level of the simulation unaffected. The print() script command always
sets the simulation error level to 1.

The print command supports using __FILE__ as an argument that gets replaced by the
name (and absolute path) of the file in which it is found.

print("\"%s : TEST COMPLETE\", __FILE__"); // outputs
"<filename> : TEST COMPLETE"

In the case of print_sfn(), the error level of the simulation run is unaffected. These script
commands are available to be used via action tags as well.

Formatted symbolic information can be generated using as described in the “String within a
String” section. See the example shown above.

verify_version(verHi, verLo, verBuildChar, messageString);

This command generates a warning message if the simulator/debugger version is earlier
than that specified by <verHi>, <verLo> and <verBuildChar>. If an earlier than required
version of the simulator/debugger is actually running then a dialog appears that contains the
text specified by <messageString>.

verify_version(3,50,'B',

 "This demo application that illustrates GLOBAL INITIALIZATION\n"

 "will not work in this early version of the simulator/debugger."

);

In the example above the message, “this demo …” appears if run on a simulator/debugger
version earlier than version 3.50, build B. We recommend this script command be placed

6. Script Commands Files

page 66, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

first in the script file so that it gets processed before any parse errors or unsupported
command errors can occur.

6.6.11 File Script Commands

These commands support loading and saving files via script commands.

load_executable("filename.executable");

This example loads the executable image and related source files found in file filename.
executable. Any open source files in the previously-active image are closed. The file path
is resolved relative to the directory in which the project file is located.

load_executable("A.Out");

This example loads the executable found in file A.Out in the same directory where the
project file is located.

vector("filename.Vector");

The simulator/debugger test vectors found in file filename.Vector are loaded by this script
command. Test vector files normally have a "vector" suffix. Note that the "vector" suffix
is preferable. Test vector files can also be loaded via the Open Test Vector File dialog box
which is opened from the Files menu by selecting the Vector, Open submenu.

vector("UART.Vector");

This example loads the test vectors found in file UART.Vector in the directory where the
project file is located. The file path is resolved relative to the directory in which the project
file is located.

dump_file(startAddress, stopAddress, enum ADDR_SPACE,
 "filename.dump", enum FILE_TYPE,
 enum DUMP_FILE_OPTIONS);

This command creates the file filename.dump of type FILE_TYPE, using the options
specified by DUMP_FILE_OPTIONS. The file is created from the image located
between startAddress and stopAddress, out of the address space ADDR_SPACE.

dump_file(0, 0xffff, CPU32_SUPV_DATA_SPACE, "Dump.S19",
 SRECORD, DUMP_FILE_DEFAULT);
#define MY_OPTIONS NO_ADDR + NO_SYMBOLS
dump_file(0, 0xffff, CPU32_SUPV_CODE_SPACE, "Dump.dat",
 DIS_ASM, MY_OPTIONS);

The downside of the dump_file command is that it does a one-time dump of the entire file
overwriting any previous file. An alternative to this is to continuously write the trace data

6. Script Commands Files

Multi Target Development Tool, page 67Reference Manual (C) 1994 ASH WARE, Inc.

to a file as it is generated. See the Trace Script Commands section.

This example creates a Motorola SRECORD file, Dump.S19, from the first 64K of the
CPU32’s supervisor data space. The default options are used for this dump. An assembly
file, Dump.dat, is also created from the first 64K of supervisor code space and both
address mode and symbolic information are excluded. Assuming the target processor is a
CPU32, the generated assembly code is for the CPU32.

verify_files("fileName1.dat", "fileName2.dat",
 enum VERIFY_FILES_RESULT);

This script command verifies two file named fileName1.dat and fileName2.dat. In addition
to checking for matching or mismatching, this script command also can verify non-
existence of either file or both files. Expected results are specified with the
VERIFY_FILES_RESULT enumeration.

verify_files("new.dat", "gold.dat", FILE1_MISSING);
dump_file(0, 0x28, ETPU_DATA_SPACE, "new.dat", IMAGE,
DATA8);
verify_files("new.dat", "gold.dat", FILESMATCH);

In the above example a new file named “new.dat” is generated, and is compared against
file “gold.dat” to make sure that they match. By first verifying that file “new.dat” does not
exist the fact that file “new.dat” is actually generated by the dump command is also
verified.

dump_file(0, 0x28, ETPU_DATA_SPACE, "new.dat", IMAGE, DATA8);
verify_files("new.dat", "gold.dat", FILES_MISMATCH);
wait_time(100);
dump_file(0, 0x28, ETPU_DATA_SPACE, "new.dat", IMAGE,
 DATA8 | FILE_APPEND);
verify_files("new.dat", "gold.dat", FILES_MATCH);

The above example illustrates use of the FILE_APPEND options to store multiple data
snapshots into a single file. By first verifying that the files mismatch, then that the files
match, it proves that it is this verification process that actually generated the passing
results.

Related Topics:

Trace Script Commands

6. Script Commands Files

page 68, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

6.6.12 Trace Script Commands

start_trace_stream_ex("FileName.Trace", enum TRACE_EVENT_OPTIONS,

 enum TRACE_FILE_OPTIONS, enum BASE_TIME,

 U32 numTrailingDigits, int isZeroTraceTime);

These commands saves the target’s trace buffer to file FileName.trace with the options set
by TRACE_EVENT_OPTIONS., TRACE_FILE_OPTION, BASE_TIME_OPTIONS,
and numTrailingDigits.

The numTrailingDigits field defines the number of digits to display after the decimal point.
For example, if you specify numTrailingDigits to be 2 and the time options to use micro-
seconds then the representation of 1.333 microseconds is '1.33'.

The 'isZeroTraceTime' parameter specifies if the time reference used by the tracing
capability gets referenced to the time when the 'start_trace_stream' script command is
executed. For instance, if the start_trace_stream were to be issued at time 100
microseconds and 22 microseconds an 'Pin Transition' occurred, then the time of the 'Pin
Transition' event time would be listed at 122 microseconds if 'isZeroTraceTime' is a '0.'
Conversely, if 'isZeroTraceTime is a '1' the time would be listed as 22 microseconds..

Note that this command has been improved starting with Version 4.8. The enabled
events specified by the script command all get logged to the trace file, even if not
enabled in the GUI. Any and all events specified in the script command get sent to the
trace log file. Previously, when saving in 'VIEWABLE' mode, any and all events in
displayed in the trace window were sent to the log file, and the parameters passed in the
script file were ignored. This VIEWABLE mode behavior of previous versions was,
well, goofy. And the limitation of not being able to continuously log events to the trace
file if those events were not enabled in the GUI was beyond goofy ... it was flat out
weak.

end_trace_stream();

This command stops tracing to a stream and closes the file so that it can be opened by a
text viewer that requires write permission on the file.

print_to_trace(Message)

This command prints the string Message to the Trace Window assuming it is enabled in the
Trace Options ... dialog box (or to a current trace stream if so configured).

at_time(400);

start_trace_stream("Stream.Trace", ALL-DIVIDER - MEM_READ,

 PARSEABLE, US, 3, 1);

print_to_trace("**\n"

6. Script Commands Files

Multi Target Development Tool, page 69Reference Manual (C) 1994 ASH WARE, Inc.

 "***** START OF TEST \n"

 "**\n");

wait_time(1500);

end_trace_stream();

The above example begins streaming all trace data except dividers and memory reads to a
trace file named "Stream.Trace". Time is recorded in micro-seconds with three trailing
digits following the period such that the least significant digit represents nano-seconds. The
isResetTime field is set to "true" so that script execution time of 400 micro-seconds is
subtracted from the time and the clocks field.

Formatted symbolic information can be generated using as described in the “String within a
String” section. The following is an example of this format.

print_to_trace("\"TEST RESULTS:\n"
 " A=%d\n"
 " B=%d\n"
 " C=%d\",A,B,C");

In the above example, variables A, B, and C must be in scope at the time the script
command is executed.

However, in it is possible to print eTPU Channel Variables using the '@<ChanNum>'
syntax as shown below.

The print_to_trace command supports using __FILE__ and/or __LINE__ as arguments
that get replaced by the name (and absolute path) of the file in which it is found, or the file
line number of the text.

print_to_trace("\"%s(%d) : TEST COMPLETE\", __FILE__,
__LINE__"); // outputs "<filename>(<linenum>) : TEST
COMPLETE"

Save Trace Buffer Script Command (DEPRECATED!)

save_trace_buffer("FileName.trace", enum TRACE_EVENT_OPTIONS,

 enum TRACE_FILE_OPTION, enum BASE_TIME,

 U32 numTrailingDigits);

WARNING: this save_trace_buffer() script command is deprecated.

6. Script Commands Files

page 70, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

6.6.13 Code Coverage Script Commands

An important index of test suite completeness is the coverage percentage that a test suite
achieves. The simulator/debugger provides several script commands that aid in the
determination of coverage percentages. In addition, script commands provide the
capability to verify that minimum coverage percentages have been achieved. A discussion
of this topic is found in the Code Coverage Analysis section. The following are the script
commands that provide these capabilities.

write_coverage_file("Report.Coverage");
verify_file_coverage("MyFile.uc",instPct,braPct);
verify_all_coverage(instPct,braPct);

// eTPU-Only
verify_file_coverage_ex("MyFile.c",instPct,braPct,entPct);
verify_all_coverage_Ex(instPct,braPct,entPct);

The write_coverage_file(…) command generates a report file that lists the coverage
statistics. Statistics for individual files are listed as well as a cumulative file for the entire
loaded code.

The verify_file_coverage(…); and verify_file_coverage_ex(…); commands are used as
part of automation testing of a specific source file. The instPct and braPct parameters are
the minimum required branch and coverage percentages in order for the test to pass. The
entPct parameter is the minimum require entry percentage and is available only in the
eTPU simulator. These parameters are both expressed in floating point notation. The
valid range of coverage percentage is zero to 100. Note that for each branch instruction
there are two possible branch paths: the branch can either be taken or not taken.
Therefore, in order to achieve full branch coverage, each branch instruction must be
encountered at least twice and the branch must both be taken and not taken.

The verify_all_coverage(…); and verify_all_coverage_ex(…); are similar to the
verify_file_coverage commands except these commands focus on the entire build rather
than specific source code modules. As such, they are less useful as a successful testing
strategy will focus on specific modules rather than on the entire build.

Note that this capability is also available directly from the file menu.

wait_time(100);
verify_file_coverage("toggle.uc",92.5,66.5);
verify_all_coverage(33.3,47.5);
write_coverage_file("record.Coverage");

The code in this example waits 100 microseconds and then verifies that at least 92.5

6. Script Commands Files

Multi Target Development Tool, page 71Reference Manual (C) 1994 ASH WARE, Inc.

percent of the instructions associated with file toggle.uc have been executed and 66.5
percent of the possible branch paths associated with file toggle.uc have been traversed. In
addition, the example verifies that at least 33.3 percent of all instructions have been
executed and that 47.5 percent of all branch paths have been traversed. A complete
report of instruction and branch coverage is written to file record.

Inferred Event Vector Coverage

In eTPU applications it is often difficult to get complete (100%) event vector coverage.
There are two situations in difficulties may be encountered.

The first situation would be a valid and expected thread that is difficult to reproduce in a
simulation environment. For example when measuring the time at which a rising edge
occurs, it may be difficult to generate a test case for when the input pin is a zero, because
a thread handler will normally execute immediately such that the pin is still high.

But an event vector handling the case of a rising edge and a low pin is valid. For instance,
a rising edge followed by a falling edge could occur before a thread executing in another
channel completes. Now the thread handling this rising edge executes with a low pin state.
 It is therefore important to test this case, but how? The solution to achieving event vector
coverage for this case is to be clever in designing a test. For example, you might inject two
very short pulses into two channels running the same function. The channels will be
serviced sequentially, so if you keep the pulse width shorter than the thread length than the
second thread will execute with the input pin low.

The second situation in which it may be difficult to achieve complete event vector
coverage is when there are multiple event vectors that handle invalid cases. For instance,
all functions must handle links, even when a link is not part of the functions normal
operation. Such a link could occur if there was a bug in another function. Since there are
number of such invalid situations, they are typically grouped. As such, it may be justified to
bundle these together using the following script command. This command allows coverage
of a single event vector to count as coverage for other (inferred) event vectors.

infer_entry_coverage(FuncNum, FromEntryIndex, ToEntryIndex);

Consider the following thread labeled, "invalid_flag0". This thread is never expected to
occur because the function clears flag0 at initialization, and flag0 is never set. So thus
state which handles a match or transition event in which the flag0 condition is set should
never execute.

6. Script Commands Files

page 72, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

A test has been written to excersize this thread, and one can see that Event vector 15 has
been covered because the box on the left is white. But entries 13, 21, and 23 have not
been executed because the boxes on the left are still black. Since this is an invalid case
that actually should never execute, it is considered sufficient to infer coverage of entries
13, 21, and 23, as long as event vector 15 is covered. This is done using the following
script command.

infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 13);
infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 21);
infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 23);

Although there are a number of restrictions listed below that are enforced by the simulator/
debugger, the most important restriction is not enforced. Namely, that this coverage by
inference should only used for invalid cases where the thread exists purely as Built In Test
(BIT) and would not in normal operation be expected to execute. In fact, when testing to
the very highest software testing standards, 100 percent event vector coverage should be
achieved without the use of this script command.

- Execution of an event vector that is covered by inference results in a
verification failure
- The FromEntryIndex’s thread and the ToEntryIndexthread thread must be the
same.

Note: when developing eTPU code using the ETEC eTPU class programming paradigm,
unused/unexpected entries are often directed to the built-in global error handler. These
entries thus do not show up in the user source module, but rather are associated with the
global error handler source code (_global_error_handler.sta).

Cumulative Coverage

To produce the highest quality software it is imperative that testing cover 100% of

6. Script Commands Files

Multi Target Development Tool, page 73Reference Manual (C) 1994 ASH WARE, Inc.

instructions and branches, and event vectors (for eTPU targets). Additionally, for quality
control purposes, this coverage should be proven using the verify_coverage scripts. But
most test suites consist of multiple tests, such that the coverage is achieved only after all
tests have run. The cumulative coverage scripts provide the ability to prove that the entire
test suite cumulatively has achieved 100% coverage.

The typical testing procedure might work as follows. A series of tests is run, and at the
end of each test the coverage data is stored. At the end of the very last test, the coverage
data from all previous tests are loaded such that the resulting coverage is an accumulation
of the coverage of all previous tests. Then the verify_coverage script command is run
proving that all tests have passed. The following illustrates this process.

... Run Test A.

save_cumulative_file_coverage("MyFunc.c", "TestA.CoverageData");

... Run Test B.

save_cumulative_file_coverage("MyFunc.c", "TestB.CoverageData");

...

... Run Test M.

save_cumulative_file_coverage("MyFunc.c", "TestM.CoverageData");

... Run Test N.

load_cumulative_file_coverage("MyFunc.c", "TestA.CoverageData");

load_cumulative_file_coverage("MyFunc.c", "TestB.CoverageData");

...

load_cumulative_file_coverage("MyFunc.c", "TestM.CoverageData");

verify_file_coverage("MyFunc.c ",100,100,100);

Code Coverage Annotated Listing Files

It can be useful to generate reports files that provide coverage information at the source
and opcode level. The write_coverage_listing_file() has been provided to generate such
reports.

write_coverage_listing_file("ModuleName.c",
"ListingFileName", enum COVERAGE_LISTING_OPTIONS);

For a specified module (source file name), a code coverage annotated listing file with the
name specified by the "ListingFileName" argument is created. Any previous file of the
same name is overwritten. The output form is very much like a regular listing file as
generated by the ETEC compiler, with the additions of

6. Script Commands Files

page 74, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- source file line number preprended to each line

- opcode/disassembly lines include a coverage field that indicates to what level the opcode
has been executed by tests (none, full execution, true branch, false branch, inferred
coverage)

The COVERAGE_LISTING_OPTIONS argument supports two mode options

ALL_LINES : Output all lines of the specified module/source
file with listing information.
NON_COVERED_ONLY_LINES : Output only line associated with
opcodes not fully executed.

Independent flags that modify the modes listed above may be added to the
COVERAGE_LISTING_OPTIONS argument. Currently one modifier flag is supported:

FILTER_ETPU_ENTRIES : Ignore entry table code for
disassembly purposes, and consider it fully covered so it
is ignored in non-covered only mode.

Example:

write_coverage_listing_file("CoverageListing.c", "..\\temp\
\CL_100percent_nc_filter.lst",

NON_COVERED_ONLY_LINES + FILTER_ETPU_ENTRIES);

6.6.14 RAM Test Script Commands

RAM test script commands provide a method for verifying internal or external RAM.
These tests provide both a verification capability and a diagnostic capability.

test_address_lines(startAddress, stopAddress,
 enum ADDR_SPACE, numIterations);

This command runs the address line RAM test between stopAddress and startAddress in
the address space ADDR_SPACE, for the number of iterations specified by
numIterations. The test attempts to provide diagnostics on any errors. For instance it will
attempt to isolate specific address lines as stuck high or stuck low, and, if successful, will
report the suspected problem. Note that this test verifies only those address lines that are
dynamic within memory range being tested. For instance, address bit 16, which selects
between 64K blocks, will not be tested unless the memory block straddles a 64K block
boundary.

test_data_lines(startAddress, stopAddress,
 enum ADDR_SPACE, numIterations);

This command runs the data line RAM test between stopAddress and startAddress in the

6. Script Commands Files

Multi Target Development Tool, page 75Reference Manual (C) 1994 ASH WARE, Inc.

address space ADDR_SPACE, for the number of iterations specified by numIterations.
The test attempts to provide diagnostics on any errors. For instance it will attempt to
isolate specific data lines as stuck high or stuck low, and, if successful, will report the
suspected problem.

test_random(startAddress, stopAddress,
 enum ADDR_SPACE, numIterations);

This command runs the data line RAM test between stopAddress and startAddress in the
address space ADDR_SPACE, for the number of iterations specified by numIterations.
This is the most robust test but it provides no diagnostic capabilities. It writes a pseudo-
random number sequence to the entire memory device and then verifies that it reads back
correctly. The most difficult-to-detect errors will generally be detected by this test.

test_increment(startAddress, stopAddress, startVal,
 enum ADDR_SPACE, numIterations);

This command runs the block increment RAM test between stopAddress and startAddress
in the address space ADDR_SPACE, for the number of iterations specified by
numIterations, using the start value startVal as the initial value from which to increment.
This is the least robust test, but it is excellent for human-factors purposes. Folks like you
and I are generally quite good at picking out breaks-in-patterns. For a typical memory
error this test sets the memory to a convenient pattern so that we can easily spot errors by
scrolling down through a memory dump window.

test_seam(address, enum ADDR_SPACE, numIterations);

This command runs the seam RAM test at address in the address space ADDR_SPACE,
for the number of iterations specified by numIterations. This was developed to verify
proper functionality of all read and write accesses at the boundary between two memory
devices. All combinations of even, odd, and double-odd addresses and 8-, 16-, and 32-bit
wide accesses are exercised. Note that the test assumes that all these access
combinations are supported; the test will fail if this is not a valid assumption.

test_byte_order(address, enum ADDR_SPACE, numIterations);

This command runs the byte order RAM test at address <address> in the address space
ADDR_SPACE, for the number of iterations specified by numIterations. It verifies the
byte order of the target processor. This was developed to verify proper functionality of
shared memory between two targets that have different byte orders. A shared memory
between two targets that do not have the same byte ordering can be tricky.

6. Script Commands Files

page 76, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

6.6.15 Channel Function Select Register Commands

write_chan_func(ChanNum,Val);

This command sets channel CHANNUM to function Val.

#define MY_FUN_NUM 0x10
write_chan_func(7, 0x10);

In this example channel 7 is set to function 10 (decimal). All other channel function
selections remain unchanged.

In the Byte Craft eTPU "C" compiler the function number can be automatically generated
using the following macro.

#pragma write h, (#define MY_FUNC_NUM ::ETPUfunctionnumber(Pwm));

6.6.16 Channel Priority Register Commands

write_chan_cpr(ChanNum,Val);

This command writes the priority assignment Val to the CPR for channel ChanNum.

write_chan_cpr(6,2);

In this example a middle priority level (2=middle priority) is assigned to channel 6 by writing
a two to the CPR bits for channel 6. All other TPU channel priority assignments remain
unchanged.

6.6.17 Pin Control Script Commands

TPU I/O pins configured as inputs are normally controlled using test vector files. TPU I/O
pins configured as outputs are normally controlled by the TPU and are verified using
master behavior verification test files described in the Functional Verification section.
Therefore, these commands are not the primary method for controlling and verifying pin
states. Instead, these commands serve as a secondary capability for pin state control and
verification.

pin_hi(chanNum);
pin_lo(chanNum);
tcr2_hi();
tcr2_lo();

These commands sets either channel chanNums’s (or the TCR2's) pin hi (logical 1) or lo
(logical 0.)

pin_hi(0xC);

6. Script Commands Files

Multi Target Development Tool, page 77Reference Manual (C) 1994 ASH WARE, Inc.

pin_lo(5);
tcr2_lo();

In this example channel 12’s pin is set to high, channel 5's pin is set low and the TCR2 pin
is set low.

verify_pin(chanNumber, pinState);

This command verifies that channel chanNumbers’s pin is equal to pinState (logical one or
zero). If the verification fails a verification failure messages is printed to the screen. This
verification failure message can be disabled from the Message Options dialog box.

verify_pin(3, 1);

In this example channel 3’s pin is inspected and if it not a one a verification failure
message is printed to the screen and the verification failure count is incremented.

eTPU input pins are normally controlled using test vector files. eTPU output pins and TPU
I/O pins configured as outputs are normally controlled by the eTPU/TPU and are verified
using master behavior verification test files described in the Functional Verification section.
 Therefore, these commands are not the primary method for controlling and verifying pin
states. Instead, these commands serve as a secondary capability for pin state control and
verification.

write_chan_input_pin(ChanNum, Val);
write_chan_output_pin(ChanNum, Val);
write_tcrclk_pin(Val);
verify_chan_output_pin(ChanNum, Val);
verify_ouput_buffer_disabled(ChanNum);
verify_ouput_buffer_enabled(ChanNum);

These commands write either ChanNum's or the TCRCLK pin to value Val, verify that
ChanNum's pin is equal to Val, or verify that an output buffer is enabled or disabled.

write_chan_input_pin(25, 0);
write_tcrclk_pin(1);

In this example, channel 25's input pin is cleared to a low, and the TCRCLK pin is set high.

verify_chan_output_pin(5, 1);
verify_ouput_buffer_disabled(5);
wait_time(5);
verify_chan_output_pin(5, 0);
verify_ouput_buffer_enabled(5);

In this example channel 5's output pin is verified to have a falling transition within a 5-
micro-second window. It is also verifying that the pin is acting like an open-drain (active
low, passive high.)

6. Script Commands Files

page 78, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

6.6.18 Pin Transition Behavior Script Commands

The pin transition behavior capabilities allow the user to generate behavioral models of the
source code and to verify the source code against these saved behavioral models. The
script commands allow the user to both create pin transition behavioral model and automate
the verification process. Script command capabilities include the ability to save and load
pin transition behavior files, the ability to enable continuous verification against these
models and control tolerance of tests, and the ability to perform a complete verification of
all recorded behavior at once.

NEW : Enhanced behavior verification starting with release 5.00 provides much more
flexible and useable pin transition verification capabilities. With enhanced behavior
verification pin transition data is saved in a new format that is .csv (comma separated
value) format for compatibility with many other tools. However, the enhanced behavior
verification can read original style .bv files as well as the new .ebv files. Existing scripting
commands apply to original .bv files only where noted.

A more complete discussion of functional verification is given in the Functional Verification
chapter while a discussion of the specifics of pin transition behavioral modeling is given in
the Pin Transition Behavior Verification section. With the new enhanced behavior
verification the loaded master pin transition behavior data can be viewed in theLogic
Analyzer Window.

Deprecated Behavior Verification Script Commands
read_behavior_file("filename.bv");

This command loads the pin transition behavior file into the master pin transition behavior
buffer. This buffer forms a behavioral model of the pin transition behavior of the source
code. Only old-style .bv files can be read with this command.

verify_all_behavior();

This command verifies all recorded pin transition behavior against the master pin transition
behavior buffer. It generates a behavior verification error message and increments the
behavior failure count for each deviation from the behavioral model. Only old-style .bv
files can be verified with this command.

enable_continuous_behavior();

This command enables continuous verification of pin transition behavior against the master
pin transition behavior buffer. During source code simulation each functional deviation
generates a behavior verification error message and causes the behavior verification failure
count to be incremented. This is useful for identifying the specific areas in which the
microcode behavior has changed. This command only applies to verification with old-

6. Script Commands Files

Multi Target Development Tool, page 79Reference Manual (C) 1994 ASH WARE, Inc.

style .bv files. Enhanced behavior verification automatically runs in continuous mode.

disable_continuous_behavior();

This command disables continuous verification of pin transition behavior against the master
pin transition behavior buffer. Note that pin transition behavior is still recorded in the pin
transition behavior buffer. This command only applies to verification with old-style .bv
files. Enhanced behavior verification automatically runs in continuous mode.

resize_pin_buffer(<NumPinTransitions>);

This command resizes the pin transition buffer. The default size is 100K transitions.

resize_pin_buffer(500000);

In this example the pin transition buffer size is changed such that it can hold 500K pin
transitions. This script command should only be executed at time zero.

Note that resizing the pin transition buffer can have serious affects on performance. For
instance it can cause a long delay when the simulator/debugger is reset. It can also
significantly slow down the logic analyzer redraw rate, such that the simulation speed is
bound by the redraw rate. Simulation speed reductions can be obviated by hiding or
minimizing the logic analyzer while the simulator/debugger runs, such that redraws are not
required, thereby improving simulation speed.

The effective pin transition buffer size can also be increased in other ways. This is
discussed in the Logic Analyzer Options Dialog Box section.

Enhanced Behavior Verification Script Commands

The test tolerance commands apply whether an old-style .bv file or new .ebv file is being
used as the master, however, the file manipulation script commands only apply to .ebv files.

create_ebehavior_file("filename.ebv");

This command creates an enhanced behavior data file with the specified name. .ebv file
creation in a script command file has the following limitations:

- only one can be created

- cannot have the same file name as a running (under verification) .ebv file

- must occur at simulation time 0 before any wait_time() or at_time() script commands

- must occur after any external gate instantiation or after any vector file commands

add_ebehavior_pin("<pin name>");

By default, when an enhanced behavior data file is created all pins will be saved out (on

6. Script Commands Files

page 80, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

the TPU, that is channel 0 - 15 and _tcr2, while on the eTPU, that is all 32 channel input,
32 channel output pins, and _tcrclk). With this script command, the user can select just the
pins desired to be saved to the .ebv file, as this is generally just a small subset. The <pin
name> argument is the name provided in the .vector file through the "node" command, or is
the default name of the pin (e.g. _ch3.out is the channel 3 output pin on the eTPU, or
_ch10 is the channel 10 pin on the TPU). These script commands must immediately
proceed the create_ebehavior_file() script command. Once one add_ebehavior_pin()
script command is used, all pins of interest must be added with this script command as the
default of all is disabled.

close_ebehavior_file();

Closes an enhanced behavior file that was created, saving off any remaining buffered data
to file. When using the created .ebv file, verification should be stopped at the same time as
when the .ebv file data stopped being recorded; see stop_ebehavior_file().

run_ebehavior_file("filename.ebv");

This script command opens the specified enhanced behavior verification file. The loaded
file is often referred to as the "master file" or "gold file". By default, all pins found in the .
ebv file are enabled for verification. The script command has the same limitations as
create_ebehavior_file() script command, in that it must be called out at a simulation time of
0, etc. The default tolerance for all pin transition data being verified is two system clocks
and zero offset.

set_ebehavior_pin_tolerance("<pin name>", <time tolerance
mode>, <time offset in us>, <time tolerance in us>);

Sets the time tolerance allowed between the loaded master file and the current simulation
run for the specified pin. The default is to verify all the pins in the .ebv file (or .bv file if an
old-style behavior data file is loaded), but once one of these script commands is specified
then each pin to be verified must be specified with a set_ebehavior_pin_tolerance() script
command. The <pin name> argument is the name provided in the .vector file through the
"node" command, or is the default name of the pin. The only available time tolerance mode
currently available is "EBV_ABSOLUTE" - this means that pin transition times in the gold
file will be compared directly to the pin transition times that occur in the current simulation
run, taking into account the offset and tolerance. The time offset in microseconds is an
adjustment made to pin transition data in the gold file before comparing to the simulation pin
transition time. For example, if additional code in the initialization of an eTPU function has
caused it to start outputting a signal 2us later than previously, then a time offset of 2us can
be specified and a smaller time tolerance used in the comparison. The time offset can be
positive or negative. The time tolerance controls the maximum amount of difference
between the master/gold file pin transition time and the simulation pin transition time before
a behavior verification error is thrown. Behavior verification throws an error if the

6. Script Commands Files

Multi Target Development Tool, page 81Reference Manual (C) 1994 ASH WARE, Inc.

absolute value of the time difference between a gold file pin transition time and the current
simulation pin transition time exceeds the specified tolerance. In general, these script
commands should immediately follow the run_ebehavior_file() script command, although
tolerances can be changed on the fly during simulation.

set_ebehavior_global_tolerance(<time tolerance mode>, <time
offset in us>, <time tolerance in us>);

This script command sets behavior verification tolerances for all pins of interest (default to
all, or those specified with set_ebehavior_pin_tolerance). The arguments - mode, time
offset and time tolerance are described in the set_ebehavior_pin_tolerance()
documentation.

disable_ebehavior_pin("<pin name>");

Pins can be individually disabled from behavior verification with this script command. Note
that this command and set_ebehavior_pin_tolerance work sequentially when determining
the final set of pins of interest.

stop_ebehavior_file();

Used to end enhanced behavior verification and close the .ebv file being used as the
master/gold file. For the pins being verified, the gold file and current simulation must
match at this time or a behavior verification error will occur. The stop_behavior_file()
script command should occur at the same time as the close_ebehavior_file() command did
during enhanced behavior file creation.

6.6.19 Thread Script Commands

The simulator/debugger stores worst-case latency information for each channel. This is
very useful for optimizing system performance. But in some applications the initialization
code, which generally does not contribute to worst case latency, experiences the worst
case thread length. In this case, it is best to ignore the initialization threads when
considering the worst case thread length for a function. This command provides for
ignoring the initialization threads.

// Initialize the channels.
write_chan_hsrr (RCV_15_A, ETPU_ARINC_RX_INIT);
write_chan_hsrr (RCV_15_B, ETPU_ARINC_RX_INIT);

// Wait for initialization to complete,
// then reset the worst case thread indices.
wait_time(100);
clear_worst_case_threads();

6. Script Commands Files

page 82, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

In this example the channels are issued a host service request, then after 100 microseconds
(presumably sufficient time to initialize) the threads indices are reset.

6.6.20 Disable Messages Script Commands

Note that this command has been DEPRECATED! Please use the –Quiet and the –ILF5
command line options to suppress generation of these messages in an automated regression
testing environment.

Pin transition verification failures and script command verification failures result in a non-
zero return code when the simulator/debugger exits, as well as display of a dialog box to
inform the user of the failure. This dialog box can be disabled in the Messages dialog box,
but this must be done manually each time the application is launched. In certain cases,
such as tool qualification under DO178B, it is desirable to disable display of the dialog box
such that the test of the verification test can be automated. This is done as follows.

disable_message(PIN_TRANSITION_FAILURE);
disable_message(SCRIPT_FAILURE);

THESE COMMANDS SHOULD BE USED WITH EXTREME CAUTION! They
remove observe-ability from verification failures.

In all cases except automation of test of the verification tests, it is preferable to disable the
display of the verification messages manually from within the Messages dialog box.

6.6.21 eTPU System Configuration Commands

write_entry_table_base_addr(Addr);

This command writes the Event Vector Table's address. It writes a value into the
ETPUECR register's ETB field that corresponds to address Addr.

#define MY_ENTRY_TABLE_BASE_ADDR 0x800
write_entry_table_base_addr(MY_ENTRY_TABLE_BASE_ADDR);

In the above example the event vector table is placed at address 0x800.

write_engine_relative_base_addr(Addr);

This (eTPU2 ONLY!) command writes the Engine Relative Base Address. It writes a
value into the ETPUECR register's ERBA field that corresponds to address Addr.

#define MY_ENGINE_ADDR 0xA00
write_engine_relative_base_addr(MY_ENGINE_ADDR);

6. Script Commands Files

Multi Target Development Tool, page 83Reference Manual (C) 1994 ASH WARE, Inc.

In the above example the engine relative space is placed (allocated) at address 0xA00.

write_scheduler_priority_passing_disable(Val);

This (eTPU2 ONLY!) command writes the Scheduler Priority Passing Disable bit. It
writes the specified 0 or 1 value into the SPPDIS bit of the ETPUECR register. The
default value is 0.

write_scheduler_priority_passing_disable(1);

In the above example priority passing in the scheduler is disabled.

write_global_time_base_enable(Enable);

The command enables the time bases for all the eTPUs.

write_entry_table_base_addr(Addr);

In the Byte Craft eTPU "C" Compiler the event vector table base address can be
automatically generated using the following macro.

#pragma write h, (#define MY_ENTRY_TABLE_BASE_ADDR ::ETPUentrybase(0));

In the Byte Craft eTPU "C" Compiler the event vector table base address is specified as
follows:

#pragma entryaddr 0x800;

This command writes the SCMOFFDATAR register. This register is the opcode that gets
executed when the eTPU executes from an SCM address that is not populated with actual
memory.

write_scm_off_data(Val);

6.6.22 eTPU Timing Configuration Commands

write_angle_mode(Val);
write_tcr1_control(Val);
write_tcr2_control(Val);
 write_tcr1_source(Val);

These commands write their respective field values in the ETPUTBCR register.

write_tcr1_prescaler(Prescaler);
write_tcr2_prescaler(Prescaler);

IMPORTANT NOTE: These two script commands write actual value of the 'system clock
divider' NOT THE VALUE OF THE TCR1P or the TCR2P registers!!! So, for
example, the script 'write_tcr1_prescaler(6);' gives a divide by of '6' but the TCR1P
register gets written to a '5'!

6. Script Commands Files

page 84, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

These commands write the prescaler ‘Prescaler’ to the ETPUTBCR register. Valid values
for TCR1 are 1..256 and for TCR2 are 1..64.

write_angle_mode(0); // Disable

write_tcr1_control(1); // System clock/2 (default TCR1 clock

source)

write_tcr2_control(2); // TCR2’s clk is falling TCRCLK Pin

write_tcr1_prescaler(1); // Fastest ... divide by 1

write_tcr2_prescaler(64); // Slowest ... divide by 64

In this example angle mode is disabled, the TCR1 counter is programmed to be equal to the
system clock divide by two (system clock divided by two, prescaler is divides by one), and
TCR2 is programmed to be the system clock divided by 512 (system clock divided by 8
with a 64 prescaler.)

write_tcr1_control(2); // use TCR1 clock source

write_tcr1_source(1); // System Clock/1 (eTPU2 Only!)

write_tcr1_prescaler(1); // Fastest ... divide by 1

In the above example system clock/1 is the input to the TCR1 prescaler. This is ONLY
available in the eTPU2 and beyond!

set_angle_indices(<DegreesPerCycle>, <TeethPerCycle>);

This command supports specification of angle indices required to display current angular
information in various portions of the visual interface including the, "Global Time and Angle
Counters" window. In a typical automotive application the angle hardware is used as a
PLL on the actual engine. Typically two engine revolutions are defined as a single "cycle"
so a cycle is defined as 720 degrees. Also, a typical crank has 36 teeth and rotates twice
per engine revolution. The following script command generates this configuration.

// This configures the visualization of the crank
#define DEGREES_PER_CYCLE 720
#define TEETH_PER_CYCLE 72
set_angle_indices(DEGREES_PER_CYCLE, TEETH_PER_CYCLE);

This command configures angle visualization for a cycle of 720 degrees, and a crank with
36 teeth which rotates twice per cycle yielding 72 teeth per cycle.

6.6.23 eTPU STAC Bus Script Commands

The STAC Bus for sharing time bases (TCR1, TCR2) between eTPU engines on dual-
eTPU microcontrollers can be configured with the following script commands:

write_stac_tcr1_enable();
write_stac_tcr1_assignment(Mode);

6. Script Commands Files

Multi Target Development Tool, page 85Reference Manual (C) 1994 ASH WARE, Inc.

write_stac_tcr1_server(ServerID);
write_stac_tcr2_enable();
write_stac_tcr2_assignment(Mode);
write_stac_tcr2_server(ServerID);

The enable commands allow the specified time base to be exported to or imported from the
STAC Bus. Whether the time base acts as a server or client is determined by Mode,
where a Mode of 0 is client operation, and a Mode of 1 is server operation. When in client
mode, the ServerID determines where the time base is to be imported from. The server
numbers for the time bases are hardcoded in hardware as follows:

0 – eTPU_A TCR1
1 – eTPU_B TCR1
2 – eTPU_A TCR2
3 – eTPU_B TCR2

A typical usage of the STAC Bus is to export the TCR2 time base (angle) from eTPU_A
to eTPU_B. This could be accomplished with the following set of script commands
(assumes other time base configuration already complete):

// configure STAC Bus

eTPU_A.write_stac_tcr2_enable(1);

eTPU_A.write_stac_tcr2_assignment(1); // server

eTPU_B.write_stac_tcr2_enable(1);

eTPU_B.write_stac_tcr2_assignment(0); // client

eTPU_B.write_stac_tcr2_server(2); // import eTPU_A's TCR2

// enable timers

write_global_time_base_enable(1);

6.6.24 eTPU Global Data Write/Verify Commands

write_global_data32(AddrOffset, Val);
write_global_data24(AddrOffset, Val);
write_global_data16(AddrOffset, Val);
write_global_data8 (AddrOffset, Val);

verify_global_data32(AddrOffset, Val);
verify_global_data24(AddrOffset, Val);
verify_global_data16(AddrOffset, Val);
verify_global_data8 (AddrOffset, Val);

These commands write global data at address AddrOffset to value Val, or verify that the
data at address AddrOffset matches value Val. Note that 32-bit numbers must be located
on a double even address boundary (0, 4, 8, ...,) that 24-bit numbers must be located on a

6. Script Commands Files

page 86, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

single-odd boundary (1, 5, 9, ...), that 16-bit accesses must be located on even boundaries
(0,2,4,…) and that 8-bit numbers can be on any address boundary.

The address is specified as an offset from the base of parameter RAM.

write_global_data32 (0x20, 0xC6E2024A);
verify_global_data32(0x20, 0xC6E2024A);
verify_global_data24(0x21, 0xE2024A);
verify_global_data16(0x20, 0xC6E2);
verify_global_data16(0x22, 0x024A);
verify_global_data8 (0x20, 0xC6);
verify_global_data8 (0x21, 0xE2);
verify_global_data8 (0x22, 0x02);
verify_global_data8 (0x23, 0x4A);

In this example data at an address offset of 0x20 (relative to that eTPU’s engine base
address) word is written with a 32-bit value 0xC6E2024A (hex). The written value is then
verified as 32-, 24-, and 8-bit sizes.

Note the ETEC eTPU C Compiler automatically generates all needed global variable
address data into the auto-defines file as a series of macros; no explicit user effort is
required.

Bitwise access to engine-space parameter RAM is supported with a set of matching
functions to those above.

write_global_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_global_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_global_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_global_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_global_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_global_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_global_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_global_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a _Bool bit that is in
the LSB of an 8-bit unit, the script command would be:

// set _Bool at LSB of 8-bit unit to 1
write_global_bits8(0x10, 7, 1, 1);

6. Script Commands Files

Multi Target Development Tool, page 87Reference Manual (C) 1994 ASH WARE, Inc.

6.6.25 eTPU Channel Data Script Commands

write_chan_data32(ChanNum, AddrOffset, Val);
write_chan_data24(ChanNum, AddrOffset, Val);
write_chan_data16(ChanNum, AddrOffset, Val);
write_chan_data8 (ChanNum, AddrOffset, Val);
verify_chan_data32(ChanNum, AddrOffset, Val);
verify_chan_data24(ChanNum, AddrOffset, Val);
verify_chan_data16(ChanNum, AddrOffset, Val);
verify_chan_data8 (ChanNum, AddrOffset, Val);

These commands write channel ChanNum’s data at address AddrOffset to value Val, or
verify that the data at the specified parameter RAM memory location is value Val. Note
that 32-bit numbers must be located on a double even address boundary (0, 4, 8, ...,) that
24-bit numbers must be located on a single-odd boundary (1, 5, 9, ...), that 16-bit accesses
must be located on even boundaries (0,2,4,…) and that 8-bit numbers can be on any
address boundary.

#define UART_CHAN 12
write_chan_data32 (UART_CHAN, 0x20, 0xC6E2024A);
verify_chan_data32(UART_CHAN, 0x20, 0xC6E2024A);
verify_chan_data24(UART_CHAN, 0x21, 0xE2024A);
verify_chan_data16(UART_CHAN, 0x20, 0xC6E2);
verify_chan_data16(UART_CHAN, 0x22, 0x024A);
verify_chan_data8 (UART_CHAN, 0x20, 0xC6);
verify_chan_data8 (UART_CHAN, 0x21, 0xE2);
verify_chan_data8 (UART_CHAN, 0x22, 0x02);
verify_chan_data8 (UART_CHAN, 0x23, 0x4A);

In this example channel 12’s data at an address offset of 0x20 (relative to that channel's
base address) word is written with a 32-bit value 0xC6E2024A (hex). The written value is
then verified as 32-, 24-, and 8-bit sizes.

In the Byte Craft eTPU "C" Compiler the address offset can be generated using the
following #pragma in the code:

#pragma write h, (#define MY_ADDR_OFFSET ::ETPUlocation(Pwm, MyFuncVar));

The ETEC eTPU C Compiler automatically generates all needed address data into the
auto-defines file; no explicit user effort is required.

Bitwise access to parameter RAM is supported with a set of matching functions to those
above.

write_chan_bits32(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_chan_bits24(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

6. Script Commands Files

page 88, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

write_chan_bits16(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_chan_bits8 (ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits32(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits24(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits16(ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_chan_bits8 (ChanNum, AddrOffset, BitOffsetFromMSB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a _Bool bit that is in
the LSB of an 8-bit unit, the script command would be:

// set _Bool at LSB of 8-bit unit to 1
write_chan_bits8(BOOL_CHAN, 0x10, 7, 1, 1);

6.6.26 eTPU Channel Address Script Commands

write_chan_base_addr(ChanNum, Addr);

This command writes channel ChanNum’s address Addr. Note that this writes the CPBA
register value.

#define PWM1_CHAN 3
#define PWM2_CHAN 4
#define PWM1_CHAN_ADDR 0x300
#define PWM2_CHAN_ADDR (PWM1_CHAN_ADDR + PWM_RAM)
write_chan_base_addr(PWM1_CHAN, PWM1_CHAN_ADDR);
write_chan_base_addr(PWM2_CHAN, PWM2_CHAN_ADDR);

In this example channel 3’s data will start at address 0x300. Note channel variables and
static local variables use this.

6.6.27 eTPU Engine Data Script Commands

 These engine data script commands are only available on the eTPU2 products.
write_engine_data32(AddrOffset, Val);
write_engine_data24(AddrOffset, Val);
write_engine_data16(AddrOffset, Val);
write_engine_data8 (AddrOffset, Val);

verify_engine_data32(AddrOffset, Val);
verify_engine_data24(AddrOffset, Val);
verify_engine_data16(AddrOffset, Val);
verify_engine_data8 (AddrOffset, Val);

6. Script Commands Files

Multi Target Development Tool, page 89Reference Manual (C) 1994 ASH WARE, Inc.

These commands write engine data at address AddrOffset to value Val, or verify that the
data at address AddrOffset matches value Val. Note that 32-bit numbers must be located
on a double even address boundary (0, 4, 8, ...,) that 24-bit numbers must be located on a
single-odd boundary (1, 5, 9, ...), that 16-bit accesses must be located on even boundaries
(0,2,4,…) and that 8-bit numbers can be on any address boundary.

The address is formed by adding the engines base address (see ERBA.) with the address
formed in the by the Addroffset field. See the System Configuration Commands section
for information on how the Engine Relative Base Address (ECR.ERBA) field is
writtenwrite_engine_data32 (0x20, 0xC6E2024A);

verify_engine_data32(0x20, 0xC6E2024A);
verify_engine_data24(0x21, 0xE2024A);
verify_engine_data16(0x20, 0xC6E2);
verify_engine_data16(0x22, 0x024A);
verify_engine_data8 (0x20, 0xC6);
verify_engine_data8 (0x21, 0xE2);
verify_engine_data8 (0x22, 0x02);
verify_engine_data8 (0x23, 0x4A);

In this example data at an address offset of 0x20 (relative to that eTPU’s engine base
address) word is written with a 32-bit value 0xC6E2024A (hex). The written value is then
verified as 32-, 24-, and 8-bit sizes.

Note the ETEC eTPU C Compiler automatically generates all needed engine variable
address data into the auto-defines file as a series of macros; no explicit user effort is
required.

Bitwise access to engine-space parameter RAM is supported with a set of matching
functions to those above.

write_engine_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_engine_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_engine_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

write_engine_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits32(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits24(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits16(AddrOffset, BitOffsetFromMSB, BitSize, Val);

verify_engine_bits8 (AddrOffset, BitOffsetFromMSB, BitSize, Val);

These script commands allow the writing and verification of bitfields within the specified
unit. The bit offset is from the MSB of the unit. For example, to set a _Bool bit that is in
the LSB of an 8-bit unit, the script command would be:

6. Script Commands Files

page 90, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

// set _Bool at LSB of 8-bit unit to 1
write_engine_bits8(0x10, 7, 1, 1);

6.6.28 eTPU Channel Function Mode Script Command

write_chan_mode(ChanNum, ModeVal);

This command writes channel ‘ChanNum’ to function mode ‘ModeVal’. Note that this
modifies the FM field of the CxSCR register. This is a two-bit field so valid values are 0,
1, 2, and 3.

#define PWM1_CHAN 17
write_chan_mode(PWM1_CHAN, 3);

In this example, channel 17’s function mode is set to 3

6.6.29 eTPU Event Vector Entry Condition (Standard/Alternate) Commands

write_chan_entry_condition(ChanNum, Val);

This command writes channel ChanNum’s event vector (entry) condition to Val. Note that
this writes the CxCR register's ETCS field. A value of 0 designates the standard table and
1 designates alternate. Note that each function has a set value and that this value MUST
match that of the eTPU function to which the channel is set.

#define UART_STANDARD_ENTRY_VAL 0

#define PWM_ALTERNATE_ENTRY_VAL 1

write_chan_entry_condition(UART1_CHAN, UART_STANDARD_ENTRY_VAL);

write_chan_entry_condition(UART2_CHAN, UART_STANDARD_ENTRY_VAL);

write_chan_entry_condition(PWM1_CHAN, PWM_ALTERNATE_ENTRY_VAL);

write_chan_entry_condition(PWM2_CHAN, PWM_ALTERNATE_ENTRY_VAL);

In this example the UART channels are programmed to use the standard event vector
table and the PWM channels are programmed to use the alternate event vector table.

The ETEC compiler automatically outputs entry table type information into the auto-defines
file.

In the Byte Craft eTPU "C" Compiler the event vector condition (alternate/standard) for
the eTPU function is specified as follows.

#pragma ETPU_function Pwm, alternate;

void Pwm (int24 Period, int24 PulseWidth)

6. Script Commands Files

Multi Target Development Tool, page 91Reference Manual (C) 1994 ASH WARE, Inc.

{

...

In the Byte Craft eTPU "C" Compiler the event vector mode can be automatically
generated using the following macro.

#pragma write h, (#define PWM_ALTERNATE_ENTRY_VAL ::ETPUentrytype(Pwm));

Note that setting of the event vector table’s base address is covered in the System
configuration commandsSYSTEM_CFG_CMDS section.

write_chan_entry_pin_direction(ChanNum, Val);

This command writes channel ChanNum’s event vector pin direction to Val. Note that this
writes the CxCR register's ETPD field. A value of 0 uses the channel’s input pin and a
value of 1 uses the output pin.

#define ETPD_PIN_DIRECTION_INPUT 0

#define ETPD_PIN_DIRECTION_OUTPUT 1

write_chan_entry_pin_direction(UART1_CHAN, ETPD_PIN_DIRECTION_INPUT);

write_chan_entry_pin_direction(UART2_CHAN, ETPD_PIN_DIRECTION_OUTPUT);

In this example the UART1 chan event vector table thread selection is based on the input
pin, and UART2 event vector thread selection is based on the output pin.

See the System Configuration Commands section for information on setting the entry
table’s base address.

6.6.30 eTPU Interrupt Script Commands

Interrupts can cause special script ISR file to execute as described in the Script ISR
section.

clear_chan_intr(ChanNum);
clear_chan_overflow_intr(ChanNum);
clear_data_intr(ChanNum);
clear_data_overflow_intr(ChanNum);

These commands clear the interrupts for channel ChanNum. It is equivalent to setting the
bit associated with the channel in the CICX, DTRC, CIOC, or DTROC fields.

verify_chan_intr(ChanNum, Val);
verify_chan_overflow_intr(ChanNum, Val);
verify_data_intr(ChanNum, Val);
verify_data_overflow_intr(ChanNum, Val);
verify_illegal_instruction(Val);
verify_microcode_exception(Val);

6. Script Commands Files

page 92, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

These commands verify that the respective interrupts are either asserted (Val==1) or de-
asserted (Val==0).

clear_global_exception();

This command clears the global exception along with the exception status bits. It is
equivalent to setting the GEC field in the ETPUMCR field.

disable_chan_intr(ChanNum);
enable_chan_intr(ChanNum);
disable_data_intr(ChanNum);
enable_data_intr(ChanNum);

These commands enable/disable the interrupt for channel ChanNum. Note that if you
associate a script ISR file with an interrupt, these commands allow or prevent that file from
running on assertion of the interrupt.

clear_this_intr();

This command can only be run from within a script ISR file. It clears the interrupt that
caused the command to execute.

6.6.31 eTPU Shared Subsystem Script Commands

config_shared_sub_system(subSystemId, engineId, chanNum);

This command configures the subsystem 'subSystemId' to generated a link on engine
'engineId' channel 'ChanNum'. SubSystemId is the ID for the sub-system. The parameter
'engineId' programs the ETPUSSSnIR register's 'LENQ' field and is set to 'DISABLED',
'ENGINE_1', or 'ENGINE_2'. The parameter chanNum programs the ETPUSSSnIR
register's 'LCHAN' field.

issue_sub_system_link(subSystemId);

This command issues a link that originates from the sub-system specified by the
subSystemId field.

config_shared_sub_system(0, ENGINE_1, 17);
issue_sub_system_link(0);

The above command sequence configures the shared memory subsystem to interrupt
channel 17 of engine 1 and then issues a link.

write_chan_shared_subsystem_access_enable(chanNum,
enableVal); // (eTPU2 only)

This command enables or disables shared subsystem accesses. This is done on a per
channel bases in that some channels can have this enabled while others have it disabled.
The 'chanNum' specifies the channel to be enabled or disabled. The 'enableVal' can either

6. Script Commands Files

Multi Target Development Tool, page 93Reference Manual (C) 1994 ASH WARE, Inc.

be '1' (enabled) or '0' (disabled.) Note that this command is only available for eTPU2.

write_chan_shared_subsystem_access_enable(4, 1);

In this example, channel 4 is enabled for memory accesses to the shared subsystem.

6.6.32 eTPU Link Script Command

set_link(ChanNum);

This command directly sets a Link Service Request (LSR) to channel ChanNum.

set_link(8);

In this example a link is generated on channel 8.

6.6.33 TPU Parameter Ram Script Commands

write_par_ram(ChanNum,ParamNum,Val)

This command writes channel ChanNum’s (16-bit) parameter ParamNum to value Val.

write_par_ram(3,1,0x2222);

In this example channel 3’s parameter one RAM word is written to value 2222 (hex).

verify_ram_word(ChanNum,ParamNum,Val);

This command verifies that channel ChanNum’s RAM word number ParamNum is equal
to Val. If the verification fails a verification failure messages is printed to the screen. This
verification failure message can be disabled from the Message Options dialog box. The
accumulated count of verification failures is available in the Configuration Window.

verify_ram_word(0xa,3,0x1324);

In this example channel 10’s parameter RAM word three is verified to be equal to 0x1324
(hex). If the value is indeed equal to 0x1324 (hex) then the simulation continues. If the
value is not equal to 0x1324 (hex) an error message is printed to the screen.

verify_ram_bit(ChanNum,ParamNum,BitNum,Val);

This command verifies that channel ChanNum’s RAM word number ParamNum bit
BitNum is equal to Val. Bit 15 is defined as the most significant while bit 0 is defined as
the least significant. Val must be between zero and one inclusive. If the verification fails a
verification failure messages is printed to the screen. This verification failure message can
be disabled from the Message Options dialog box. The accumulated count of verification
failures is available in the Configuration Window.

6. Script Commands Files

page 94, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

verify_ram_bit(0xa,3,14,1);

In this example channel 10’s parameter RAM word 3 bit 14 is verified to be equal to 1. If
the value is indeed equal to 1 then the simulation continues. If the bit is instead a zero an
error message is printed to the screen. For instance if channel 10’s RAM word three is
equal to 4000 (hex) the verification would pass while if it were instead equal to zero the
test would fail and an error message would be displayed.

6.6.34 eTPU/TPU Host Service Request Register Script Commands

write_chan_hsrr(ChanNum,Val);

This command writes channel ChanNum’s HSRR bits to value Val.

write_chan_hsrr(4,0);

In this example channel 4’s HSRR bits are written to zero. If channel 4 had a pending host
service request, it would be cleared.

6.6.35 TPU Channel Interrupt Service Register Commands

clear_cisr(ChanNum);

This command clears a Channel Interrupt Service Request (CISR) from channel
ChanNum. This command accepts a single argument.

clear_cisr(7);

In this example the CISR is cleared from channel 7.

clear_this_cisr();

This command clears the CISR of the active channel from within an ISR script commands
file. Note that in the primary script commands file there is no channel context so this
command cannot be used and use of this command generates a warning message. No
arguments are required with this command.

clear_this_cisr();

Assume in this example that an ISR script commands file that is associated with TPU
channel 3 executes this command. This file gets executed upon assertion of channel 3’s
interrupt. When this command is executed channel 3’s interrupt request bit is cleared.

verify_cisr(ChanNum,Val);

This command verifies that the CISR bit from channel ChanNum is equal to Val. This
command accepts a pair of arguments. Argument Val must be between zero and one
inclusive. If the verification fails, then a verification failure message is printed to the

6. Script Commands Files

Multi Target Development Tool, page 95Reference Manual (C) 1994 ASH WARE, Inc.

screen. This verification failure message can be disabled from the Message Options dialog
box. The count of verification failures is available in the Configuration Window.

verify_cisr(5,1);

In this example channel 5’s CISR bit is verified to be a 1. If the bit is indeed a 1 then the
simulation continues. If the bit is instead a 0 a verification failure message is printed to the
screen. The accumulated count of verification failures is available in the Configuration
Window.

6.6.36 TPU Host Sequence Request Register Commands

write_chan_hsqr(ChanNum,Val);

This command writes channel ChanNum’s HSQR bits to value Val. The HSQR bits of all
other registers remain unchanged.

write_chan_hsqr(8,0x2);

In this example two is written to channel 8’s HSQR bits.

6.6.37 TPU Clock Control Script Commands

These commands control the TCR1 counter, the TCR2 input pin frequency, and the TCR2
counter.

See the Clock Control Script Command section for information on how to set the clock
period.

The set_cpu_frequency(); script command has been deprecated. Instead, use the
set_clk_period() script command described in the Clock Control Script Command section.
A message is generated when this command is used. This message can be disabled from
the Message Options Dialog Box.

write_psck(Val);

This command writes the prescaler clock source bit. Only 0 and 1 are allowed values. A
1 selects the system clock divided by 4. A zero selects the system clock divided by 32.

write_div2(Val);

This is available in TPU2 mode only. Writes the divide-by-2 control bit. Only 0 and 1 are
allowed values. A 1 selects the system clock divided by 2 and bypasses the prescaler. A
0 selects the clock source specified in the PSCK bit.

write_tcr1_prescaler(Val);

6. Script Commands Files

page 96, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

This command writes the TCR1 prescaler. Valid Val values are 0, 1, 2, or 3. A 0 causes
a division by 1 (no prescaler). A 1 causes a division by 2. A two causes a division by 4.
A 3 causes a division by 8.

write_psck(1);
write_div2(0); // Available in TPU2 mode only
write_tcr1_prescaler(2);

The two commands in this example set the TCR1 counter to increment at 1.0486 MHz,
assuming the CPU clock is set to 16.778 MHz.

write_t2cg(Val);

This command writes the TCR2 configuration bit. Valid Val values are zero and one.

write_t2csl(Val);

This is available in TPU2 mode only. It writes the TCR2 counter clock source edge
control bit. Only 0 and 1 are allowed values. This control bit along with the T2CG control
bit specifies the source for the TCR2 counter. With both control bits at 0, the TCR2
counter is clocked on a rising edge. With both control bits at one the TCR2 counter is
clocked on both the rising and falling edges, thus effectively doubling the counter
frequency. With T2CSL at 0 and T2CG at 1 the clock source is the gated system clock.
With T2CSL at 1 and T2CG at 0 the TCR2 counter is clocked on the falling edge.

write_tcr2_prescaler(Val);

This command writes the TCR2 prescaler. Valid Val values are 0, 1, 2, or 3. A 0 causes
a division by 1 (no prescaler). A 1 causes a division by 2. A 2 causes a division by 4. A 3
causes a division by 8.

write_t2cg(0);
write_t2csl(0) // Available in TPU2 mode only
write_tcr2_prescaler(3);

The commands in this example set the external pin to be the TCR2 counter clock source
and set the TCR2 prescaler to divide by 8. The TCR2 counter is setup to be clocked on
the rising edge. These commands together set the TCR2 counter to increment on every
eighth rising edge of the signal at the TCR2 input pin.

TPU3-Specific Script Commands
write_epscke(Val);

This command writes the TCR1 enhanced prescaler enable bit. Only 0 and 1 are allowed
values. This control bit determines whether the TPU3’s new and enhanced prescaler is
used or the standard prescaler is used. With the enhanced prescaler the resolution of the
clock period is controllable in 3% increments of the longest clock period.

6. Script Commands Files

Multi Target Development Tool, page 97Reference Manual (C) 1994 ASH WARE, Inc.

write_epsckv(Val);

This command writes the TCR1 enhanced prescaler value. Only values between 1 and 31
are allowed. Assuming the EPSCKE bit is set, the clock frequency fed to the TCR1
prescaler is the system clock divided by the TCR1 enhanced prescaler where the
enhanced prescaler is equal to EPSCKV plus 1 times 2.

write_epscke(1);
write_epsckv(20);
write_tcr1_prescaler(2); // Available in all TPUs

The three commands in this example set the TCR1 counter to increment at 99.87 KHz,
assuming the CPU clock is set to 16.778 MHz.

write_tcr2psck2(Val);

This command writes the TCR2 pre-divider prescaler. The only allowed values are 0 and
1.

// This, with the next command, select the system clock/8
write_t2cg(1);
write_t2csl(0)
// Set the TCR2 prescaler to divide by 8
write_tcr2_prescaler(3);
// Set the pre-divider prescaler to divide by 2
write_tcr2psck2(1);

The above script command sequence sets the TCR2 counter to be clocked at the system
clock frequency divided by 128.

6.6.38 TPU Bank and Mode Control Script Commands

set_tpu_type(X,Y);

The simulator/debugger automatically determines the TPU type from the source TPU
microcode, so this command is not normally required, except for the TPU3 in which TPU2
should be specified because bug in the NXP TPU assembler prevents selection of TPU3
so this script command is required to specify a TPU3 target. In addition, there are subtle
differences among the TPU1, TPU2, and TPU3 that the TPU assembler hides from the
user. Use of this instruction can cause significant behavioral deviations between the
simulator/debugger and the actual TPU hardware.

This command sets the TPU type and the instruction space size. Valid types are 1 through
3, which correspond to TPU1 through TPU3, respectively. The instruction space size is
expressed in 32-bit long-words. Supported combinations of types and instruction space
sizes are as follows.

6. Script Commands Files

page 98, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

TPU1, 256
TPU1, 512
TPU2, 512
TPU2, 1024
TPU2, 2048
TPU3, 1024
TPU3, 2048
write_entry_bank(X);

This command writes the TPU entry bank. Valid values depend on the instruction space
size. Each bank consists of 512 32-bit long-words, so the number of valid banks is equal to
the instruction space size divided by 512. For the common size of 1024 there are two valid
banks so the maximum valid entry bank is 1. Zero is always a valid entry bank.

set_tpu_type(1,1024);
write_entry_bank(1);

The commands in this example set the TPU type to TPU1, the instruction space size to
1024 32-bit long-words, and the entry bank to 1.

Setting the TPU Code Bank

The following code bank discussion is applicable only to TPU2 and TPU3.

There are no script commands for setting the code bank. At run-time the active code bank
is determined during each time slot transition. Bits 10 and 9 from the entry table determine
the code bank. The TPU assembler generally handles this field by determining the bank in
which the code is located. The user has control over which bank the code is located from
within the source TPU microcode. One method of specifying the bank in which the code
will reside is the ORG statement. This and other methods are described in the TPU
assembler literature.

6.6.39 TPU Match, Transition & Link Script Commands

set_mrl(ChanNum);
set_tdl(ChanNum);
set_link(ChanNum);

These commands directly sets the Match Recognition Latch (MRL,) the Transition
Detection Latch (TDL) or a Link Service Request (LSR) of channel ChanNum.

set_mrl(5);
set_tdl(3);
set_link(8);

6. Script Commands Files

Multi Target Development Tool, page 99Reference Manual (C) 1994 ASH WARE, Inc.

In this example channel 5’s MRL is set, channel 3's TDL is set, and a link is generated on
channel 8.

6.6.40 eTPU/TPU Interrupt Association Script Commands

Interrupt association script commands associate a script commands file with the firing of
interrupts such that when the interrupt is both enabled and active, the script commands file
executes. See the Script Commands Files chapter for a description of the use of ISR
script commands files

load_chan_isr("filename.eTpuCommand", ChanNum); // eTPU-Only

load_data_isr("filename.eTpuCommand", ChanNum); // eTPU-Only

load_exception_isr("filename.eTpuCommand"); // eTPU-Only

load_isr("filename.TpuCommand", ChanNum); // TPU-Only

In order for the ISR script to actually execute the ISR must be enabled. The following
script commands enable and disable ISRs for both the eTPU and TPU.

enable_chan_intr(chanNum); // eTPU Only

disable_chan_intr(chanNum); // eTPU Only

enable_data_intr(chanNum); // eTPU Only

disable_data_intr(chanNum); // eTPU Only

write_chan_cier(chanNum, isEnable); // TPU Only

This commands loads ISR script commands file filename.TpuCommand (or filename.
eTpuCommand) and associates them with the various types of interrupts from channel
ChanNum.

close_chan_isr(ChanNum); // eTPU only

close_data_isr(ChanNum); // eTPU only

close_exception_isr(); // eTPU only

close_isr(ChanNum); // TPU only

These commands close the ISR script command that is associated with the channel
ChanNum.

load_isr("ISR_5.TpuCommand", 5);
write_chan_cier(5, 1); // Enable the TPU interrupt
wait_time(2000);
close_isr(5);
write_chan_cier(5, 0); // Disable the TPU interrupt

This eTPU example loads the file ISR_5.TpuCommand and associates it with the interrupt
from channel 5. Any asserted and enabled interrupt on channel 5 during that 2ms window
will cause the script commands in the file to be run.

6. Script Commands Files

page 100, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

load_data_isr("ISR_22.eTpuCommand", 22);
enable_data_intr(22);
wait_time(5000);
close_data_isr(22);
disable_data_intr(22);

This eTPU DATA isr example loads the file ISR_22.eTpuCommand and associates it with
the data interrupt from channel 22. If the interrupt for channel 22 is both asserted and
enabled within the first 5ms, then the script commands in the file will run.

load_exception_isr("GlobalExc.eTpuCommand"); // eTPU-Only

This eTPU example loads the file GlobalExc.eTpuCommand and associates it with the
global interrupt.

6.6.41 External Logic Commands

Boolean logic that is external to the eTPU is instantiated through the use of place_xyz();
script commands. Several types of external logic are available. The script command used
to instantiate each type of logic is listed below. See the External Logic Simulation chapter
for a detailed description of the use of external Boolean logic gates.

- place_buffer(InPin, OutPin); Instantiates a buffer follower

- place_inverter(InPin, OutPin); Instantiates an inverter

- place_and_gate(In1Pin, In2Pin, OutPin); Instantiates an 'AND' gate

- place_or_gate(In1Pin, In2Pin, OutPin); Instantiates an 'OR' gate

- place_xor_gate(In1Pin, In2Pin, OutPin); Instantiates an 'XOR' gate

- place_nand_gate(In1Pin, In2Pin, OutPin); Instantiates a 'NAND' gate

- place_nor_gate(In1Pin, In2Pin, OutPin); Instantiates a 'NOR' gate

- place_nxor_gate(In1Pin, In2Pin, OutPin); Instantiates an 'INVERTING
XOR' gate

- remove_gate(Out); Removes the gate that drives channel 'Out'

The eTPU has up to two pins per channel which (depending on the specific device) may or
may not actually be connected together or to from outside of the microcontroller. Indexes
are defined as follows for the eTPU.

- 0 to 31 Channels 0 through 31 inputs, respectively

- 32 to 63 Channels 0 through 31 outputs, respectively

- 64 TCRCLK pin

6. Script Commands Files

Multi Target Development Tool, page 101Reference Manual (C) 1994 ASH WARE, Inc.

place_and_gate(5, 33, 64);

This example places an 'AND' gate with eTPU channels 5's input pin and eTPU channel
2's output pin as inputs and the TCRCLK pin as the output.

Two eTPU Engine Configurations

In two eTPU configurations it is possible to place gates between the two eTPU’s pins.
This is done using the following syntax.

- 128 to 159 Other eTPU’s channels 0 through 31 inputs
pins

- 160 to 191 Other eTPU’s channels 0 through 31 output
pins

- 192 Other eTPU’s TCRCLK pin

place_xor_gate(160, 161, 5);

This example places a ‘XOR’ gate from eTPU B’s channel 0 and 1 output pins to eTPU
A’s channel 5 input pin.

Note that for the TPU, 16 is the index used for the TCR2 pin.

place_buffer(5, 16);

This example instantiates a buffer follower with TPU channel 5 as the input and the TCR2
pin as the output.

Each of the place_xyz(); script command has an extended version that supports cross
target/core gates, as shown below.

- place_buffer_ex(InTarget, InPin, OutTarget, OutPin);
Instantiates a buffer follower

- place_inverter_ex(InTarget, InPin, OutTarget, OutPin);
Instantiates an inverter

- place_and_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget,
OutPin); Instantiates an 'AND' gate

- place_or_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
 Instantiates an 'OR' gate

- place_xor_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
 Instantiates an 'XOR' gate

- place_nand_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget,
OutPin); Instantiates a 'NAND' gate

6. Script Commands Files

page 102, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- place_nor_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget, OutPin);
 Instantiates a 'NOR' gate

- place_nxor_gate_ex(In1Target, In1Pin, In2Target, In2Pin, OutTarget,
OutPin); Instantiates an 'INVERTING XOR' gate

The InTarget, In1Target, In2Target and OutTarget are the names of the target and are
expressed as strings such as "eTPU_A" or "Ch1_Core0".

place_or_gate_ex("eTPU_A", 32+16, "Ch1_Core0", 10,
"eTPU_A",11);

In the above example an 'OR' gate is placed with its two inputs coming from the eTPU A's
channel 16 output pin and the MC33816's OA_1 pin. The output of the OR gate drives
eTPU A's channel 11's input pin.

6.7 Automatic and Pre-Defined Define Directives

ASH WARE Specific Script

It is often desirable to conditionally parse (or not parse) portions of a script command file
depending on whether or not it is in the ASH WARE development environment. The
following #define is automatically prepended when parsing any script file, and therefore
can be used to control the aforementioned conditional parsing.

#define _ASH_WARE_SCRIPT_ 1

This #define is prepended prior to parsing every script file.

#ifndef _ASH_WARE_SCRIPT_
void RunEngineDemo()
{
#endif

The code above causes the function declaration to be ignored by the ASH WARE parser.

Tool-Specific Scripts

With the introduction of the new Development Tool in some cases it may be helpful to
have tool-specific behavior. This is achieved using the 'Development Tool' define as
follows.

#define _ASH_WARE_DEV_TOOL_ 1

6. Script Commands Files

Multi Target Development Tool, page 103Reference Manual (C) 1994 ASH WARE, Inc.

This #define is prepended prior to parsing every script file in the 'Development Tool' but
NOT in the legacy 'Mtdt' tool.

When running as a hardware debugger (rather than a simulator) the following define allows
differentiation between the simulator and debugger.

#define _ASH_WARE_DEV_TOOL_ 1

The following is an example usage of simulator/debugger specific scripting.

#ifdef _ASH_WARE_HARDWARE_DEBUGGER_
// These scripts will execute if it is a debugger
verify_spi_data16(_AW816DA_IMM_StartPins_, 0x08);
verify_spi_data16(_AW816DA_IMM_StartPins45_, 0x00);
#else
// These scripts will execute if it is a simulator
verify_spi_data16(_AW816DA_IMM_StartPins_, 0x00);
verify_spi_data16(_AW816DA_IMM_StartPins45_, 0x01);
#endif

Target-Specific Scripts

It is often desirable to have a single script commands file run on multiple targets. In this
case target-dependent behavior is accomplished using the target define. The target define
is generated using the target name as follows.

#define _ASH_WARE_<TargetName>_ 1

TargetName is defined in the build batch file and is found in a pull-down menu in the upper
right hand side of the simulator/debugger.

#ifdef _ASH_WARE_DBG32_
set_crystal_frequency(32768);
#endif // _ASH_WARE_DBG32_

In this example the set_crystal_frequency(); script command executes only if the script
command is running under a target named DBG32.

The build define is also injected as a macro into the script environment.

#define <BuildDefine> 1

A script file shared among projects testing on different targets can then have target-
specific sections:

#ifdef MPC5554_B
// do eTPU1 stuff
#elif defined(MPC5674F_2)
// do eTPU2 stuff

6. Script Commands Files

page 104, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

#endif

Determining the Tool Versions

The compiler version and simulator version are available as the system macros
__COMPILER_VERSION__ and __MTDT_VERSION__. These resolve as strings
and are available in script commands such as print_to_trace() and verify_trace(). See
below.

print_to_trace(“Using compiler version %s and simulator version %s”,

 __COMPILER_VERSION__, __MTDT_VERSION__);

verify_str(“__MTDT_VERSION__”, “==”, “TPU Simulator, Version 3.50 Build D”);

These can also be used in @ASH@print action commands that are embedded in the
source code files, as follows.

// @ASH@print_to_trace(“Compiler version is %s\n”, __COMPILER_VERSION__);

Determining the Auto-Run Mode

The simulator/debugger is often launched as part of an automated test suite. Under these
conditions the test starts running and executes to completion (assuming no failures) with no
user intervention. The following is automatically defined when the simulator/debugger is
launched in auto-run mode.

_ASH_WARE_AUTO_RUN_

The following is typically found at the end of a script file used as part of an automated test
suite.

#ifdef _ASH_WARE_AUTO_RUN_
exit();
#else
print("All tests are done!!");
#endif // _ASH_WARE_AUTO_RUN_

Determining the Interrupt Number

Channel interrupts for channels 0...15 are numbered 0...15.

ISR script commands execute in response to an enabled and asserted interrupt as
described in the ISR Script Commands Files section. On the eTPU/TPU each of these
script commands has a unique number, as follows.

- Channel interrupts for channels 0...31 are numbered 0...31.

- Data interrupts for channels 0...31 are numbered 31...63.

- The global exception interrupt number is 64.

6. Script Commands Files

Multi Target Development Tool, page 105Reference Manual (C) 1994 ASH WARE, Inc.

- Channel interrupts for channels 0...15 are numbered 0...15.

The ‘define’ is formed using the target name, as follows.

_ASH_WARE_<TargetName>_ISR_

When running under a target named, "eTPU_A", the ISR script loaded for channel 25's
channel interrupt is automatically defined as follows.

#define _ASH_WARE_eTPU_A_ISR_ 25

If this same script command file is also loaded for the DATA interrupt, then the automatic
define would be as follows.

#define _ASH_WARE_ETPU_ISR_ 57

An example of how this can be used is as follows

#define THIS_ISR_NUM (_ASH_WARE_ETPU_ISR_)

#define THIS_CHAN_NUM (_ASH_WARE_ETPU_ISR_ & 0x1F)

clear_this_intr();

// Write a signature to indicate that this ISR ran

write_chan_data24 (THIS_CHAN_NUM, 0xD, 0xFD12A4 + THIS_ISR_NUM);

Passing Defines from the Command Line

When launching the simulator/debugger it is often useful to pass #define directives to the
primary script commands file from the command line. This is explained in detail in the
Regression Testing section.

The following command line is found in the batch files used as part of the automated
testing of the eTPU simulator

echo Running ALUOP B6 Tests ...

eTpuSimulator.exe -pAutoRun.ETpuSysSimProject -d_TEST_ALUOP_B6_

if %ERRORLEVEL% NEQ 0 (goto errors)

In the primary script file that is part of this project the following command is used to load
the executable file that is specific to this test.

#ifdef _TEST_ALUOP_B6_
load_executable("AluopB6.gxs");
#endif // _TEST_ALUOP_B6_

TPU Target Pre-Defined Define Directives

The following define directives are automatically loaded and available for the simulator/
debugger.

#define CFSR0 ((U16 *) 0x0C)
#define CFSR1 ((U16 *) 0x0E)

6. Script Commands Files

page 106, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

#define CFSR2 ((U16 *) 0x10)
#define CFSR3 ((U16 *) 0x12)
#define HSQ ((U32 *) 0x014)
#define HSQ0 ((U16 *) 0x014)
#define HSQ1 ((U16 *) 0x016)
#define HSRR ((U32 *) 0x018)
#define HSRR0 ((U16 *) 0x018)
#define HSRR1 ((U16 *) 0x01A)
#define CPR ((U32 *) 0x01C)
#define CPR0 ((U16 *) 0x01C)
#define CPR1 ((U16 *) 0x01e)

eTPU Target Pre-Defined Define Directives

The following define directives are automatically loaded and available for the eTPU
Simulation target.

#define ETPU1 MPC5554_B_1
#define ETPU2 MPC5554_B_2

6.8 Listing of Script Enumerated Data Types

Some script commands have the following pre-defined enumerated types.

Script FILE_TYPE enumerated data type
Script FILE_OPTIONS enumerated data type
Script VERIFY_FILES_RESULT enumerated data type
Script BASE_TIME enumerated data type
Script TRACE_OPTIONS enumerated data type
Script TARGET_TYPE enumerated data type
Build script Target Sub Type enumerated data type
Script ADDR_SPACE enumerated data type
Build Script READ_WRITE enumerated data type
eTPU Register enumerated data types
TPU Register enumerated data types
CPU32 Register enumerated data types

6. Script Commands Files

Multi Target Development Tool, page 107Reference Manual (C) 1994 ASH WARE, Inc.

6.8.1 Script FILE_TYPE Enumerated Data Type

The following enumerated data type is used to specify the file type used in various script
commands. This specifies a dis-assembly, S Record, Intel Hexadecimal, or C data
structure file type.

enum FILE_TYPE {DIS_ASM, SRECORD, IHEX, IMAGE, C_STRUCT, }

6.8.2 Script VERIFY_FILES Enumerated Data Type

The following enumerated data type is used to specify the expected results of a file
comparison.

enum VERIFY_FILES_RESULT {
FILES_MATCH, FILES_MISMATCH,
FILE1_MISSING, FILE2_MISSING, BOTH_FILES_MISSING

}

6.8.3 Script FILE_OPTIONS Enumerated Data Type

The following enumerated data type is used to specify the options when dumping data to a
file. The available options depend on the type of file being dumped.

enum DUMP_FILE_OPTIONS {

// Disables listing of address information in dis-assembly

// and "C" data structure files:

NO_ADDR,

// Disables listing of hexadecimal dump, addressing mode,

// and symbol data

// in dis-assembly files:

NO_HEX, NO_ADDR_MODE, NO_SYMBOLS,

// Adds a #pragma format "val" to each dis-assembly line

// This is helpful for non-deterministic assembly languages

// to cause the assembler to generate a deterministic opcode

YES_PRAGMA,

// Adds a blank line between assembly lines

// Handy for finding opcode boundaries in parallel instr sets

// such as eTPU where a single opcode’s dis-assembly

// can span multiple lines.

6. Script Commands Files

page 108, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

YES_BLANK_LINES,

// Selects the endian ordering for image

// and "C" data structure files:

ENDIAN_MSB_LSB, ENDIAN_LSB_MSB,

// Selects data size in image and "C" data structure files:

DATA8, DATA16, DATA32,

// Selects decimal data instead of hexadecimal

// for "C" data structure files:

OUT_DEC,

// Append to file if it already exists

// (default is to overwrite any existing file)

// Available only for CStruct and Image files

FILE_APPEND,

// Specifies default options:

DUMP_FILE_DEFAULT,

};

6.8.4 Trace Options Enumerated Data Types

The following enumerated data type is used to specify the event options when saving a
trace buffer to a file.

enum TRACE_EVENT_OPTIONS {
// All targets
STEP, EXCEPTION, MEM_READ, MEM_WRITE, DIVIDER, PRINT,

// eTPU and TPU Targets, only
TPU_TIME_SLOT, TPU_NOP, TPU_PIN_TOGGLE,
TPU_STATE_END, TPU_MATCH_CAPTURE,
TPU_TCR1_COUNTER, TPU_TCR2_COUNTER,
// NOTE: Same as (TPU_TCR1_COUNTER|TPU_TCR2_COUNTER)
TPU_TCR_COUNTER,

// Hardware debugger only options
FREE_RUN,

// All options
ALL,

6. Script Commands Files

Multi Target Development Tool, page 109Reference Manual (C) 1994 ASH WARE, Inc.

}

Note the 'OPCODE_FETCH' option has been added to DevTool in version 2.3 and can
be used with the start_trace_stream_ex() script command. It was added because it is
generally desired to see memory reads, while opcode fetches are generally not desired
and are so numerous as to get in the way. Note that when using the start_trace_stream
() script command, the OPCODE_FETCH is also enabled by MEM_READ.

The following enumerated data type is used to specify the file format options when saving
a trace buffer to a file.

enum TRACE_FILE_OPTIONS {
VIEWABLE, // This format is optimized for viewing
PARSEABLE, // This format is optimized for parsing
}

6.8.5 Code Coverage Listing Options Enumerated Data Type

The following enumerated data type is used to specify the listing file options when writing a
code coverage annotated listing file (write_coverage_listing_file() script command).

enum COVERAGE_LISTING_OPTIONS {
// listing file modes
ALL_LINES, // output all source module lines and
disassembly
NON_COVERED_ONLY_LINES, // output only non-fully-covered
source module lines
// flag items below can be added to alter main modes above
FILTER_ETPU_ENTRIES, // do not show disassembly, and do
not show entry

// table source/disassembly at all
in non-covered mode
};

6.8.6 Base Time Options Enumerated Data Type

The following enumerated data type is used to specify the base time for various script
commands.

enum BASE_TIME { US, NS, PS, }

6. Script Commands Files

page 110, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

6.8.7 Build Script TARGET_TYPE Enumerated Data Type

The following enumerated data type is used to specify the target type. No mathematical
manipulation of this data type is valid.

enum TARGET_TYPE {
TPU_SIM,
ETPU_SIM,
SIM32
BDM32,
};

6.8.8 Build Script TARGET_SUB_TYPE Enumerated Data Type

The following enumerated data type is used to specify the target’s sub type. No
mathematical manipulation of this data type is valid.

enum TARGET_SUB_TYPE {
// eTPU2 SIM – Single Engine
MPC5632M_0_A
MPC5633M_0_A
MPC5634M_0_A
SPC563M54_0_A
SPC563M60_0_A
SPC563M64_0_A

// eTPU2 SIM – Dual Engine
MPC5674_2_A // Rev-2, Engine A
MPC5674_2_B // Rev-2, Engine B
MPC5674_0_A // Rev-0, Engine A
MPC5674_0_B // Rev-0, Engine B
JPC563M60_1_A, // Rev-0, Engine A
JPC563M60_1_B, // Rev-0, Engine B

// eTPU SIM – Dual Engine
MPC5566_0_1, // Rev-0, Engine A
MPC5566_0_2, // Rev-0, Engine B
MPC5554_B_1, // Rev-B, Engine A
MPC5554_B_2, // Rev-B, Engine B

// eTPU SIM – Single Engine – 55xx
MPC5567_0_1, // Rev A
MPC5565_0_1, // Rev A

6. Script Commands Files

Multi Target Development Tool, page 111Reference Manual (C) 1994 ASH WARE, Inc.

MPC5553_A_1, // Rev A
MPC5534_0_1, // Rev 0

// eTPU SIM – Single Engine - Coldfire
MPC5571_0_1, // Rev 0, MPC5570 and MPC5571
MCF5232_0_1, // Rev 0
MCF5233_0_1, // Rev 0
MCF5234_0_1, // Rev 0
MCF5235_0_1, // Rev 0

// 683xx Debuggers
MC68331, MC68332, MC68336, MC68338, MC68376,

// TPU, (Standard Mask Product ONLY!)
TPU_MASK,
};

6.8.9 Build Script ADDR_SPACE Enumerated Data Type

This enumerated data type is used when specifying the applicable address spaces for
various build script commands.

enum ADDR_SPACE {

// TPU
TPU_CODE_SPACE, TPU_DATA_SPACE, TPU_PINS_SPACE,
TPU_UNUSED_SPACE,

// eTPU
ETPU_CODE_SPACE, ETPU_CTRL_SPACE, ETPU_DATA_SPACE,
ETPU_DATA_24_SPACE, ETPU_NODE_SPACE, ETPU_UNUSED_SPACE,

// CPU32
CPU32_USER_CODE_SPACE, CPU32_SUPV_CODE_SPACE,
CPU32_USER_DATA_SPACE, CPU32_SUPV_DATA_SPACE,
CPU32_UNUSED_SPACE,

//
ALL_SPACES,
};

In the following very specific cases, mathematical manipulation of this enumerated data
type is allowed.

6. Script Commands Files

page 112, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- Single instances of values referencing the same target may be added to each
other.

- Single instances of values referencing the same target may be subtracted
from ALL_SPACES.

The following are some valid mathematical manipulations of this data type.

// The following references
// a CPU32's USER and SUPERVISOR code spaces
CPU32_USER_CODE_SPACE + CPU32_SUPV_CODE_SPACE
// The following references
// all used CPU32 address spaces
ALL_SPACES - CPU32_UNUSED_SPACE

The following are some invalid valid mathematical manipulations of this data type.

// !!INVALID!! Target types (GTM and MC33816) cannot be
intermixed
 GTM_RAM_SPACE + MC33816_DATA_SPACE
// !!INVALID!!
// The same value cannot be added or subtracted to itself
ETPU_DATA_SPACE + ETPU_DATA_SPACE

6.8.10 Build Script READ_WRITE Enumerated Data Type

This enumerated data type is used when specifying the applicable read and/or write cycles
for various build script commands.

enum READ_WRITE {
RW_READ8, RW_READ16, RW_READ24,
RW_READ32, RW_READ64, RW_READ128
RW_WRITE8, RW_WRITE16, RW_WRITE24,
RW_WRITE32, RW_WRITE64, RW_WRITE128,
RW_ALL,
};

Some mathematical manipulations are allowed. Single instances of all but the RW_ALL
values can be added together and single instances of each value may be subtracted from
RW_ALL.

#define SOME_READS RW_READ8 + RW_READ16 + RW_READ32
#define NON_ACCESS32S RW_ALL - RW_WRITE32 - RW_READ32

In this example, ALL_READS is defined as any read access, be it an 8-, 16-, or a 32-bit
read cycle. NON_ACCESS32S is defined as all 8-, 16-, 24-, 64-, and 128-bit read and

6. Script Commands Files

Multi Target Development Tool, page 113Reference Manual (C) 1994 ASH WARE, Inc.

write cycles.

6.8.11 eTPU Register Enumerated Data Types

The eTPU register enumerated data types provide the mechanism for referencing the
eTPU registers. These enumerated data types are used in commands that reference the
TPU registers such as the register write commands that are defined in the Write Register
Script Commandssection.

The following enumeration provides the mechanism for referencing the eTPU's registers.

enum REGISTERS_U32 { REG_P_31_0, };

enum REGISTERS_U24 {
REG_A, REG_B, REG_C_REG, REG_D, REG_DIOB, REG_SR, REG_ERTA,
REG_ERTB, REG_TCR1, REG_TCR2, REG_TICK_RATE, REG_MACH,
REG_MACL, REG_P,
};

enum REGISTERS_U16 {
REG_TOOTH_PROGRAM, REG_RETURN_ADDR, REG_P_31_16,
REG_P_15_0,
};

enum REGISTERS_U8 {
REG_LINK, REG_P_31_24, REG_P_23_16, REG_P_15_8, REG_P_7_0,
};

enum REGISTERS_U5 { REG_CHAN, };

enum REGISTERS_U1 {
REG_Z, REG_C_FLAG, REG_N, REG_V,
REG_MZ, REG_MC, REG_MN, REG_MV,
};

The following are examples of how the enumerated register types are used.

write_reg32(0x12345678, REG_P);
verify_reg32(REG_P, 0x12345678);
write_reg24(0x123456, REG_A);
verify_reg24(REG_A, 0x123456);
write_reg16(0x1234, REG_RETURN_ADDR);
verify_reg16(REG_RETURN_ADDR, 0x1234);

6. Script Commands Files

page 114, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

write_reg5 (0x12, REG_CHAN);
verify_reg5 (REG_CHAN, 0x12);
write_reg1 (0x1, REG_Z);
verify_reg1(REG_Z, 0x1);

6.8.12 TPU Register Enumerated Data Types

The TPU register enumerated data types provide the mechanism for referencing some of
the TPU registers. These enumerated data types are used in commands that reference the
TPU registers such as the register write commands that are defined in the Write Register
Script Commands section.

There are no enumerated types for the TPU's 8-bit registers, and the TPU has no 32-bit
registers.

The following enumeration provides the mechanism for referencing the TPU's 16-bit
registers. Note that this covers only those TPU registers that are newly accessible with
this software version. Future software versions will make greater use of this enumerated
data type.

enum REGISTERS_U16 {
REG_TCR1, REG_TCR2, // Counter registers
};

6.8.13 CPU32 Register Enumerated Data Types

The CPU32 register enumerated data types provide the mechanism for referencing the
CPU32 registers. These enumerated data types are used in commands that reference the
CPU32 registers such as the register write commands that are defined in the Write
Register Script Commands section.

The following enumeration provides the mechanism for referencing the CPU32's 8-bit
registers.

enum REGISTERS_U8 {
REG_CCR, // Condition Code Register
};

The following enumeration provides the mechanism for referencing the CPU32's 16-bit
registers.

enum REGISTERS_U16 {
REG_SR // Status Register
};

6. Script Commands Files

Multi Target Development Tool, page 115Reference Manual (C) 1994 ASH WARE, Inc.

The following enumeration provides the mechanism for referencing the CPU32's 32-bit
registers.

enum REGISTERS_U32 {
REG_PC, REG_VBR, // Program Counter, Vector Base
Register
REG_USP, REG_SSP, // User and Supervisor Stack Pointers
REG_SFC, REG_DFC, // Alternate Function Code Registers
REG_DO, REG_D1, REG_D2, REG_D3, // Data register D0 to
D3
REG_D4, REG_D5, REG_D6, REG_D7, // Data register D4 to
D7
REG_AO, REG_A1, REG_A2, REG_A3, // Addr register A0 to
A3
REG_A4, REG_A5, REG_A6, REG_A7, // Addr register A4 to
A7
};

page 116, Multi Target Development Tool

7. Trace Buffer and Files

Multi Target Development Tool, page 117Reference Manual (C) 1994 ASH WARE, Inc.

7
Trace Buffer and Files

Overview

Trace files have two primary purposes; they are useful for generation of a file that appears
identical to the trace window but can be loaded into a file viewer to access advanced
search capabilities, and they are used to load into a post-processing facility for advanced
trace analyses. The various capabilities and settings are focused on these two purposes.

Generating Viewable Files

Viewable trace files can be generated by selecting the Trace buffer, Save As … submenu
from the Files menu. Note that the trace buffer is about five times larger than what
appears in the trace window. A viewable trace file can also be generated using script
commands. See the Trace Script Commands section.

Because viewable files are appropriate only for things like advanced search capabilities, no
error or warning is generated if the underlying trace buffer has overflowed.

Generating Parseable Files

Parseable files can be generated only by using the trace commands described in the Trace
Script Commands section. To ensure generation of deterministic parseable trace files,
these files can be generated only if the selected trace events are enabled within the
simulator/debugger and the trace buffer has not overflowed when generating a trace file
from the buffer.

7. Trace Buffer and Files

page 118, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

For large trace files it is best to use the streaming capability, thereby avoiding possible
trace buffer overflow issues.

Parsing the Trace File

All post processing on the trace files should be done on files generated using the
"parseable" option.

Although the file format is intended to be self-explanatory, it is purposely left
undocumented to retain flexibility for future enhancements. Instead, it is recommended
that those wishing to post-process the trace files use the trace file parse source code
available from ASH WARE. The public methods in the TraceParser class are
documented and will remain stable for future releases.

Post processing of the trace file is an excellent way to analyze important performance
indices. For instance, eTPU and TPU latency calculations such as minimum, maximum,
average, and standard deviation would be one excellent application.

Trace Buffer Size Considerations

The trace buffer is a set size. To increase the effective size it is often desirable to disable
certain types of events. Disabling and enabling of trace events is accomplished by
selecting the Trace submenu from the Options menu.

8. Test Vector Files

Multi Target Development Tool, page 119Reference Manual (C) 1994 ASH WARE, Inc.

8
Test Vector Files

Overview

Test vector provides a complex test vector generation capability. Simulated signals similar
to those found in a typical environment can be generated. Test vector files are used for
forcing of "high" or "low" states at the device's input or I/O pins. Note that this capability is
NOT available for the CPU simulation engine.

It is helpful to compare test vector files to script commands files. Roughly, test vector files
represent the external interface to the device, while script commands files represent the
CPU interface. Test vector files are treated quite differently from script commands files.
While script commands file lines are executed sequentially and at specific simulated times,
test vector files are loaded all at once. Test vector files are used solely to generate
complex test vectors on particular simulator/debugger nodes. As the simulator/debugger
executes, these test vectors are driven unto the specified nodes.

Loading and Editing the Test Vector File

The test vector file is loaded into the simulator/debugger from the “Files” menu by
selecting the “Vector, Open …” sub menu. The test vector file is an ASCII file that the
user can edit with any text editor. The configuration window shows the currently-loaded
test vector file. It is preferable to keep the test vector file in the same directory as the

8. Test Vector Files

page 120, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

project file.

Test Vector Generation Functional Model

The test vector generation model consists of a single master test vector clock and a
number of wave form generators. The same master test vector clock clocks all wave
form generators. The wave form generators cannot produce waveforms whose
frequencies exceed that of the master test vector clock.

A wave form might consist of a loop in which a node is driven high for 10 master test
vector clock periods then low for 15. The loop could be set up to run forever.

Test vector files provide the following functionality.

- The master test vector clock frequency is specified.

- The wave form generators are created and defined.

- Wave form outputs drive device input pins (nodes).

- Descriptive names are assigned to TPU nodes (i.e., TPU channel 7’s pin is

8. Test Vector Files

Multi Target Development Tool, page 121Reference Manual (C) 1994 ASH WARE, Inc.

named UART_RCV).

- Multiple nodes are grouped (i.e., group COMM consists of UART_RCV1
and UART_RCV2).

- Complex Boolean states are defined.

Before being parsed, test vector files are run through a C Preprocessor. Thus the files can
use the #include mechanism as well as macros and other preprocessor directives and
capabilities.

Command Reference

The following test vector commands are available.

Node
Group
State
Frequency
Wave

In addition there is an eTPU example of the waveforms generated for an automobile
engine monitor system.

Comments

Test vector files may contain the object-oriented, C++ style double slash comments. A
comment field is started with two sequential slash characters, //. All text starting from the
slashes and continuing to the end of the line is interpreted as comment. The following is an
example of a comment.

// This is a comment.

8.1 Node Command

node <Name> <Node>

The node commands assign the user defined name, “Name” to a node, “Node”. Note that
depending on the microcontroller, the input and output from each channel may (or may not)
be brought to external pins. Please refer to the NXP literature for the specific
microcontroller being used.

Standard eTPU Nodes

- ch0.in Channel 0’s input pin

8. Test Vector Files

page 122, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

- ch0.out Channel 0’s output pin
- ch1.in Channel 1’s input pin
- ch1.out Channel 0’s output pin
-
- ch31.in Channel 31’s input pin
- ch31.out Channel 31’s output pin
- tcrclk eTPU external clock input pin

In the example shown below the name A429Rcv is assigned to the eTPU’s channel 5 input
pin.

node A429Rcv ch4.in

Standard TPU Nodes

- CH0 Channel 0’s I/O pin
- CH1 Channel 1’s I/O pin
-
- CH15 Channel 15’s I/O pin
- TCR2 TPU Counter 2 gate/clock input pin

In the example shown below the name UART is assigned to the TPU’s channel 5 I/O pin.

define UART CH5

Thread Activity Nodes

Thread activity can be extremely useful in both understanding and debugging simulator/
debugger functions. The simulator/debugger provides the following thread activity nodes.

- ThreadsGroupA
- ThreadsGroupB
- ThreadsGroupC
- ThreadsGroupD
- ThreadsGroupE
- ThreadsGroupF
- ThreadsGroupG
- ThreadsGroupH

These nodes can be renamed. In the following example, the ThreadsGroupB node is
assigned the name A429RcvThreads. Note that the primary purpose of renaming these
nodes is to provide a more intuitive picture in the logic analyzer window, as shown below.
See the Logic Analyzer Options Dialog Box section for more information on how to
specify groups for monitoring of TPU and eTPU thread activity.

node RcvThreads ThreadsGroupB

8. Test Vector Files

Multi Target Development Tool, page 123Reference Manual (C) 1994 ASH WARE, Inc.

8.2 Group Command

group <GROUP_NAME> <NODE 1> [NODE 2] ... [NODE N]

The group command assigns multiple nodes, “NODE N” to a group name
GROUP_NAME. These nodes can be referred to later by this group name. The group
name may contain any ASCII printable text. These group names are case sensitive
(though this is currently not enforced.) Up to 30 nodes may be grouped.

define ADDRESS1 ch5
define ADDRESS2 ch7
define DATA ch3
group PORT1 ADDRESS1 ADDRESS2 DATA

In this example a group with the name PORT1 is associated with TPU channel pins 5, 7,
and 3.

8.3 State Command

state <STATE_NAME> <BIT_VALUE>

The state command assigns a bit value BIT_VALUE to a user-defined state name
STATE_NAME. State names may contain any ASCII printable text. These state names
are case sensitive (though this is currently not enforced.) Bit values must consist of a
sequence zeros and ones. The total number of zeros and ones must be between one and
30.

state NULL 0110

In this example a user-defined state NULL is associated with the bit pattern 0110.

8. Test Vector Files

page 124, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

8.4 Frequency Command

frequency <FREQUENCY>

The frequency command sets the master test vector clock to FREQUENCY which is a
floating point number whose terms are million cycles per second (MHz). All test vectors
are set by this frequency. Since the entire test vector file is loaded at once, if a test vector
file contains multiple frequency commands, only the last frequency command is used and
all previous frequency commands are ignored.

frequency 1

In this example the master test vector generation frequency is set to one MHz. This is a
convenient test vector frequency because its period of one microsecond makes timing easy
to calculate.

8.5 Wave Command

The wave command creates and defines a new wave form generator. There is no limit to
the number of wave commands that may be used in a test vector file. The number of
wave form generators is equal to the number of wave commands found in the test vector
file.

wave <GROUP> <STATE REPEAT> <(STATE REPEAT <...>)
REPEAT> end

The wave command causes the nodes of GROUP to be stimulated by the state and repeat
count pairs STATE REPEAT. Multiple states and repeat counts are allowed. A special
infinite repeat count, *, generates an infinite repeat count. This command may span
multiple lines. An end statement must terminate the command.

wave OUTPUTS
(OFF 5 DRIVE_A 1 DRIVE_B 2) 3
OFF *

end

The resulting wave form from this example is shown below. The wave form begins with
signal A and signal B being off for five master test vector clock periods. Signal A is then
driven for one period. Then signal B is driven for two periods. These three states
constitute a loop which executes three times. After the loop has executed three times the
OFF state is driven forever. Note that the NODE, GROUP, STATE, and FREQUENCY
commands are omitted from this example for simplification purposes.

8. Test Vector Files

Multi Target Development Tool, page 125Reference Manual (C) 1994 ASH WARE, Inc.

8.6 Engine Example, eTPU
// File: ENGINE.Vector

// AUTHOR: Andrew M. Klumpp, ASH WARE.

// DATE: 950404

//

// DESCRIPTION:

// This generates the test vectors associated with a four cylinder

// car. The four spark plugs fire in the order 1,3,2,4. For convenience

// an engine frequency is chosen such that one degree corresponds to

// 10 microseconds (10 microseconds will be written as 10us).

// A test vector frequency is chosen such that one degree corresponds

// to one time-step.

// The test vector frequency is the simulator/debugger's

// internal test vector timebase.

// Within each engine revolution two spark plugs fire.

// ASSIGN NAMES TO PINS

// Assign the descriptive names to the synch and spark plug signals.

node Synch ch3

node Spark1 ch8

node Spark2 ch11

node Spark3 ch6

node Spark4 ch4

// ASSOCIATE PINS WITH A GROUP

// Make a group named SYNCH with only the SYNCH TPU channel as a member

group SYNCH Synch

// Make a group named SPARKS that consists of the four spark plug signals

group SPARKS Spark4 Spark3 Spark2 Spark1

// DEFINE THE SYNCH STATES

// The synch signal can be either pulsing (1) or waiting (0).

state synch_pulse 1

state synch_wait 0

8. Test Vector Files

page 126, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

// DEFINE THE SPARK FIRE STATES

// There are five states:

// There is one state for each of the four spark plugs firing.

// There is one state for none of the spark plugs firing.

state FIRE4 1000

state FIRE3 0100

state FIRE2 0010

state FIRE1 0001

state NO_FIRE 0000

// SET THE TEST VECTOR BASE FREQUENCY

// In order to have a convenient relationship between time and degrees

// an engine revolution is made to be 3600us such that one degree

// corresponds to 10us.

// Thus a convenient test vector time-step period of 10us is chosen.

// frequency = 1/period = 1/10us = 0.1MhZ

// (Frequency is expressed in MHz; this is a modification of a

// previous version of the User Manual.)

frequency 0.1

// CREATE/DEFINE THE SYNCH WAVE FORM

// This generates a one degree (10us) pulse every 360 degrees (3600us).

wave SYNCH (synch_pulse 1 synch_wait 364) * end

// CREATE/DEFINE THE SPARK WAVE FORM

// Each spark is equally spaced every 1/2 revolution

// which is 180 degrees (1800us).

// Each spark plug triple fires and each fire lasts one degree (10us).

//

// In addition there is a 17 degree (170us) lag of this wave form

// relative to the synch wave form.

wave SPARKS

no_fire 17 // This creates a 17 degree lag

(// Enclose the following in a bracket to generate a loop/

// The first plug fire cycle lasts five degrees (50us).

// The spark plug fires three times.

fire1 1 no_fire 1 fire1 1 no_fire 1 fire1 1

// The delay between fire cycles is 180 degrees

// less the five degree fire cycle.

// 180-5=175 degrees

no_fire 175

// The third plug fires next.

fire3 1 no_fire 1 fire3 1 no_fire 1 fire3 1

// Give another 175 degree delay.

8. Test Vector Files

Multi Target Development Tool, page 127Reference Manual (C) 1994 ASH WARE, Inc.

no_fire 175

// The second plug fires next.

fire2 1 no_fire 1 fire2 1 no_fire 1 fire2 1

// Give another 175 degree delay.

no_fire 175

// The fourth plug fires next.

fire4 1 no_fire 1 fire4 1 no_fire 1 fire4 1

// Give another 175 degree delay.

no_fire 175

) * // Enclose the loop and put the infinity character, *.

end

The following wave form is generated from the above example.

page 128, Multi Target Development Tool

9. Functional Verification

Multi Target Development Tool, page 129Reference Manual (C) 1994 ASH WARE, Inc.

9
Functional Verification

Functional verification supports an automated method for verifying that behavioral
requirements are met by the code. These capabilities can be grouped as data flow
verification, pin transition behavior verification, and code coverage verification.

The following diagram shows a hardware perspective of functional verification. Pin
transition verification is applicable only to eTPU and TPU Simulation.

TPU
External

Hardware
Pin

Transitions
TPU Microcode

Interface
Registers

CPU

Pin Transition
Behavior Verification

Code Coverage
Verification

Data Flow
Verification

9. Functional Verification

page 130, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Data flows between the eTPU and the CPU via interface registers. Data flow verification
provides the capability of verifying this data flow.

Pin transitions are generated by the eTPU or by external hardware. Pin transition
verification capabilities allow the user to verify this pin transition behavior.

Code coverage provides the capability to determine the thoroughness of a test suite. Code
coverage verification allows the user to verify that a test suite thoroughly exercises the
code.

A Full Life-Cycle Verification Perspective

The following describes a typical software life-cycle. Initially, a set of requirements is
established. Then the code is designed to meet these requirements. Following design, the
code is written and debugged. A set of formal tests is then developed to verify that the
software meets the requirements. The software is then released.

Now the software enters a maintenance stage. In the maintenance stage, changes must
be made to support new features and perhaps to fix bugs. Along with this, the formal tests
must be modified and rerun. Then the software must be re-released.

This life-cycle can be described as having three stages: development, verification, and
maintenance. All of these three stages are supported. The IDE and GUI are primarily of
interest in the initial development phase. Verification involves developing a set of
repeatable and automated tests that that show that the requirements are being met. In the
maintenance stage these previously-developed automated tests are rerun to prove that
requirements are still being met when bug fixes and enhancements cause the code base to
change.

There is a significant emphasis on automation such that a complete test suite can be run,
sometimes spanning hours, and a series of tests results in a single 'pass' or 'fail' result.

9.1 Data Flow Verification

Data flow verification is one of the verification capabilities for which an overview is given
in the Functional Verification chapter.

Data flows between the TPU and the CPU primarily across the Channel Interrupt Service
Request (CISR) register and the parameter RAM. The data flow verification capabilities
address data flow across these registers.

9. Functional Verification

Multi Target Development Tool, page 131Reference Manual (C) 1994 ASH WARE, Inc.

The TPU parameter RAM data flow is verified using the verify_ram_word(X,Y,Z) and
verify_ram_bit(X,Y,Z,V) script commands described in the TPU Parameter RAM Script
Commands section.

The data flow across the CISR register is verified using the verify_cisr(X,Y) script
command described in the TPU Channel Interrupt Service Register Script Commands
section.

The eTPU parameter RAM data flow is verified using the verify_chan_data24(X,Y,Z) and
verify_chan_bits24(X,Y,Z,V) script commands described in the eTPU Parameter RAM
Script Commands section.

The data flow across the CISR register is verified using the verify_intr(X,Y) script
command described in the eTPU Interrupt Script Commands Script Commands section.

In the following example data flow across channel 10’s CISR and parameter RAM is
verified at a simulated time of 100 microseconds and again at 250 microseconds.

// Wait for the simulator/debugger to run 100 micro-
seconds.
at_time(100);
// Verify that channel 10’s CISR is set.
verify_cisr(0xa,1);
// Verify that channel 10’s parameter 2 bit 14 is set.
verify_ram_bit(0xa,2,14,1);
// Verify that channel 10’s parameter 3 is 1000 hex.
verify_ram_word(0xa,3,0x1000);
// Verify that channel 10’s parameter 5 is 1500 hex.
verify_ram_word(0xa,5,0x1500);
// Clear channel 10’s CISR.
clear_cisr(0xa);
// Wait for the simulator/debugger
// to run an additional 150 microseconds.
wait_time(150);
// Verify that channel 10’s CISR is set.
verify_cisr(0xa,1);
// Verify that channel 10’s parameter 2 bit 14 is cleared.
verify_ram_bit(0xa,2,14,0);
// Verify that channel 10’s parameter 3 is 3000 hex.
verify_ram_word(0xa,3,0x3000);
// Verify that channel 10’s parameter 5 is 3500 hex.
verify_ram_word(0xa,5,0x3500);

9. Functional Verification

page 132, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

9.2 Pin Transition Behavior Verification

Pin transition behavior verification is one of the verification capabilities for which an
overview is given in the Functional Verification chapter. Pin transition behavior verification
capabilities include the ability to save recorded pin transition behavior to enhanced pin
transition behavior (.ebv) files, the ability to load saved pin transition behavior files into the
simulator/debugger, and the ability to verify that the most current pin transition behavior
matches the saved behavior. Old-style behavior verification files (.bv) can still be read and
used for verification, but can no longer be created. All pin transition behavior verification
must now be managed via scripting. GUI menu options are no longer available.

From a behavioral model perspective these capabilities correlate to the ability to create
behavioral models and the ability to compare source microcode against these behavioral
models. The emphasis in the simulator/debugger is on the automation of these modeling
capabilities through script commands, as the capabilities are no longer available from the
menus.

Pin Transition Buffers

There are two pin transition storage buffers in the simulator/debugger as shown in the
following diagram.

Master Buffer
of Pin Transition

Behavior

Running Buffer
of Recorded Pin

Transition Behavior

Saved To File

Loaded As Simulator Runs Read From File

Compare

9. Functional Verification

Multi Target Development Tool, page 133Reference Manual (C) 1994 ASH WARE, Inc.

The running buffer is filled as the simulator/debugger runs. Whenever a pin transition
occurs, information regarding this transition is stored in this buffer, which is also used to
draw the signals in the logic analyzer window. This pin transition information can be
selectively recorded to file using the create_ebehavior_file("filename.ebv"),
add_ebehavior_pin("<pin name>") and close_ebehavior_file() script commands; also see
Enhanced Pin Transition Behavior Verification below.

Deprecated Pin Transition Behavior Verification

Legacy .bv pin transition data files can still be used by the new enhanced behavior
verification; .bv files can no longer be generated. The master buffer can be loaded only
with pin transition behavior data from a previously saved file. This file forms a behavioral
model of the source microcode. Changes can be made in the source microcode and the
changed microcode can be verified against these behavioral models. This file is loaded
using the read_behavior_file("filename.bv") script command.

There are two options for verifying pin transition behavior against the previously-generated
behavioral model. The first option is to continuously check the running pin transition
behavior buffer against the master pin transition behavior buffer. This is selected by the
enable_continuous_behavior() script command that follow a behavior file load. The second
option is to perform a complete check of the running buffer against the master buffer all at
once. This is selected using the verify_all_behavior() script command at the end of a
simulation run. Time tolerances for pin transitions default to 2 system clocks, but can be
adjusted using the new enhanced behavior verification set_ebehavior_pin_tolerance() and
set_ebehavior_global_tolerance() script commands.

A count of failures is displayed in the Configuration window. This count is incremented
whenever a behavior verification failure occurs. By default, each failure will generate an
error dialog, but this can be disabled by de-selecting Options -> Messages... -> Behavior
verification failure.

A consideration regarding these behavioral models is the buffer size. The maximum
behavioral buffer size is currently set at 100,000 records, though this may increase in future
releases. If the number of recorded pin transitions equals or exceeds this buffer size then
the buffer rolls over and verification against this buffer is not possible.

A second consideration is TCR2 pin recording. Normally TCR2 pin transitions are not
written in these buffers. This is because the recording of TCR2 pin transitions very quickly
fills up the buffer and causes the buffer to quickly roll over. When the buffer rolls over
verification is not possible with legacy .bv files.

9. Functional Verification

page 134, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Enhanced Pin Transition Behavior Verification

The new enhanced pin transition behavior verification makes use of a user-friendly data
file format and provides more options on how master file pin transitions are compared to
transitions in the current simulation. With the original behavior verification capability,
anything other than an exact match, clock cycle for clock cycle, was considered a failure.
The reality is that often times even very small code changes can result in a signal being
shifted by a clock cycle or two, which previously would result in failure. Enhanced
behavior verification provides options for controlling the tolerance used in comparisons, so
that small changes that are functionally correct can pass verification. Additionally, master
file pin transition data can now be viewed in the Logic Analyzer Window making it easier
to track down problems when a failure does occur.

The first step in making use of pin transition behavior verification is to create a master file,
also called a .ebv file for its default extension. These enhanced behavior verification files
are text and in comma-separated value (CSV, or .csv) format. All behavior verification is
controlled from the scripting environment - to create a master file use the
create_ebehavior_file("filename.ebv") script command. It must execute at simulation time
zero, but after any vector file load or pin buffer placements.

// save off all pins
create_ebehavior_file("Engine.EBV");

By default all pins are saved to the .ebv file. On the TPU, this is all 16 channel pins and the
TCR2 pin. On the eTPU, this is all 32 channel input pins, all 32 output pins, and the
TCRCLK pin. In many cases, only a small subset of pins are of interest. The
add_ebehavior_pin("<pin name>") script command allows the user to save data only on
those pins of interest. The pin name comes from any node naming in the vector file, or is
the underlying default pin name (e.g. "ch3" is the channel 3 pin on the TPU, or "_ch5.out"
is the channel 5 output pin on the eTPU).

// save off only the fuel injection output signals
create_ebehavior_file("Engine_Injection.EBV");
// add_ebehavior_pin commands must immediately follow the
create command
add_ebehavior_pin("Injector1");
add_ebehavior_pin("Injector2");
add_ebehavior_pin("Injector3");
add_ebehavior_pin("Injector4");

After the creation setup commands are complete, and the script file exercises the
software, the .ebv file needs to be closed and any unsaved data flushed out. Note that
data may be saved in several steps as the simulation runs - enhanced behavior verification

9. Functional Verification

Multi Target Development Tool, page 135Reference Manual (C) 1994 ASH WARE, Inc.

is not subject to buffer size limitations due to its continuous file management. This is done
with the close_ebehavior_file() script command.

wait_time(20000000); // Let the tests run to completion
close_ebehavior_file(); // close EBV being saved

As mentioned, the .ebv file is in comma-separated value format. The first line contains the
column header information, which is time units for the first column, followed by pin names
of all saved pin data. After that, each line contains a simulation time value in microseconds
followed by the value of each pin. Below is an example of the first few lines of an .ebv
file which contains data on just two pins.

TIME (US), PWM_A, PWM_B,

000000000000.000000, 0, 1,

000000000019.980000, 1, 1,

000000000039.980000, 0, 1,

000000000049.980000, 0, 0,

The comma-separated value allows the file to be easily parsed by other existing tools, such
as spreadsheet applications.

Once a master .ebv file has been created, it can be used to verify pin behavior stays within
an expected tolerance range on subsequent simulation runs. Typically this is done after a
software change has been made that is not supposed to affect pin transition behavior.
With enhanced behavior verification, only a continuous verification model is supported. As
with .ebv file creation, all control is via script commands. First, which .ebv file to be used
for the verification run must be specified - this is done with run_ebehavior_file("filename.
ebv"). By default, all pins found in the .ebv file are verified with a default transition error
tolerance equivalent to two system clocks.

// test all pins
run_ebehavior_file("PWM_gold.EBV");

The above command should be issued at simulation time zero, at the same place in the
script file as the .ebv file was generated with the create_ebehavior_file() command. The
simulation should run, and at the end, at the same time as when the .ebv file was saved and
closed, the verification should be stopped with the stop_ebehavior_file() script command.

stop_ebehavior_file(); // stop EBV verification

Tolerances can be adjusted, and the pins being verified can be specified, using the
enhanced behavior verification pin tolerance script commands. With the
set_ebehavior_global_tolerance() script command, all pins under test can have their
allowed error tolerance set.

run_ebehavior_file("Engine_gold.EBV");
// verify all pins in the .ebv file to a 2us tolerance
set_ebehavior_global_tolerance(EBV_ABSOLUTE, 0.0, 2.0);

9. Functional Verification

page 136, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The set_ebehavior_pin_tolerance() script command serves a dual purpose. Once one of
these commands is specified, only pins specified with set_ebehavior_pin_tolerance() script
commands will be verified.

run_ebehavior_file("PWM_gold.EBV");
// test only PWM_A and PWM_C pins w/ appropriate tolerance
set_ebehavior_pin_tolerance("PWM_A", EBV_ABSOLUTE, 0.0,
1.1);
set_ebehavior_pin_tolerance("PWM_C", EBV_ABSOLUTE, 0.0,
1.1);

Although the tolerances can be adjusted at any time during simulation, if using
set_ebehavior_pin_tolerance() to configure a subset of pins to test, these commands should
directly follow the run_ebehavior_file() command. Tolerances can then be adjusted later,
either by individual pin or globally.

Currently there is one tolerance type - "EBV_ABSOLUTE". This means the absolute
time of each transition in the master file is compared to the absolute time of the matching
transition in the current simulation run. In the comparison process, first the offset is is
applied to the master file transition time, and then the difference between the two times is
calculated. If the absolute value of this result is less than the configured tolerance, the
behavior is considered valid and simulation continues. If it is greater than the tolerance, a
behavior error is thrown - this may or may not trigger a pop-up error dialog depending upon
the IDE messages configuration.

Last, individual pins can be disabled from behavior verification with the
disable_ebehavior_pin() script command.

disable_ebehavior_pin("PWM_C");

With enhanced behavior verification, an .ebv file can be created while simultaneously using
another one for verification. This could be handy in the sense that after running a
simulation session the user has a new current pin transition file - it could be used as an
input into other tools, or if verification is successful, it could be copied as the new "gold", or
master file.

// create and verify simultaneously
create_ebehavior_file("Powertrain_current.EBV");
run_ebehavior_file("Powertrain_gold.EBV");

// ... simulation ...

// finish behavior verification
close_ebehavior_file(); // close EBV being saved
stop_ebehavior_file(); // stop EBV verification

9. Functional Verification

Multi Target Development Tool, page 137Reference Manual (C) 1994 ASH WARE, Inc.

When enhanced behavior verification is used with a dual-eTPU simulation model, an .ebv
file and the associated commands apply to a single eTPU engine. In other words, if pin
transition behavior verification is to be done on each eTPU, there must be a separate .ebv
file for each.

9.3 Code Coverage Analysis

Code coverage analysis is one of the verification capabilities for which an overview is
given in the Functional Verification chapter.

There are two aspects to code coverage. The first aspect is the code coverage visual
interface while the second aspect is the coverage verification commands.

Code Coverage Visual Interface

The visual interface is enabled and disabled within the IDE Options dialog box. When this
is enabled, black boxes appear as the first character of each source code line that is
associated with a microinstruction. As the code executes, and the instruction coverage
changes, these black boxes change to reflect the change in the coverage. This is
summarized below.

A black box indicates a 'C' source line or assembly instruction that has not
been executed.

An orange box indicates 'C' source line that has been partially executed.

A blue box indicates an assembly branch instruction in which neither
branch path has been traversed.

A green box indicates an assembly branch instruction where the branch
path has been traversed.

A red box indicates an assembly branch instruction where the non-branch
path has been traversed.

A white box indicates a 'C' source line or assembly instruction that has
been executed.

Code Coverage Verification Commands

The code coverage verification commands, described in the Code Coverage Script
Commands section provide the capability to verify both instruction and branch coverage
percentages on both an individual file basis and a complete microcode build. If the required

9. Functional Verification

page 138, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

coverage has not been achieved then a verification error message is generated and the
count of script failures found in the configuration window is incremented.

Code Coverage Report Files

Code coverage report files can be generated using the write_coverage_file("filename.
Coverage") script command described in the Code Coverage Script Commands section.
Code coverage report files can also be generated directly from the File menu by selecting
the Coverage submenu. This is described in the Files Menu section.

The top of the code coverage report file contains a title line, a copyright declaration line,
and a time stamp line.

Following this generic information is a series of sections. The first section provides
coverage data on the entire microcode build. Succeeding sections provide coverage
information on each file used to create the microcode build.

Each section contains a number of lines that provide the following information. The
instruction line lists the total number of instructions. Both regular and branch instructions
are counted, but entry table information is not. The instruction hits line lists the number of
instructions that have been fully covered. The instruction coverage percent line lists the
percent of instructions that have been covered. The branches line lists the total number of
branch paths. This is always an even number because for each branch instruction there
are two possible paths (branch taken and branch not taken.) If the branch path has been
traversed then this counts as a single branch hit. Conversely if the non-branch path has
been traversed then this also counts as a single branch hit. The branch instruction is
considered fully covered when both the branch-path and the non-branch-path have been
traversed. The branch coverage percent line contains the percentage of branch paths that
have been traversed.

Flushed instructions for which a NOP has been executed are not counted as having been
covered.

An example of such a file (TPU target) follows.

//// Code coverage analysis file.
//// Copyright 1996-2017 ASH WARE Inc.
//// Sun June 02 09:30:30 1996

Total
Instructions: 135
Instruction Hits: 57
Instruction Coverage Percent: 42.2

9. Functional Verification

Multi Target Development Tool, page 139Reference Manual (C) 1994 ASH WARE, Inc.

Branches: 60
Branch Hits: 16
Branch Coverage Percent: 26.7

MAKE.ASC
Instructions: 2
Instruction Hits: 0
Instruction Coverage Percent: 0.0
Branches: 0
Branch Hits: 0
Branch Coverage Percent: 100.0

toggle.UC
Instructions: 5
Instruction Hits: 5
Instruction Coverage Percent: 100.0
Branches: 0
Branch Hits: 0
Branch Coverage Percent: 100.0

pwm.UC
Instructions: 24
Instruction Hits: 14
Instruction Coverage Percent: 58.3
Branches: 12
Branch Hits: 3
Branch Coverage Percent: 25.0

linkchan.uc
Instructions: 8
Instruction Hits: 0
Instruction Coverage Percent: 0.0
Branches: 0
Branch Hits: 0
Branch Coverage Percent: 100.0

uart.UC
Instructions: 58
Instruction Hits: 38
Instruction Coverage Percent: 65.5
Branches: 30
Branch Hits: 13
Branch Coverage Percent: 43.3

Code Coverage Annotated Listing Files

Listing files (source file lines with the associated disassembled opcodes shown below each
line that generates code) annotated with code coverage information can be generated with

9. Functional Verification

page 140, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

the write_coverage_listing_file() script command described in the Code Coverage Script
Commands section. An option parameter allows users to select between outputting a
complete annotated listing file for a specified module, or output just the source lines and
object code not executed (covered). In both cases every line is prepended with the original
source line number. When the non-covered listing option is specified, a line gap is placed
between annotated source/assembly wherever source code lines have been filtered. A
small annotated sample is shown below.

[536]: else if (IsMatchAEvent() && (flag1==1) &&

(flag0==1))

[536]: [X]: 0016: 0x4250 Alt Entry 11, Addr 0x940, EnableMatches,

p_31_0=*((channel U32 *) 0x0), diob=*((channel U24 *) 0x5) [0]

[536]: : : HSR==0b000 Link==X matchA/TranB==1

matchB/TranA==0 InputPin==0 ChanFlag1==1 ChanFlag0==1 [2]

[536]: []: 001E: 0x4250 Alt Entry 15, Addr 0x940, EnableMatches,

p_31_0=*((channel U32 *) 0x0), diob=*((channel U24 *) 0x5) [0]

[536]: : : HSR==0b000 Link==X matchA/TranB==1

matchB/TranA==0 InputPin==1 ChanFlag1==1 ChanFlag0==1 [2]

[537]: {

[538]: // All 32 bits were received & half a gap has

been detected

[539]: // filtering (if any) is done now, while parity

check is done

[540]: // when the full gap is validated

[541]: AW_A429R_ValidHalfGapFilter:

[542]:

[543]: ClrFlag0();

[543]: [X]: 0940: 0xDFE87A8C ram p_23_0 = *((channel int24 *) 0x31);

FormatD6 [0]

[543]: : : 0xDFE87A8C chan clear ChannelFlag0, clear

MatchRecognitionLatchA;; FormatD6 [4]

[544]: ClearMatchAEvent();

[545]:

[546]: if (RxFilter.Label)

[546]: [X]: 0944: 0x0008F019 alu nil = p+0x0, SampleFlags;; FormatA2

[4]

[546]: [T]: 0948: 0xF0D84BC7 seq if z==true then goto addr_0x978,

flush;; FormatE1 [4]

[547]: {

[548]: unsigned int24 bitIndex;

[549]: unsigned int24 filterWord;

[550]: #ifdef __ETEC__

[551]: bitIndex = __bit_n_update(0, Data.B.

Bits23_0 & 15, 1, 0);

[551]: []: 094C: 0xBFEFFB80 ram p_23_0 = *((channel int24 *) 0x1);;

FormatB2 [4]

[551]: []: 0950: 0x0C380BFA alu a = p & 0xF;; FormatA3 [4]

9. Functional Verification

Multi Target Development Tool, page 141Reference Manual (C) 1994 ASH WARE, Inc.

[551]: []: 0954: 0x3F3F1FFD alu sr = ((u24) 0) | (1<<a);; FormatB6

[4]

After the prepended source code line number, each opcode line has coverage status shown
inside brackets [], followed by code address, opcode (or entry point), and disassembly.
The coverage status can be one of the following:

[] - not executed at all
[X] - fully executed (both paths taken if branch)
[T] - only branch true path executed
[F] - only branch false path executed
[I] - inferred entry point coverage

Note, if the non-covered listing option is specified, and the module has been fully executed,
the result is an empty output file.

For eTPU targets, an additional flag option can be applied that causes entry table items to
be ignored (no disassembly for "all" mode, all entry source and disassembly filtered for non-
covered mode).

9.4 Regression Testing (Automation)

Regression Testing supports the ability to launch the simulator/debugger from a DOS
command line shell. Command line parameters allow specific tests to be run. From the
command line the project file that is run and the primary script file(s) that are loaded into
each target are specified. Command line parameters also are used to specify that the
target system automatically start running with no user intervention, and to accept the
license agreement thereby bypassing the dialog box that would otherwise open up and
require user intervention. A script command is used to terminate the simulator/debugger
once all the tests have been run.

Upon termination, the simulator/debugger sets the error level to zero if no verification tests
failed, and otherwise error level is set to be non zero. This error level is the simulator/
debugger’s termination code and can be queried within a batch file running under the
operating system’s DOS shell. By launching the simulator/debugger multiple times, each
time with a different set of tests specified, and by checking the error level each time the
simulator/debugger terminates, multiple tests can be run automatically and a single pass
(meaning all tests passed) or fail (meaning one or more tests failed) result can be
determined.

Note that this only works in operating systems that support access to exit codes from a
batch file. Windows 98 does not support this. True operating systems such as Windows 7,
Windows XP Professional, Windows 2000 Professional, and Windows NT 4.0. do support

9. Functional Verification

page 142, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

automation.

9.5 Testing with a Specific Compiler Version

A production software release will generally be tied to a specific ETEC Compiler version.
However as ASH WARE continues to release new software versions, the once-default
(latest installed) software version will at some point longer be the default. It is therefore
important to be able to tie regression tests to a specific ETEC compiler version. This is
done by selecting the build target as show by the blue arrow, below. Right-click to bring up
the popup menu and select 'settings' to bring up the settings window shown below. Within
the settings window, select the version of the compiler you wish to tie the tests to. The
green arrow shows the tests being tied to ETEC compiler version 230C. Note that if the
tests were to be run on a compiler that does not have version 2.30C installed, then the tests
would fail. This setting is stored in the project file and not the environment file!

Also, see related section 'Using Non-Installed ETEC Versions'.

9. Functional Verification

Multi Target Development Tool, page 143Reference Manual (C) 1994 ASH WARE, Inc.

9.6 Console Mode

A console mode version of the simulator/debugger supports regression testing without the
GUI. The console mode version of the executable contains the '_CL' suffix on the file
name.

9.7 Command Line Options

When launching the simulator/debugger the last-loaded project file is automatically loaded
and the project file contains most of the settings such as the name of the script file to load,
which messages to suppress, etc. However, it can be useful to specify the project file to
load or even to override settings contained in the project file. This is by specifying settings
at the command line when launching the simulator/debugger. This is especially useful
when building regression tests.

Setting Option Example

Display Help

Prints a list of all the
Command Line
Parameters

-h -h

Project File

Loads the specified project
file. Note that if a relative
path is used to specify the
project file, it is relative to
the current working
directory at app launch.
Also note that all other
relative paths is command
line options are relative to
the project file directory,
NOT the current working
directory (although they are
often the same).

-p<ProjectFileName> -pTest.ETpuSimProject

Loads project file "Test.
ETpuSimProject"

9. Functional Verification

page 144, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Setting Option Example

Executable Image File

Loads the specified
executable image file (e.g.,
MyCode.elf)

Note: DevTool only Note: DevTool only

Script File

Loads the specified script
file (single target). Path
relative to project file
directory.

-s<ScriptFileName> -sRarChunkTest.Cmd

Loads script file
"RarChunkTest.Cmd"

Script File

Loads the specified script
file into the specified target
(multiple targets). Path
relative to project file
directory.

-
s<ScriptFileName>@
@<TargetName>

-sMyScript.Cmd@@Cpu32

Loads script "MyScript.
Cmd" into the CPU32
simulation model named
"Cpu32"

Vector File

Loads the specified vector
file (single target)
[DevTool-only]. Path
relative to project file
directory.

-v=<VectorFileName> -v=MyVector.vector

Vector File

Loads the specified vector
file into the specified target
(multiple targets) [DevTool-
only]. Path relative to
project file directory.

-
v=<VectorFileName>
@@<TargetName>

-v=MyVector.
vector@@Ch1_Core0

Define as true

In script commands file,

-d<DefinedText> -dCODE_BASELINE

Passes the #define

9. Functional Verification

Multi Target Development Tool, page 145Reference Manual (C) 1994 ASH WARE, Inc.

Setting Option Example

#define DefinedText 1 CODE_BASELINE 1 to
the script file

Define as value

In script commands file,
#define DefTxt Val

-d<DefTxt>=<Val> -dMY_VAR=55

Passes the #define
MY_VAR 55 to the script
file

Build Define

In MtDt build script, define
the DefinedText as true

-bd<DefinedText> -bdMPC5674_2

Defines MPC5674 as 'true'
in the build define such that
the MPC5674 rev 2 model
is loaded.

Log File

Logs messages to end of
file, "FileName.log". Path
relative to project file
directory.

-lf5<FileName.log> -lf5Error.log

Logs messages to file
"Error.log"

Log File Test Suite Mode

Outputs formatted
messages and extra
verification information into
the log file, when specified.
Useful when using the tool
for verification purposes.

-lfmTestSuite -lfmTestSuite

Sets logging to test suite
mode (only applies if
logging enabled via -lf5).

Test Name

Used in conjunction with
the log file to append a test
result to the end of the log
file.

-tn<TestName> "-tnPulse Width Test"

Appends 'Pulse Width Test
Passes' (or 'fails') to the
end of the log file.

9. Functional Verification

page 146, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Setting Option Example

Suppress Warning #1

Suppress the “Source Code
Missing” warning

-ws1 -ws1

No Popup Dialogs

Disables display of dialog
boxes

-q -q

Accept License

Skips the startup license
agreement dialog box

-IAcceptLicense -IAcceptLicense

Suppress Environment File
Load

Normally an environment
file is loaded that specified
window positions, file scroll
locations, etc. This
suppresses loading of the
environment file and can
improve the repeatability of
certain tests. [DevTool-
only]

-NoEnvFile -NoEnvFile

Run Minimized

Runs DevTool 'Minimized'
such that it is possible to
continue on ones computer
while running regression
tests. [DevTool-only]

-Minimize -Minimize

Automatically Build

Forces the target system to
rebuild the code, even when

-AutoBuild -AutoBuild

9. Functional Verification

Multi Target Development Tool, page 147Reference Manual (C) 1994 ASH WARE, Inc.

Setting Option Example

not out of date, when the
simulator/debugger is
launched. Note that if a
target's build is disabled,
this will NOT cause the
code to build. Instead, use
the '-
EnableCodeBuild=<Target>
' option.[DevTool-only]

Override a Disabled Build

For a target with it's build
disabled in the project file,
this overrides the 'Disable'
such that the code will be
built.

-EnableCodeBuild=<Target> -EnableCodeBuild=eTPU_A

Prevent Build

Prevents code rebuild even
if the code is out of date.
[DevTool-only]

-NoBuild -NoBuild

Automatically Run

Sets the target system to
running when the simulator/
debugger is launched

-AutoRun -AutoRun

Network Retry Time

Time to wait (in seconds)
for a network license if
none is available

-NetworkRetry=<Sec> -NetworkRetry=30

Retries for 30 seconds if
unable to make a network
connection

Network License Checkout

Perform a network license

-
NetworkCheckout=<y:
m:d:h:m>

-
networkcheckout=2035:5:6:16:
00

9. Functional Verification

page 148, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Setting Option Example

checkout, providing
success/fail status, and then
exiting.

Attempts to check out a
license until 4pm of May 6,
2035.

Network License Checkin

Check back in a checked-
out license, which frees the
license for other users
(after the linger time has
completed)

-NetworkCheckin -NetworkCheckin

9.7.1 Using the –d (define) Option and Escape Characters

There are issues with passing a quote character into simulator/debugger in Windows
because Windows uses the quote character to bunch multiple pieces of text into a single
command line parameter. Consider the case where a filename is to be passed into the
simulator/debugger. A good way of doing this is to define a string, then use the dump_file
(); script command as follows.

#define FILE_TO_DUMP "n:\\MyDataFile.dat"

dump_file(0, 0x28, ETPU_DATA_SPACE, FILE_TO_DUMP, IMAGE, DATA8);

It is possible to pass the FILE_TO_DUMP #define into the simulator/debugger from the
command line (instead of having it in the script commands file) using the following
command line parameter.

"-dFILE_TO_DUMP=\"MyDataFile.dat\""

There are four quote characters in the command line parameter shown above. The first
and last quote characters are used by Windows to bunch everything between them
together into a single command line parameter which would (for example) allow spaces to
appear within the single parameter.

But the filename, MyDataFile.dat, is a string, and strings must be surrounded by quote
characters in the script commands file. This is accomplished by preceding the quote
character with the backslash character. Windows interprets this backslash-quote
combination literally and the quote character is thereby passed along with the filename into
simulator/debugger.

9. Functional Verification

Multi Target Development Tool, page 149Reference Manual (C) 1994 ASH WARE, Inc.

9.7.2 Preventing Multiple Rebuilds by Forcing 'No Build'

The '-NoBuild' Development Tool command line option prevents code from being rebuilt,
even when if the code image is out of date such that DevTool's internal 'Make' capability
would normally force a code rebuild. This allows (say) a series of tests to be run on a set
of source code without an executable code image getting re-built over and over again,
thereby saving time. Note that this option adds a tad bit of risk that your code could
potentially be out of date and would no longer work correctly if it were to be rebuilt.

Question: Why not just disable the code rebuild by not passing '-AutoBuild' on the the
command line? Answer - when '-AutoBuild' is not specified on the command line a 'Make'
occurs in which a build may (or may not) occur depending on the many files' time stamps.
However the make timestamps (currently) go into the environment file (yuck - this should
be changed) which generally don't get saved as part of a regression test suite. So
generally, even if '-AutoBuild' is NOT specified on the command line, your code is likely
going to get rebuilt on every test run. The '-NoBuild' option overcomes this by forcing your
code to not be rebuilt.

9.8 File Location Considerations

Although this discussion is equally applicable to simulator/debugger as a whole it is
important to point out how files are located within the context of Regression Testing.

A "project file relative" approach is used for searching and finding almost all files. This
means that the user should generally locate the project files near the source code and script
files within the directory structure. Consider the following directory structure.

C:\BaseDir\SubDirA\Test.Sim32Project
C:\BaseDir\SubDirB\Test.Cpu32Command

To load the script command file, Test.Cpu32Command, the following option could be used

-s..\SubDirB\Test.Cpu32Command

By employing this "project file relative" approach the testing environment can be moved
around without having to modify the tests and therefore the files names can be smaller and
easier to use.

Log File

Note that this does NOT apply to the log file. The log file is written to the "current
working directory" which is to say, in the directory from which the tests are launched. This

9. Functional Verification

page 150, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

exception to the normal directory locations is used so that multiple project files can exist in
different sub-directories, and the test results can all be logged to the same log file.

9.9 Test Termination

Termination of simulator/debugger and the passing of the test results to the command line
batch file is a key element of Regression Testing. At the conclusion of a script file,
simulator/debugger can be shut down using the exit script command, as described in the
System Commands section. This command causes the simulator/debugger's termination
error level to be set to be non-zero if any verification tests failed, or zero if all the tests
passed.

The overall strategy in ensuring that a zero error level truly represents that all tests have
run error free and to completion is to treat any unusual situation as a failure. Specifically, a
failing non-zero termination code will result unless the following set of conditions has been
met.

- No verification tests are allowed to fail in any target.

- All targets must have executed all their script commands.

- simulator/debugger must terminate through the exit(); script command.
Abnormal termination such as detection of a fatal internal diagnostic error
results in a non-zero error level.

9.10 Cumulative Logged Regression Testing

Cumulative logged regression testing supports the ability to run an entire test suite without
user intervention, even if one or more of the tests fail. This capability overcomes the
problem in which a failure halts the entire test suite until acknowledged by the user. Using
this capability, the alert is logged to a file rather than being displayed in a dialog box.

Test completion occurs when the exit() script command is encountered. At this time, a
PASS or FAIL indicator is appended to the end of the log file. Because it is appended to
the end of the log file, the normal usage would be to delete the log file prior to beginning the
test suite. Then, upon completion of a test run, the log file grows. At the end of the test
suite, the log file can be perused, and any failing tests are quickly identified.

Note that only certain types of failures bypass the normal message dialog box. For
instance, if the failure log file itself cannot be written, then this generates a failure message

9. Functional Verification

Multi Target Development Tool, page 151Reference Manual (C) 1994 ASH WARE, Inc.

in a dialog box which must be manually acknowledged.

This capability is invoked using a combination of two Command Line Parameters, shown
below.

-LF5MyLogFile.log -Quiet

The first command, -LF5MyLogFile.log specifies that message are appended to the end of a
log file named, "MyLogFile.log."

The second command, -Quiet, specifies that the dialog boxes that normally carry test errors
or warnings are not displayed. Note that this command only works in conjunction with
AutoRun, –IAcceptLicense, and –LF5<LogFileName.log.> If any of these options is not
selected, then this –Quite command is ignored. Note also that if the user halts the
simulation, then this option is disabled such that messages shown in dialog boxes will
require manual acknowledgement.

It is convenient to name each test run. That is, when simulator/debugger is launched, the
command line parameter shown below applies a name the test run. This name shows up in
the log file. This allows the particular test run that is causing any failures to be easily
identified when perusing the log file.

-tn<TestName>

Note that command line parameters do not handle spaces will. To include spaces in the
name, enclose the parameter in quotes, as shown below. In the following example, the
name, "Angle Mode" is specified.

"-tnAngle Mode"

9.11 Regression Test Example

The keys to successful Regression Testing is the ability to launch simulator/debugger
multiple times within a batch file that runs in a DOS command line shell and to verify within
this batch file that the tests that were automatically run had no errors. These multiple
launches of simulator/debugger, and the tests contained therein, form a test suite.

The following is a batch file used to launch the simulator/debugger multiple times. Note
that there is only a single target such that no target must be specified on the command line.
 Had this been a test running in a multiple-target environment, the target name would have
to be specified along with each script file.

echo off

// Use the CONSOLE version of the simulator

set exe="C:\Program Files\ASH WARE\TPU Simulator\TpuSimulator_CL.exe"

9. Functional Verification

page 152, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

%exe% –pTest1.TpuSimProject –sTest1.TpuCommand -AutoRun -IAcceptLicense

if %ERRORLEVEL% NEQ 0 (goto errors)

%exe% –pTest2.TpuSimProject –sTest2.TpuCommand -AutoRun -IAcceptLicense

if %ERRORLEVEL% NEQ 0 (goto errors)

echo ***

echo SUCCESS, ALL TESTS PASS

echo ***

goto end

:errors

echo ***

echo YIKES, WE GOT ERRORS!!

echo ***

:end

If the above test were named TestAll.bat then the test would be run by opening a DOS
shell and typing the following command

C:\TestDir\TestAll

10. Action Tags

Multi Target Development Tool, page 153Reference Manual (C) 1994 ASH WARE, Inc.

10
Action Tags

An action tag is an identifier embedded in the source code as a comment that alerts
simulator/debugger to perform a specified action when code execution has reached that
point in the source code. The action tag is “@ASH@”. When target code is loaded, the
simulator/debugger scans the source code for action tags – thus if the source code can not
be located, the associated action tags will not get activated.

The full form of an action tag includes the action – “@ASH@<action>”. Code execution
momentarily pauses when the associated source code is reached, and the requested action
is performed. Simulation then re-starts as if nothing happened.

A few of the supported action tag commands are: print action, timer action and write value
actions.

Action tags that are embedded in source code are associated with the underlying
executable code as follows. The search for executable code begins at the line that
contains the action tag and moves downwards in the source code file. If no executable
code is found at or below the line where the action tag appears, then the search continues
upwards. If there is no executable code associated with the source code file at all, then
the action tag fails.

See http://www.etpu.org for an example application.

10. Action Tags

page 154, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

10.1 Print Action Tag

The Print action command is similar to the “C” languages prinf() function, and has
essentially the same syntax. There are two flavors available - the first being
"print_to_trace". The resulting text appears as a line in the Trace window. When coupled
with the @ASH@ action tag in the source code file looks similar to the following.

// @ASH@print_to_trace("action tag test 1");
/* @ASH@print_to_trace("action tag test 2"); */
// @ASH@print_to_trace("variable A = %d\n", A);

As with the “C” printf, the first argument is the format string. The ASH WARE Print
command uses the same syntax for the format string, which can then be followed by a
varying number of arguments. The Print command checks that the number of conversion
characters in the format string matches the number of parameters that follow the format
string and issues an error if there is a mismatch. The parameters can be constants or
simple expressions (variables). With code compiled using tools that support more
advanced debugging information, simple expressions such as struct.member, structPtr-
>member, array[2], and *pointer are supported.

The output of the Print command always goes to the Trace window, and using the
start_trace_stream(); script command it can also be directed to a file. Directing it to a file
can be extremely useful for verification and automated testing.

IMPORTANT NOTE: although the print action command works via the print_to_trace()
script command, it has a slightly different syntax. The print_to_trace() script command
must have its input encapsulated in a single string, while the print action version has its
format string and any additional arguments NOT encapsulated in an enclosing string.

See the Global eTPU Channel variable Access section for information on accessing
channel variables using the format shown below.

@<chan num/name>.<function var name>

The format specifier, %, is used to denote that a parameter value is to be inserted in the
resulting text. The % character must always be followed by a valid conversion character
such as %d. If the % character is not followed by a conversion character then a warning
message is generated and any automated tests will fail. The % character is generated by
two consecutive % characters.

The other flavor of the Print action commands have the same capabilities, but sends their
output to either a message dialog (thereby pausing simulation), or to a log file if autorun
logging is enabled. See the print() and print_pass() script command documentation for
more details.

10. Action Tags

Multi Target Development Tool, page 155Reference Manual (C) 1994 ASH WARE, Inc.

// @ASH@print("action tag print to dialog or log file");
// @ASH@print_pass("output a message without affecting the
simulator exit code");

10.2 Timer Action Commands

The timer action commands provide a method for instrumenting source code to verify that
time critical paths are being met.

// @ASH@timer_start("Test 1");
// @ASH@timer_stop("Test 1");

The passed parameter is the test name and can contain any text with the restriction that
each test must have both a timer_start and a timer_stop action command. In other words,
timer action commands must come in pairs such that each named test has both a start and
a stop. Additionally, only one start and one stop is permitted for each test.

In order for a timing measurement to be considered valid, the following must occur. The
code containing the start tag must be first and the code containing the stop_tag must be
traversed next. In other words, the traversal must occur in pairs of start/stop, start/stop,
etc. If this order is broken (a stop before a start, two starts in a row, or two stops in a
row) then the action timer is invalidated and any verification scripts that thereafter test the
timers will result in verification failures.

The test tag is case sensitive such that the following tag,

// @ASH@timer_start("TestTag");

is a different test from the following tag

// @ASH@timer_start("TESTTAG");

On both target-reset and on code-reload, all timing measurements are reset.

Related Information

Naming timing regions in source code
Verifying traversal times a script command file
View named timing regions timing using the Watch Window
List named timing regions in the Insert Watch Dialog Box

10. Action Tags

page 156, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

10.3 Write Value Action Tag

When the source code containing a write value action tag is traversed, the specified
symbolic write value script command (write_val, write_val_int or write_val_fp) is
exercised.

// @ASH@write_val("s24", "0x123456");
/* @ASH@write_val_int("varui32", 0x10101010); */
// @ASH@write_val_fp("ratio", 0.232323);

See the Print Action Tag section for more information on referencing channel frame
variables.

11. External Circuitry

Multi Target Development Tool, page 157Reference Manual (C) 1994 ASH WARE, Inc.

11
External Circuitry

This section covers external circuitry.

11.1 Logic Simulation

External logic is used to drive one I/O or input pin with other I/O or output pin(s). External
logic can include buffers, inverters, 'and' gates, 'or' gates, 'xor' gates, etc. These external
logic gates are placed using external logic commands within script commands files.

These external logic gates are evaluated on a 'one pass per per instruction cycle' basis and
there is no attempt to elegantly handle a-stable situations. For instance, an inverter that has
both it's input and output connected to the same pin would simply toggle once every
instruction cycle.

There are a number of limitations to the Boolean logic.

- There are only two logic states, one and zero.

- The logic is simulated with a single pass per instruction cycle.

- All output states are calculated before they are written, and therefore all
calculations are based on the pre-calculated states. Thus it takes multiple
passes for state changes to ripple through sequentially connected logic.

- All Boolean logic inputs and outputs must be input, output or I/O pins.

- Behavior of pins connected to Boolean logic outputs and also driven by test

11. External Circuitry

page 158, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

vectors is undefined.

Example 1: Driving a Pin with another Pin

In the following script command the output pin which drives the buffers input is the TPU's
channel 5 I/O pin. The input pin driven by the buffer's output is the TCR2 pin. Note that
the TCR2's pin is at index 16.

place_buffer(5, 16); // TPU

In the following script command the output pin which drives the buffers input is the eTPU's
channel 5 output pin (output pin's start at index 32 so channel 5's is at 37.) The channel
drives the TCR2 pin which is at index 64.

place_buffer(32+5, 64); // eTPU

Example 2: Driving a Pin with the Logical Combination of
Two Pins

In the following multi-drop communications example TPU channel 5 is a communications
channel output. TPU channel 7 is used as a gate to enable and disable the output.
Channel 1 is the communications input. An idle line is low. An AND gate is instantiated
using the place_and_gate(X,Y,Z) script command. The gate pin causes an idle (LOW)
state on the input by going low. By going high the gate pin causes the state on the output
channel to be driven unto the input channel.

place_and_gate(5,7,1); // TPU

11. External Circuitry

Multi Target Development Tool, page 159Reference Manual (C) 1994 ASH WARE, Inc.

In the following multi-drop communications example eTPU channel 5's output pin is a
communications channel output. eTPU channel 7's output pin is used as a gate to enable
and disable the output. eTPU Channel 1's input pin is the communications input. Since the
eTPU's output pins start at 32, a 32 is added to both arguments to designate these as the
output pins. An idle line is low. An AND gate is instantiated using the place_and_gate(X,
Y,Z) script command. The gate pin causes an idle (LOW) state on the input by going low.
By going high the gate pin causes the state on the output channel to be driven unto the
input channel.

place_and_gate(32+5,32+7,1); // eTPU

page 160, Multi Target Development Tool

12. Integrated Timers

Multi Target Development Tool, page 161Reference Manual (C) 1994 ASH WARE, Inc.

12
Integrated Timers

Integrated timers measure the amount of time that code takes to execute. This capability
is available for all simulated targets as well as for hardware targets outfitted with the
requisite support hardware.

Integrated timers work with a combination of a special Timers window as well as the
source code windows. Specific timer stop and timer start addresses are specified from
within the source code windows. Completed timing measurements are viewable within the
Timers window.

The timer number within a green circle on the far left side of the source code window
identifies the start address. Similarly, the timer number within a red circle on the far left
side of the window identifies the stop address. It is possible for the same line of source
code to contain multiple timer start and stop addresses. In this case, only a single circle/
timer number will be displayed though all timers still continue to function.

MtDt supports 16 timers. Each timer has the following states: armed, started, finished,
overrun, and disabled. The state of each timer is displayed in the Timers window. Each
timer can be armed in several ways. Specification of a new start or stop address within a
source code window automatically arms the timer. The timer can also be armed from
within the timer window by clicking on the state field or placing the cursor in the state field
and typing the letter 'A'.

When the target hits the start address of an armed timer, the timer state changes to
‘started’. When the target hits the stop address the timer state changes to ‘finished’.

12. Integrated Timers

page 162, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

MtDt then computes the amount of time it took to get from the timer start address to the
timer stop address, and this information is displayed in both clock ticks and micro-seconds
in the timer’s window.

An overrun occurs when a timer exceeds the capacity of the timing device. For the
simulated timers the limitation is 1E96 femto seconds of simulated time. This corresponds
to 1E72 years of simulated time. This is significantly less ominous than Y2K.

Virtual Timers in Hardware Targets

For targets that do not support the full number of timers that MtDt supports, the concept of
virtual timers is introduced. MtDt remembers the start and stop addresses of all 16 virtual
timers. The arming of any virtual timer causes a hardware timer to be assigned to that
virtual timer. If more virtual timers are armed than are actually supported by the target
hardware's timing device then the last-armed virtual timer is automatically disabled.

13. Workshops

Multi Target Development Tool, page 163Reference Manual (C) 1994 ASH WARE, Inc.

13
Workshops

Workshops bring order to a chaotic situation. The problem is that with multiple targets,
each of which have many windows, the number of windows may become overwhelming.
In fact, it may become so overwhelming that without workshops, the Multiple Target
Simulator would be nearly unusable.

Workshops allow you to group windows together and view only those windows belonging
to that group. Generally it is best to group by target, so that each workshop is associated
with a specific target, though this is completely configurable by the user. Some windows,
such as watch windows and the logic analyzer windows, are often made visible in multiple
workshops. Menus and toolbar buttons allow instantaneous switching between workshops
and selection of the active target. The name of the active target is also prominently
displayed in the top-right toolbar button.

Closely coupled with workshops is the concept of the active target/core. It is generally
best to associate targets/cores with workshops. Thusly, when the workshop is switched,
the active target/core is also automatically switched to the one associated with the newly
activated workshop. The active target/core is important in that simulator/debugger acts on
the active target/core in a variety of situations. For instance, when a single step command
is issued, the active target/core is the one that gets single stepped and all other targets/
cores are treated as slave devices and are stepped however much is required in order to
cause the active target/core's simulation to progress by one step. simulator/debugger
makes use of the active target/core when a new executable code image is loaded. Clearly
the user needs to have the ability to select a new executable image into a single specific
target. But which target should this be? The simulator/debugger automatically selects the

13. Workshops

page 164, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

active target/core as the one into which the executable code image is to be loaded.

To associate workshops with targets, see the Workshops Options Dialog Box section. In
that section there are descriptions of putting workshop buttons on the toolbar, renaming
workshops or automatically giving a workshop the same name of its associated target, and
associating workshops with targets.

When a target is assigned to a workshop, the windows associated with that target are
automatically made visible within the assigned workshop. It is often desirable to override
this, either to make individual windows visible in multiple workshops or to remove window
from specific targets. See the Occupy Workshop Dialog Box section for a detailed
description of how this is done.

14. The Logic Analyzer

Multi Target Development Tool, page 165Reference Manual (C) 1994 ASH WARE, Inc.

14
The Logic Analyzer

The Logic Analyzer displays node transitions in a graphical format similar to that of a
classical logic analyzer. The display can be continuously updated as MtDt runs, or the user
can turn off the automatic display update and scroll through previously-recorded transition
data.

14. The Logic Analyzer

page 166, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

14.1 Executing to a Precise Time

It is informative to consider how to execute the simulator to the precise time of the falling
edge indicated by the arrow 1, shown in the picture below.

- Use the keyboards up and down arrows to highlight the UART_RCV
waveform.

- Drag the "Left Cursor" near to the desired edge using the mouse.

- Snap to the actual edge using the left and right arrow keys on your keyboard.
In the picture below, this edge is shown to occur at 2,191.1 microseconds.

- Place the cursor over the field showing the time of the left cursor indicated by

the second arrow. An open hand will appear indicating that this "time"
can be copied.

- Begin dragging the time by holding the left mouse button down to form a

closed hand .

- Drag the time (closed hand) over the waveforms

- Drop the time unto the waveforms by releasing the left mouse button.

- The simulator will reset and execute to precisely 2,191.1 microseconds.

- Verify this observing the time in the “current time” field shown by arrow 3.

A similar method can be used to execute to a "context" time. The context time is shown at
arrow 4 above. The "context" time is the time at which some "context" event occurs. For
instance, in the trace window, click on any stored event. By clicking on the event, the time
at which that event occurred becomes the "context" time. Similarly, in the thread window,
click on a worst case thread, and the time at which the first instruction of the worst case

14. The Logic Analyzer

Multi Target Development Tool, page 167Reference Manual (C) 1994 ASH WARE, Inc.

thread occurred becomes the context time. This context time can then be dragged into the
current time field causing the simulator to execute to that precise time.

14.2 Waveform Selection

The Logic Analyzer displays nodes from the pin transition trace buffer as a waveform.
Nodes are added to the display when they are selected from within the drop-down list box
located to the left of the waveform display panel. The nodes that may be displayed include
the TPU channel I/O pins and the TCR2 pin as well as any user-defined nodes. User-
defined nodes are those defined within Test Vector Files.

The waveform display panel may not be large enough to display all the desired nodes. The
display can be scrolled vertically using the vertical scroll bar.

Viewing Thread Activity Nodes

Thread activity can be viewed in the logic analyzer window as shown below. There are
eight user-configured thread nodes. Each of these thread nodes can display the thread
activity for one or more channels. See the Logic Analyzer Options dialog box section for
more information on configuring thread nodes.

Viewing Channel Nodes

Several eTPU and TPU channel nodes can be viewed in the logic analyzer as shown
below. These include the Host Service Request (HSR,) Link Service Request (LSR,)
Match Recognition Latch (output and enable MRL and MRLE,) and Transition Detection
Latch (TDL.) Only the nodes from a single channel can be stored and viewed at a time.
The channel for which the nodes will be stored is defined in the Logic Analyzer Options

14. The Logic Analyzer

page 168, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

dialog box.

14.3 The Active Waveform

The active waveform is red, whereas all others are black. Use the <up> and <down>
arrows on the keyboard to switch the active waveform.

14.4 Left and Right Vertical Cursors

The logic analyzer has two cursors; a left cursor and a right cursor. The left cursor is blue
whereas the right cursor is green.

One of the two cursors is always "selected" and this selected cursor is displayed as a solid
line. Conversely, the unselected cursor is displayed as a dashed line. The concept of an
active cursor is important because the active cursor is snapped to edges on the active
waveform using the keyboard’s left and right arrow keys. To switch between the selected
and unselected cursor hold the <CTRL> key while pressing either the left or right arrow
keys on the keyboard.

Grabbing an Out-of-View Cursor

Occasionally the left or right cursor may be out of view as the left cursor is in the picture
seen below. The right cursor is at arrow 1. But the left cursor is out of view because the
waveform is only displaying a quarter microsecond of waveform at around six
microseconds, but the left cursor is at 1 microsecond. Therefore the left cursor is to the
left of the visible area. To bring the left cursor back into view, click the left mouse button
at the location indicated by arrow 2.

14. The Logic Analyzer

Multi Target Development Tool, page 169Reference Manual (C) 1994 ASH WARE, Inc.

The simulation can execute to precisely the left or right cursor’s time by dragging and
dropping the time into the current time, as explained in the, Executing to a Precise Time
section.

The cursor can also be moved by dragging and dropping a time into a vertical cursor’s time
indicator.

Left, Right, and Delta Cursor Time Indicators

The left and right time cursor time indicators show the time associated with the respective
vertical cursors. The Delta Cursor indicator shows the difference in time between the left
cursor and the right cursor.

These time indicators are capable of extremely precise time measurement with accuracies
approaching one femto-second. This is because the cursors can be snapped to the precise
pin transition time using your keyboard’s left and right arrow keys.

14. The Logic Analyzer

page 170, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

14.5 Displaying Behavior Verification Data

Behavior Verification Data appears as a yellow line in the waveform pane, as shown in the
top waveform in the illustration found below.

The check box to the left of each waveform is used to enable and disable display of the
underlayed behavior verification data. The check box in the second waveform is un-
selected which is why the behavior verification waveform does not appear. Note that if no
behavior verification data is loaded then no yellow waveform will appear, even if the
behavior verification checkbox is enabled.

The _EbvDiff and _EbvError waveforms show where differences and errors in the
behavior verification data. These signals are a logical 'or' of all channels errors such that if
there is an error or difference in any of the 32 channels then the signal is active (high.)

The reason that _EbvError and _EbvDiff are not identical is because of the tolerance that
is allowed in each of these channels. See the Pin Transition Behavior Script Commands
section for a description on setting up global and pin-specific behavior verfication
tolerances.

14.6 Mouse Functionality

In the waveform display panel the mouse has two purposes. It is used to provide a goto
time function and also is used to move the left and right cursors.

To get MtDt to execute to a particular point in time, move the mouse to a location
corresponding to that time and click the right mouse button. If the selected time is earlier
than the current Simulator time MtDt automatically resets before executing. The simulation

14. The Logic Analyzer

Multi Target Development Tool, page 171Reference Manual (C) 1994 ASH WARE, Inc.

runs until the selected time is reached.

The second mouse function is to move the left and right cursors. These cursors are
displayed as blue and green vertical lines. The user may move either cursor using the
mouse. The times (or CPU clocks) associated with both cursors as well as the delta
between cursors are displayed in the cursor time indicators.

Note that the left and right cursors can also be moved using the left and right arrow keys
on your keyboard. This causes the cursors to snap to edges on the active waveform.

Cursor display and movement follow these rules:

- Cursors may be located beyond the edge of the wave form display panel.

- If the left cursor gets beyond the right display edge it is automatically moved
back into the display.

- If the right cursor gets beyond the left display edge it is automatically moved
back into the display.

- Cursors outside the display retain their timing association.

- To allow the user to "pick up" a cursor that is not in the display the cursor is
considered to be just outside the display edge for the "drag and drop"
operation.

14.7 Vertical Yellow Context Time Cursor

The Vertical Yellow Context Time Cursor

The vertical yellow context cursor is the time of some referenced event occurring
elsewhere in the IDE. For instance, open a trace window and scroll backward through the
trace data. The vertical yellow context cursor will show the time at which the trace
window event occurred.

This context capability is a powerful debugging tool. The source code associated with the
trace data also pops into view. This allows you to line up previously executed source code,
the trace data, and in some cases the call stack data. If you want to re-execute to that
context time, use the mouse to drag the time from the context time indicator into the
current time indicator, as explained in the, Executing to a Precise Time section.

Context Time Indicator

The context time indicator displays the time with the IDE-wide context time. For example,

14. The Logic Analyzer

page 172, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

select a past-event in a trace window. The time associated with this event becomes the
context time. This context time appears as the vertical yellow context cursor in the
waveform display. Drag and drop this time into the current time, as explained in the,
Executing to a Precise Time section.

14.8 Scroll Bars

The horizontal scroll bar provides the functionality shown in the picture below. Note that
this is a standard Windows scroll bar except that it has the additional functionality of the
Home and End keys. These keys move the view to the start or end of the simulation.

The vertical scroll bar provides the functionality shown in the picture below. This provides
the user with the ability to scroll through the 30 available nodes that the Logic Analyzer
supports.

14. The Logic Analyzer

Multi Target Development Tool, page 173Reference Manual (C) 1994 ASH WARE, Inc.

14.9 Display Pane Boundary Time Indicators

The left and right time indicators show the time associated with the left-most and right-
most visible portions of the display pane.

The display pane can be changed so that a different section of the waveform is in view.
For example, use the mouse to drag the current time by depressing the left mouse button
over the current time indicator. Holding the left mouse button down, move the mouse over
the right time indicator, the release the left mouse button.

14.10 Data Storage Buffer Start Indicator

The data start indicator shows the time associated with the very first data in the buffer.
This time indicator generally shows zero because the buffer can usually hold all the
previously saved pin transition data. But occasionally the buffer overflows so that the very
oldest data must be discarded, and in this case the indicator shows the non-zero time
associated with the oldest valid data.

14.11 Current Time Indicator

The current time indicator is the latest time associated with any target in the system.

Drag and drop any time into this field, as explained in the, Executing to a Precise Time
section.

14.12 Auto Scroll

Selecting auto-scroll causes the Logic Analyzer to continuously update the view as the
simulation runs. De-selection causes the Logic Analyzer to cease updating the view as the
simulation runs.

14.13 Button Controls

Zoom In

Selecting the Zoom In button narrows the view to the transition data at the center of the

14. The Logic Analyzer

page 174, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

display.

Zoom Out

Selecting the Zoom Out button widens the view so that more transition data is displayed.

Zoom Back

Selecting the Zoom Back button restores the previous view. The last five views are always
saved. MtDt stores the view information in a circular buffer so that if the Zoom Back
button is selected five times the original view is restored. Note that only the view and not
the cursors are affected. This allows the user to shift views while retaining the timing
information associated with the vertical cursors.

Zoom To Cursors

Selecting the Zoom To Cursors button causes the view to display the transition data
between the left and right cursors.

Setup

Selecting the Setup button causes the Logic Analyzer Options dialog box to be opened.
This dialog box accesses various setup options as described in the Logic Analyzer Options
Dialog Box section.

Help

Selecting the Help button accesses the Logic Analyzer section of the on-line help.

14.14 Timing Display

Below the Logic Analyzer’s horizontal scroll bar are two fields that display the time (or
CPU clock counts) corresponding to the left-hand and right-hand sides of the wave form
display panel.

The display region can be modified using the horizontal scroller located below the wave
form view panel. It can also be modified using the buttons described in the Button Controls
section found earlier in the description of the Logic Analyzer.

Below the left side of the wave form display panel are the three fields that display the time
(or CPU clock counts) associated with the left cursor, right cursor, and delta cursor.

14. The Logic Analyzer

Multi Target Development Tool, page 175Reference Manual (C) 1994 ASH WARE, Inc.

"Delta" refers to the time (or CPU clock counts) difference between the left and right
cursors.

Below the right side of the wave form display are three fields that display the time (or
CPU clock counts) associated with the current Simulator time, the oldest available
transition data, and the mouse. The mouse field is visible only when the window’s cursor is
within the wave form display panel.

14.15 Data Storage Buffer

As MtDt runs, transition information is continuously stored in a data storage buffer. Data
is stored only when there is an actual transition on a node. When no transitions occur, no
buffer space is used. This is an important consideration since the user can significantly
increase the effective data storage by disabling the logging of the TCR2 input pin
(assuming it is active). This is disabled from within the Logic Analyzer Options dialog box.

All buffer data is retained as long as it predates the current Simulator time and there is
enough room to store it. Therefore, if MtDt time is reset to zero, all buffer data is lost.
When the amount of data reaches the size of the buffer (i.e., the buffer becomes full), new
data overwrites the oldest data. In this fashion, the buffer always contains continuous
transition data starting from the current time and going backward.

page 176, Multi Target Development Tool

15. Operational Status Windows

Multi Target Development Tool, page 177Reference Manual (C) 1994 ASH WARE, Inc.

15
Operational Status Windows

The target state is displayed in various operational status windows. These windows
correspond to the various functional blocks associated with the specific target. Each of
these windows can be re-sized, scrolled, iconized, minimized, and maximized. Multiple
instances of each window may be opened.

Window Groups

Common Windows

The following windows are available on multiple targets.

Source Code File Windows
Script Commands File Windows
Watch Window
Local Variables Window
Call Stack Window
Threads Window
Trace Window
Complex Breakpoint
Timers Window
Memory Dump Window
Logic Analyzer Window

eTPU Specific Windows

15. Operational Status Windows

page 178, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The following windows are available on eTPU Simulator targets.

eTPU Channel Frame
eTPU Configuration Window
eTPU Global Timer and Angle Counters Window
eTPU Host Interface Window
eTPU Channel Window
eTPU Scheduler Window
eTPU Execution Unit Registers Window

TPU Simulator Specific Windows

The following windows are available on TPU Simulator targets.

TPU Configuration Window
TPU Host Interface Window
TPU Scheduler Window
TPU Microsequencer Registers Window
TPU Execution Unit Registers Window
TPU Channel Window
TPU Parameter RAM Window

683xx Hardware Debugger Windows

683xx Hardware Debugger Configuration Window
683xx ASH WARE Hardware Window

System Integration Module Windows

SIM Main Window
SIM PortsWindow
SIM Chip SelectsWindow

Queued Serial Module Windows

QSM Main Window
QSM Port Window
QSM QSPI Window
QSM SCI (UART) Window

RAM and ROM Windows

Masked ROM Submodule Window (68336/68376)
Standby RAM Submodule Window (68336/68376)
Static RAM Submodule Window (68338)
TPU Emulation RAM Window (68332, 68336, 68376)

Timer Processor Unit Windows

15. Operational Status Windows

Multi Target Development Tool, page 179Reference Manual (C) 1994 ASH WARE, Inc.

TPU Main Window
TPU Host Interface Window
TPU Parameter RAM Window

General-Purpose Timer Windows

GPT Main Window
GPT Input Captures Window
GPT Output Compares Window
GPT Pulse Accumulation Window
GPT Pulse Width Modulation Window

Counter Timer Module 4 and 6 Windows

CTM4/CTM6 Bus Interface and Clocks Window
CTM4/CTM6 Free-Running Counter Submodule Window
CTM4/CTM6 Modulus Counter Submodule Window
CTM4 Double-Action Submodule Window
CTM4 Pulse Width Modulation Submodule Window
CTM6 Single-Action Submodule Window
CTM6 Double-Action Submodule – Modes Window
CTM6 Double-Action Submodule – Bits Window

Miscellaneous Windows

Real Time Clock Window
Parallel Port I/O Submodule Window

TouCAN Windows

TouCAN Main Window
TouCAN Buffers Window

Queued Analog to Digital Converter Windows

QADC Main Window
QADC Ports Window
QADC Channels Window

CPU32 Simulator Specific Windows

The following window is available for CPU32 Simulator targets.

CPU32 Simulator Configuration Window
CPU32 Simulator Busses Window
CPU32 Simulator Interrupt Window

Universal CPU32 Windows

15. Operational Status Windows

page 180, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The following windows are available for both the CPU32 hardware and the CPU32
Simulator targets.

CPU32 Registers Window
CPU32 Disassembly Dump Window

15.1 Generic Windows

The following windows display generic information.

15.1.1 Source Code Windows

These windows display the executable source code that is currently loaded in the target.
Each window displays one source file.

15. Operational Status Windows

Multi Target Development Tool, page 181Reference Manual (C) 1994 ASH WARE, Inc.

The executable source code is loaded into the target's memory via the Files menu. To load
the executable source code, select the Executable, Open submenu and follow the
instructions of the Load Executable dialog box.

As the executable source code is executed the source line corresponding to the active
instruction is highlighted.

Usually the source file is too large to be displayed in its entirety. The user can use the
scroll bars to view different sections of the file. As the code is executed the source code
line corresponding to the active instruction appears highlighted in the window.

The user can move the cursor within the file using the Home, End, up arrow, down arrow,
Page Up, and Page Down keys. When adding or toggling breakpoints, and using the Goto-
Cursor function, the cursor location is an important reference. MtDt searches first down,
then up, starting from the cursor, to find a source line corresponding to an instruction.

The executable source code can be quickly reloaded from the Files menu by selecting the
Executable, Fast submenu. This is normally required when the user has made a change to
the executable source code and has re-built it

Mixed Assembly View

To make visible the dis-assembled instructions associated with each line of source code,
select the Toggle, Assembly Mixed submenu from the Options menu. For TPU targets,
the 32-bit hexadecimal equivalent of the micro-instruction is displayed. For CPU targets,
the actual disassembly is displayed.

Coverage Indicators

The little black, green, red, and white indicators on the left side of the source code window
are graphical indications of code coverage as explained in the Code Coverage Analyses
section.

15. Operational Status Windows

page 182, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.1.2 Script Commands Window

Although there are several types of script commands windows, only two styles can be
viewed within a window: primary and ISR. The primary script commands file window
displays the open or active primary script commands file whereas an ISR script commands
file window displays a script commands file that is associated with a eTPU channel
interrupt. See the Script ISR section. for an explanation of these two types of script
commands files.

There are several types of script commands files. The primary script commands file
window displays the open or active primary script commands file. An ISR script
commands file window displays a script commands file that is associated with a eTPU
channel interrupt which is described in the Script ISR section.

A list of the available script commands functional groups is given in the Script Commands
Groupings section.

15. Operational Status Windows

Multi Target Development Tool, page 183Reference Manual (C) 1994 ASH WARE, Inc.

The primary script commands file is loaded from the Files menu by selecting the Scripts,
Open submenu and following the instructions of the Open Primary Script File dialog box.

The primary script commands file can be reread at anytime. This is done from the Files
menu by selecting the Script, Fast submenu. MtDt re-executes the file, starting from the
first command. When the primary script commands file is reread, MtDt state is not
modified.

When MtDt is reset, the user has the option of re-initializing the primary script commands
file, opening a new or modified primary script commands file, or taking no action. If no
action is taken, primary script commands file execution will continue from where it left off
before the reset. The user selects the desired option via the Reset submenu in the Options
menu. This submenu activates the Reset Options dialog box.

When the primary script commands file is reread, its execution starts back at the first line.
This allows the user to modify and then rerun a series of script commands without exiting
MtDt.

Only one primary script commands file may be active at a time. Multiple ISR script
commands files may be open at once, but only a single ISR script commands can be
associated with each TPU channel. Note that each ISR script commands file can be
associated with multiple TPU channels.

Debugging Capabilities in Script Command Windows

These capabilities are available starting in version 3.20. Script commands file windows
support breakpoints. Similar to source code windows, breakpoints can be set, cleared,
enabled, and disabled. See the Breakpoints Menu section for a complete explanation.

A goto line capability is supported within the script commands file windows. Although this
can be activated from the Run menu as described in the Run Menu section, a more
convenient method is to right-click on the desired line. Either method causes the target
execution to continue until the desired script command is executed. Note that if the active
line in the script file is beyond the selected "goto" line the target is reset and then runs to
the desired line.

A single step capability is also provided in script commands files. See the Step Menu
section for a detailed explanation.

15. Operational Status Windows

page 184, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.1.3 Watch Windows

The Watches window displays symbolic data specified by the user. Both local and global
variables can be displayed within this window. See the Local Variable window to
automatically display local variables.

The watches window consists of a series of lines of text used to display user-specified
watches. Watches can be removed, moved up or moved down. New watches can also be
inserted before any current watch, or at the bottom of the list. The Insert Watch function
accesses the Insert Watch dialog box which allows you to select and/or modify previously
defined watches. These functions are accessed from the Options Menu by selecting an
action listed in the Watch submenu. An equivalent of the Watch submenu is also
accessible by right-clicking the mouse from within a Watches window.

The Watches window has a user-specified symbol on the far left. This is the symbol
whose resolved value will be displayed. To the right of the user-defined symbol is an
options button. This button accesses the Watch Options dialog box. In future versions of
this software, this dialog box will allow individual settings for the watch to be specified.

To the right of the options button is a vertical separator bar. You can drag the vertical
separator bar left or right using the cursor. To the right of the vertical separator bar is the
symbol resolution field. If a value from the user-specified symbol can be resolved, then
this field is automatically displayed. Otherwise, a message is displayed indicating that the
specified symbol could not be resolved.

The user can edit the user-resolution field. In future versions of this software, this will
cause the actual variable values within the targets to be modified.

Symbolic Data Options

The Watches window supports both global and local variables. Variables are resolved by
looking at the innermost local scope first, followed by any outer scopes, in order, then
followed by any static variables, and finally the global scope.

Currently, a subset of C syntax is supported for the left-hand side symbol input:

15. Operational Status Windows

Multi Target Development Tool, page 185Reference Manual (C) 1994 ASH WARE, Inc.

- Pointers can be dereferenced with the '*' operator.

- The address of variables can be found with the '&' address operator.

- Array elements can be accessed with the '[]' operator, where the subscript is
an integer.

- Structure members can be accessed via the '.' or '->' operators.

In the current release, only a single operator per watch is supported. Future versions will
support a more full-feature C syntax. Note that code must be compiled with symbolic
debug information for this functionality to be available.

See the Global eTPU Channel variableAccess section for information on accessing eTPU
channel variables using the format shown below.

@<chan num/name>.<function var name>

Viewing Named Timer Region Information

Code can be instrumented with named timing regions. Traversal time information across
these regions can be viewed in the watch window using the following format.

@AshTimer.TimingRegionName

The traversal time and the number of system clocks in the last traversal are listed. Also
the number of times traversed and the cumulative amount of time spend in the regions is
also listed. Depending on the target the number of instruction cycles spend in the traversal
region may also be listed.

A list of the named regions that are available for selection is in the Insert Watch dialog box
.

Viewing Print Action Command Output

Print action commands support instrumentation of code to output code execution
information. Think printf. This information is normally output to the trace buffer, and from
the trace buffer can be piped to trace files for post processing. But it is also possible to
view this information in the watch window using the following command.

@AshTimer.FormatString

Where the format string matches exactly a Print Action Command’s format string from
within the source code.

See the Print Action Command section for more information on how to instrument your
code.

A list of the available print action command strings is available for selection is in the Insert

15. Operational Status Windows

page 186, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Watch dialog box.

15.1.4 Local Variable Windows

The Local Variables window automatically displays all local variables in the current
context, along with their current values. Variable names are listed in a column on the left-
hand side of the window. Values are displayed in a matching column on the right-hand
side. The displayed format is relevant to the variable type. Additionally, if the variable is
assigned a register, the register is output.

Based upon type, variables are automatically expanded. For example, if a variable is of
type int*, the dereferenced pointer is displayed on the next line as an integer. Default
expansion is up to three levels deep, with pointers, arrays, and structures/unions/bitfields
supported. An alternative expansion level can be specified. See the Local Variable
Options Dialog Box section for more information.

Future enhancements will give the user control over expansion and collapse of variables.
Note that in order for this feature to be available, code must be compiled with symbolic
debug information.

In order for this window to correctly identify and display local variables, the proper options
for each compiler must be chosen. For instance, debugging information needs to be
included and certain stack frame requirements must be met. In certain cases, highly
optimized code may cause erratic behavior in this window. See the ASH WARE Web
page for a detailed explanation of the correct compiler settings for each target, and
limitations when using certain specific compiler settings.

Note that as the target executes, the contents of the Local Variables window will usually
change quite a bit. This is because each function generally has a unique set of local
variables that are displayed. As the target moves from function to function, only the local

15. Operational Status Windows

Multi Target Development Tool, page 187Reference Manual (C) 1994 ASH WARE, Inc.

variables of the currently executed function are displayed.

Global variables are not displayed within this window. See the description of the Watches
window for information on how to display global variables.

Local Variable Window Automation

In conjunction with the Call Stack window the Local Variables window can display the
local variables of functions that have been pushed unto the call stack. In a Call Stack
window, move the cursor to a line associated with a function that has been pushed onto the
call stack. This causes the local variables from that function’s context to be displayed in
the Local Variables window.

Occasionally it is desirable to lock the local variable to display the local variables of a
particular function. To do this, you must disable the automation. This is done within a
Local Variables window by opening the Local Variable Options Dialog Box and selecting
the "lock the local variables …" option. Locking and unlocking of the current function’s
context can also be done more quickly by selecting either the "lock" or the "unlock" options
from the popup menu that appears when you right-click the mouse within a Local Variable
window.

15.1.5 Call Stack Window

The Call Stack window displays the function, source code file name and line number,
address, and stack frame pointer associated with stacked functions as shown above.

Call Stack, Local Variables, and Source Window Automation

It is often not sufficient to simply view the functions on the call stack. The Call Stack
window works in conjunction with the source code and the local variable window to show
both the source code line and the stacked local variables associated with any stacked
function.

For instance, the second line of the above Call Stack has been selected. This line is

15. Operational Status Windows

page 188, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

associated with the PTA_DemoInit function. When you move the cursor to this line the
source code file shown below automatically pops into view and the source code line scrolls
into view and is highlighted with yellow.

Upon selection of the Call Stack window’s second line, the Local Variables window is also
affected as shown below. The highlighted function, PTA_DemoInit had several local
variables that were stored on the stack. The values of these local variables are
automatically displayed in the Local Variables window.

15.1.6 Thread Window

This window has a number of user-selectable views and options. The window shown
above has been configured to track all instances of the function, "ARINC_RX." Since
multiple channels can run this particular function, the data shown by this window is an
accumulation of all the channels that have been assigned this function.

15. Operational Status Windows

Multi Target Development Tool, page 189Reference Manual (C) 1994 ASH WARE, Inc.

TPU and eTPU code executes in response to events. This event-response code is known
as a thread. Individual threads are assigned to each event and event combination. A key
performance index of your code is the amount of time each thread takes to execute.
Therefore, this thread window is an important tool for determining the performance of your
code.

Two important columns are "WC Steps and "WC Time." These display the worst case
number of execution steps (including flushes) and execution time (also including flushes)
for that thread. Note that this thread will normally execute many, many times in the course
of a simulation run, and each time the thread executes it may take a different path, such
that the execution time may vary. The worst case number shows the very worst (longest)
amount of time that the thread takes to execute through the entire simulation run.

Finding a Thread’s Source Code

To find the line of source code for each thread, move the cursor within the thread window.
 The first source code line of that thread automatically pops into view and turns yellow, as
shown below.

15. Operational Status Windows

page 190, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Re-Executing the Worst Case Thread

If the thread has executed at least once, such that there is a worst case thread time
available, then the time at which the thread occurs appears as a yellow vertical line in the
logic analyzer window, and the time at which the thread occurred is shown as the "context
time" in the logic analyzer window, as shown below. To re-execute this thread, "grab" this
context time by moving the cursor over the context time (such that an open hand appears)
and depressing the left mouse button (such that a closed hand appears). With the left
mouse button depressed, move the closed-hand cursor to the right. Position the cursor
over the field labeled, "current time," and then release the left mouse button. The
simulation will reset, then run until it reaches the "context time," which was the time at
which the worst-case thread executed.

15. Operational Status Windows

Multi Target Development Tool, page 191Reference Manual (C) 1994 ASH WARE, Inc.

The window shown below is similar to the window set to the ARINC_FX function, except
that it is configured to show only the information from the channel named, "RcvA." Note
that this name has been assigned to this channel in the test vector file using the NODE
command, as defined in the test vector file section. Because it displays only the
information from a single channel, it may not reflect the true worst case.

One issue with this window is that the worst case threads during initialization are often
much worse that is seen during execution of the function. Since these initialization threads
are not normally an issue it is helpful to be able to clear out all thread data following
initialization. This is done using the script commands described in the Thread Script
Commandssection

Note that in the above window the Cov (coverage) column shows ¼ for most of the
threads. This is because each of these threads has been configured to respond to four
different event vector combinations, yet the simulation run to this point has covered only
one of these. Which of these event vector combinations has been covered? Select the
"ungroup" option to see.

15. Operational Status Windows

page 192, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The "group" and "ungroup" commands allow the same threads from different event vector
response combinations to be grouped together. The window shown has this option set to
ungroup. Note that there are 32-event vector combinations. To get good testing coverage
all of these event combinations should be tested. By setting the window to show all event
response combinations it becomes clear that the simulation run on this window is not fully
exercising the function, and as such the event vector coverage is poor.

15. Operational Status Windows

Multi Target Development Tool, page 193Reference Manual (C) 1994 ASH WARE, Inc.

15.1.7 Trace Window

The Trace window displays information relating to the instructions that were executed.
The Trace window displays all information that has been stored in the trace buffer. See
the Trace Options Dialog Box section for information on how to modify the information
that is stored in this buffer.

The contents of the trace window can be saved to a trace file. This is helpful for post-
processing of the trace data. See the Trace Buffer and Files section for information on
how this is done.

For most simulation models, the data flow between processor and memory can be
displayed. Timing information is included but it should be noted that the most ASH WARE
simulation models use an intuitive rather than a true timing model so these will vary slightly
relative to the real CPU, TPU, or other target model type.

Note that in hardware targets, like the 683xx Hardware Debugger, this window will not
function correctly because many hardware targets do not contain trace buffers.
Therefore, MtDt does not know which instructions executed last. The instructions that are
displayed are those from previous single-steps of the target. Gaps in the trace buffer are
noted, and the displayed execution times are an approximation based on the real time clock

15. Operational Status Windows

page 194, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

of the PC.

Saving Trace Data to a File

The trace data can be saved to a file either directly through the GUI or from within a script
commands file. This is explained in the TRACE BUFFER AND FILES section

TPU Simulation Considerations

The TPU simulation model provides several additional events that can be viewed in the
Trace window. These are in addition to the normal data flow between TPU and memory
and opcode execution, etc., that are available for most targets. These events include
execution steps, time state transitions, active channel transitions, and four CPU clock
NOPs. This window serves two purposes. It shows the thread of execution, and it can be
used to analyze channel service timing.

When the TPU services a particular channel, a 10-clock time slot transition occurs. The
states of the Service Request Latch (SRL) and Service Grant Latch (SGL), as well as a
timestamp and a channel number, are displayed for each time slot transition. The SRL is
the fourth field from the left, while the SGL field is displayed to the right of the SRL field.

When all pending service requests from a particular priority level have been serviced, the
TPU negates the service grant bits associated with those channels. This requires four
CPU clocks. For this event MtDt displays the timestamp and the states of the SRL and
the SGL.

Trace/Source Code Automation

The trace window and the Source Code window(s) can be used together. Select a line in
the Source Code Window associated with an instruction execution. The source code file
associated with this line automatically pops into view and the associated line scrolls into
view and is highlighted in yellow. In the TPU trace window shown above, the seventh line
has been selected. The line is automatically displayed and highlighted yellow as shown
below.

15. Operational Status Windows

Multi Target Development Tool, page 195Reference Manual (C) 1994 ASH WARE, Inc.

15.1.8 Complex Breakpoint Window

Complex breakpoints are added, removed, and modified from within the complex
breakpoint window. Complex breakpoints support the ability to halt the target on the
occurrence of one or more combinations of conditions. Each complex breakpoint operates
independently of all other complex breakpoints.

Each complex breakpoint can have one or more conditionals. When multiple conditionals
are added to the same breakpoint then all conditionals must simultaneously resolve to "true"
in order for the complex breakpoint to halt the target(s). Conditionals are added and
modified using the Complex Breakpoint Conditional dialog box.

Depending on the target, conditionals can include input/output and clock pins, thread
activity, host service requests, and program counter value, variable values or tests, etc.

15. Operational Status Windows

page 196, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.1.9 Memory Dump Window

The Memory Dump Window displays memory. A number of options are available. To
change a viewing option, activate a memory window and from the Options menu by select
the desired option from the Memory submenu.

- Memory is viewable in 8-, 16-, or 32-bit mode.

- The ASCII-equivalent text on the right side can be turned off or on.

- The address space can be specified.

- The base address of the window can be specified.

A common development tool deficiency is that the vertical scroll bar is unusable because it
causes too much memory to be traversed. MtDt addresses this problem by limiting the
scroll range of the vertical scroll bar. A memory dump window displays only a small
amount of the total address space. The portion of memory that the memory window
displays is specified by the base address parameter.

15. Operational Status Windows

Multi Target Development Tool, page 197Reference Manual (C) 1994 ASH WARE, Inc.

15.1.10 Timers Window

The Timers window displays the state of the 16 ASH WARE timers. See the Integrated
Timers chapter for a detailed explanation.

Each row of the window contains information regarding a single timer. The ID field on the
far left indicates which of the 16 timers the row represents. The State field is to the right
of the ID field. This field indicates the current state of the timer. The possible states are
generally disabled, armed, started, finished, and overrun. Double-clicking with the left
mouse button forces the timer into the next state. The timer can also be forced into a
specific state by typing the first letter of the desired state.

The Start Address and Stop Address fields are to the right of the State field. These fields
contain the addresses that, when accessed by the target, cause the state to change. For
instance, a timer in the armed state changes to the started state when the start address is
executed. Then, when the stopped state is executed, the timer progresses to the finished
state.

The This Ticks and the Last Ticks fields are to the right of the Stop Address field. These
fields indicate how many clock ticks of the target have occurred for any timer calculation.
Why are these split into two fields? This allows the last calculated timing to be retained
while a new timer calculation is underway. When a timer is re-armed, the This Ticks field
goes blank, while the Last Ticks field retains the previous value.

To the right of the Last Ticks field is the Last Time field. The Last Time field is identical
to the Last Ticks field except that the timer result is displayed in micro-seconds instead of

15. Operational Status Windows

page 198, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

clock ticks.

Note that the Last Ticks and This Ticks fields use the target's current clock period in the
calculation. Only the start time and stop time are retained by the timers. This means that
if the clock period changes during the course of a calculation, these clock tick calculations
will not be correct. Note also that the time calculation on simulated targets does not use
the clock period so this field will be correct even if the clock period is changed.

15.1.11 Background Debug Mode (BDM) Hardware Window

The first field indicates to which parallel port the BDM cable is attached. The BDM Port
errors field gives the total number of low-level communications errors encountered. This
field should never be greater than zero when the port communications are working
properly. The Lock Step field indicates if the hardware is free running or is in lock step.
Lock step is when the hardware is only single stepped. This greatly reduces the target
execution speed and generally should not be selected.

The Hardware Revision field gives the release number of the ASH WARE hardware.

Bypass mode is a special accelerated communications mode in which the normal BDM
path is bypassed to speed up code download and upload. The three fields indicate if the
mode is available, if bypass mode is enabled for reads, and if bypass mode is available for
writes. Enabling bypass mode significantly improves code uploads/downloads and window
display update rates.

The PLD Register bit field indicates if a bit within the ASH WARE development board's
PLD is set or cleared. See the Development Board documentation for a detailed
explanation of this bit.

15. Operational Status Windows

Multi Target Development Tool, page 199Reference Manual (C) 1994 ASH WARE, Inc.

15.2 eTPU-Specific Windows

The following windows are available in the eTPU Simulator and eTPU System Simulator.

15.2.1 eTPU Configuration Window

General The CPU frequency is displayed. The eTPU executes at half of this CPU
frequency in that a single eTPU instruction takes two CPU clocks to execute. The ‘CPU

15. Operational Status Windows

page 200, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

clocks’ field displays the number of CPU clock ticks that have occurred since the last
reset. The latest thread in both steps (opcode execution) and NOPs and CPU clocks is
displayed. The execution unit activity level since reset is shown. This is the total number
of CPU clocks divided by the number in which the eTPU was either in a Time Slot
Transition or in a thread. The current execution unit address and the address to which the
unit will begin executing should a return statement be encountered are displayed.

Interrupts The state of the Microcode Global Exception (MGE1/MGE2) and the Illegal
Instruction Flag (ILF1/ILF2) are displayed which are both part of the ETPUMCR register.

Verification The state of continuous verification (enabled or disabled) is displayed as well
as the number of pin transition behavior and script command failures are displayed.

Versions The eTPU simulator version displays the major and minor release letters along
with the build letter. The model displays the microcontroller version and engine (some
microcontrollers contain dual execution units designated ‘A’ and ‘B’) and the size of the
code and data memories. The ‘code’ line contains compiler-specific information such as
compiler name, file format (such as .COD or ELF/DWARF 2.0) as well as the intended
eTPU target (the original eTPU-1 has fewer capabilities than the eTPU-2). Certain
eTPU minor revisions added support for entry table pin direction control (ETPD) and the
opcode that is returned when an opcode is fetched from an invalid address
(SCMOFFDATAR.)

Files The simulator executable with full path, project file, and MtDt build file, eTPU
source code file are displayed. The name of the primary script file is and the
corresponding parse report file are displayed. The startup script file is a special file that
runs to completion immediately following reset. It is generally not used. The test vector
file and build batch file and any master behavior verification file names (gold file) are
displayed.

Semaphores The state (locked or free) of each of the four semaphores, along with an
indicator of which eTPU is locking the semaphore, is displayed.

15. Operational Status Windows

Multi Target Development Tool, page 201Reference Manual (C) 1994 ASH WARE, Inc.

15.2.2 eTPU Channel Frame Window

The Channel Frame window shows the channel function and static local variables
belonging to a particular channel. Right click the mouse in the window to change the
channel.

15.2.3 eTPU Global Timer and Angle Counters Window

The Module Configuration Registers (MCR) Global Time Base Enable (GTBE) field

15. Operational Status Windows

page 202, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

indicates if the time bases in the eTPU(s) are enabled.

The Time Base Configuration Register's (TBCR) TCR1CTL and TCR2CTL fields display
the configuration of the TCR1 and TCR2 counters. The TCR1P and TCR2P fields show
both the field value and the actual divisor of the prescaler. The TCRF displays the filtering
options though these are not simulated by the eTPU Simulation engine. The Angle Mode
(AM) bit indicates if angle mode is enabled.

The Tooth Program Register (TPR) is only used in angle mode. This register may be
written only by the eTPU code. The LAST bit indicates that angle mode should be reset
on the next tooth. The MISSCNT field indicates how many incoming teeth are expected to
be missing such that the angle mode PLL will continue to count synthesized teeth and not
wait for incoming physical tooth signals. The Insert Physical tooth (IPH) field allows the
eTPU code to tell the angle mode hardware to proceed as if an incoming physical tooth
had been detected. The HOLD field forces the angle mode logic to halt as if more
incoming physical teeth had been detected than were expected. The TICKS field specifies
the number of angle ticks (TCR2 increments) that are in each physical tooth. As such, this
is effectively the PLL multiplier for the difference between the frequency of the incoming
teeth, and the frequency of the synthesized angle ticks.

The Tick Rate Register (TRR) should be updated by the eTPU code on each incoming
physical tooth. It is calculated based on the time difference between the last two incoming
physical teeth and specifies the time of each angle tick in TCR1 ticks. In order to reduce
error, both an integer (INT) and fractional (FRAC) portion of the ratio of TCR1 counter
ticks to TCR2 ticks is supported.

In angle mode the TCR2's tick rate is proportional to angle instead of time. As such the
TCR2 counter may be reset when it completes a cycle, which is every 720 degrees in a
typical car. The number of such cycles since the last reset is shown, as are the number of
PLL-synthesized teeth and the number of synthesized angle ticks. Additionally, the current
angle is shown which is based on a default of 720 degrees per cycle. The default teeth per
cycle and degrees per cycle can be overridden using the set_angle_indices(); script
command as explained in the eTPU Time Base Configuration Script Commands section.

The STAC bus is used share the TCR1 and TCR2 global counters between eTPU engines
such that (say) the angle (TCR2) used in both eTPU_A and eTPU_B is identical. Script
commands to do this are in the STAC Bus Script Commands section.

Some analysis is provided of the operational state of angle mode. Angle mode is in normal,
wait, or high speed depending on whether the PLL is on track, ahead, or behind. Channel
0 can be programmed to form a sampling window and the open or closed state of this
window is displayed. The edge which the angle mode hardware is displayed, and it should

15. Operational Status Windows

Multi Target Development Tool, page 203Reference Manual (C) 1994 ASH WARE, Inc.

be noted that this edge must be programmed to correspond the edge that is also shown
which is the edge being detected by channel 0 and which forms a detection window.
Spurious operation could result if these do not correspond. Also, channel 0 can be
programmed to form a detection window and the state of this detection window (closed,
opened) is displayed.

15.2.4 eTPU Host Interface Window

For each channel the following information is shown. The Channel Function Select
Register (CFSR) shows the eTPU Function, the Channel Priority Register (CPR) shows
the priority for that channel, the Host Service Request Register (HSRR) shows the state of
the service request. The Function Mode (FM) shows the state of these two bits, the Entry
shows if the event vector (entry) table for that channel is being treated as the standard or
alternate event vector table.

The Channel Interrupt Status Register (CISR) shows if this interrupt has been issued by
the eTPU, the CIER indicates if the interrupt is enabled and the CIOR indicates if an
attempt to set the interrupt when it was already set occurred and therefore there was an
overflow.

The Channel Data Transfer Request Status Register (CDTRSR) shows if this interrupt has
been issued by the eTPU, the CDTRER indicates if the interrupt is enabled and the
CDTROSR indicates if an attempt to set the interrupt when it was already set occurred
and therefore there was an overflow.

Note that in response to these enabled and asserted interrupts, special ISR script
command files can execute as described in the Script ISR section.

15. Operational Status Windows

page 204, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.2.5 eTPU Channel Hardware Window

There are two versions of the eTPU Channel window. The active channel version displays
information on the active channel (or previously active channel, if none is currently active)
while the fixed channel version displays information on a particular channel. Right click the
mouse when inside this window to specify or change the window flavor.

When in fixed channel display mode, the window title contains the logical name for that
channel. See the Test Vector "Node" Command section for assigning logical names.

M2 M3

M6

C6

M1

MEF

M8
C1, C2,

C5

M5, M7

M4

C3
C4

MTD

PDCM

CPBA

M1 and M3 are the Match register values for action unit A and B, respectively.

M2 and M4 are the difference between the Match register and the active counter (TCR1
or TCR2) for which matches on that action unit are configured. When in angle mode M2
and M4 may display the angle at which the match is scheduled to occur. In order for

15. Operational Status Windows

Multi Target Development Tool, page 205Reference Manual (C) 1994 ASH WARE, Inc.

Angle to be displayed, certain configuration must have occurred as covered in eTPU Time
Base Configuration Script Commands section. Note that in the above diagram, M4
displays an angle of 113.10 degrees as a TCR2 value of 0x46B (see M3, above)
corresponds to this angle.

M5 and M6 show the active counters (TCR1 or TCR2) which are used for the match
comparison.

M7 and M9 show whether a match comparison has been configured for equals only (= =)
or for greater than or equals (> = .)

C1 and C2 are the Capture register values for action units A and B, respectively.

C2 and C4 are the difference between the Capture register and the active counter (TCR1
or TCR2) for which the last capture into that register occurred. When in angle mode C2
and C4 may display the angle at which the capture occurred. In order for Angle to be
displayed, certain configuration must have occurred as covered in eTPU Time Base
Configuration Script Commands section. Note that in the above diagram, M4 displays an
angle of 113.10 degrees as a TCR2 value of 0x46B (see M3, above) corresponds to this
angle.

C5 and C6 show which global counter will be captured on the next MRL or TDL event.

The states of Match Recognition Latch Enable (MRLE,) Match Recognition Latch (MRL),
and Transition Detection Latch (TDL) are displayed. These are the latches in the channel
hardware and may not necessarily match the value in the execution unit window since
those in the execution unit window are sampled at the beginning of each thread.

MTD (Match Transition Disable) indicates whether or not matches and transitions result in
a service request.

The LSR field shows if there is a pending link into this channel.

MEF (Match Enable Flag) indicates if during a thread matches for the channel being
serviced can be enabled or disabled. This will only be disabled if the active channel is
active, and matches are disabled during the thread.

The input and output pin states are displayed as is the state of the output buffer. Although
the simulator tracks the state of this buffer, there is no other affect in the simulation engine.

The input detection and output action fields show how the IPACs and OPACs have been
configured.

15. Operational Status Windows

page 206, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The PDCM displays the Predefined Channel Mode for that channel.

Each channel has two flags and these are shown.

The CPBA (Channel Parameter Base Address) is shown in the Frame Address field.
Note that the full address is shown rather than the CPBA value. This frame is where each
channel stores its own private channel variable copies.

The channel's bandwidth is shown. Bandwidth is defined as the number of clocks in which
either a thread or a Time Slot Transition (TST) for this channel was active divided by the
total number of clocks since the last reset. Additionally, the number of threads and the
number of steps (instruction or NOPs) is displayed. The longest thread in both steps
(instructions plus NOPs) plus the longest thread time is displayed.

Click on the longest thread address to display this location in the source code window and
to show this time in the Logic Analyzer window.

15.2.6 eTPU Scheduler Window

The eTPU’s microengine responds to the various channels based on a round robin
scheduler. The scheduler bases its servicing decisions on the Channel Priority Register
(CPR), the Service Request Latch (SRL), and the Service Grant Latch (SGL). These
latches are affected by the Host Service Request Register (HSRR), the Link Service
Requests (LSRs), and the Match or Transition Service Requests (M/TSRs), which are also
displayed.

The M/TSR is generated from the Match Recognition Latch (MRL), Transition Detection
Latch (TDL), and the Match/Transition Service Request Inhibit (SRI) latch. The M/TSR
is formed from the following logical expression: [MRL and TDL] or SRI.

Each register is broken down by eTPU channel so that the value for each channel is easily
found. Most of these registers can be modified only by the eTPU

15. Operational Status Windows

Multi Target Development Tool, page 207Reference Manual (C) 1994 ASH WARE, Inc.

15.2.7 eTPU Execution Unit Registers Window

The Timer Counter Global Registers (TCR1/TCR2) are displayed. The Event Register
Timers for action units A and B are displayed (ERTA/ERTB.) The standard register, P,
DIOB, SR, A, B, C, D are displayed. The Return Address Register (RAR), link, chan are
displayed.

The execution unit’s A Bus source, B Bus source, and result bus are shown. These are
the buses internal to the execution unit.

The Multiply Accumulate register (MACH/MACL) are shown. The Zero, Carry,
Negative, and overflow flags for both the execution unit and the MAC unit are shown (Z,
C, N, V, MZ, MC, MN, M,) as is the Mac Busy flag (MBSY.)

Conditionals are displayed, as seen by the execution unit in that these are the versions of
these flags that are sampled at the beginning of the thread. These include the Link Service
Request (LSR), Match Recognition Latch, and Transition Detection Latch for both action
units (MRLA/MRLB, TDLA/TDLB), the Function Mode Bits (FM1/FM0), the sampled
and current input pin states (PSS, PST). The upper 8 bits of the P register which are
treated as conditionals by the execution unit are also displayed.

15. Operational Status Windows

page 208, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.3 TPU-Specific Windows

The following windows are available in the TPU Simulator and TPU System Simulator.

15.3.1 TPU Configuration Window

Clocks, Counters

The (simulated) CPU clock frequency is displayed. The TCR1 prescaler, TCR2 prescaler,

15. Operational Status Windows

Multi Target Development Tool, page 209Reference Manual (C) 1994 ASH WARE, Inc.

PSCK control bit, and T2CG control bit are displayed.

When MtDt is in TPU2 mode the DIV2 and T2CSL control bits are displayed. These
control bits, which are new to the TPU2, add capabilities to the TCR1 and TCR2 counters.
 These control bits are automatically hidden when in TPU1 mode since they apply only to
the TPU2. These bits are controlled using script commands described in the TPU Clock
Control Script Commands section.

When MtDt is in TPU3 mode the enhanced prescaler enable bit (ESPCKE) the enhanced
prescaler bit (ESPCK), and the TCR2 pre-divider prescaler enable bit (TCR2PSCK2) are
displayed. These control bits, which are new to the TPU3, add capabilities to the TCR1
and TCR2 counters. These control bits are automatically hidden when in TPU1 or TPU2
mode since they apply only to the TPU3. These bits are controlled using script commands
described in the TPU Clock Control Script Commands section.

Verification

An indication of whether behavior verification is enabled or disabled is displayed. The
count of the number of behavior verification errors that have occurred is displayed. See
the Pin Transition Behavior Verification section.

The count of the number of user-defined verification tests that have failed since the last
reset is displayed. User-defined tests are part of script commands files. See the Script
Commands Groupings section for a description of the various script commands that support
user-defined tests

Versions

Version information on the device being simulated (TPU1, TPU2, TPU3), the Simulator,
and the microcode assembler, is listed.

Files

The name of the project file is displayed. See the Project Sessions chapter for a detailed
explanation of this capability.

The name of the MtDt build script file is displayed. See the Building the Target
Environment chapter and the MtDt Build Script Commands File chapter for detailed
explanations of the available capabilities and format of this file.

The names of the open source microcode, primary script, primary script report, startup
script, and test vector files are displayed. These files are listed relative to the path of the
open project file.

15. Operational Status Windows

page 210, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The auto-build file name is displayed. The auto-build file allows direct building of the
executable image from within MtDt and is covered in the Auto-Build Batch File Options
Dialog Box section.

The pin transition behavior verification file name is displayed. This new feature supports
the verification of TPU behavior against previously-saved pin transition behavior files. This
allows the user to make changes to a test suite and automatically determine which pin
transition behaviors have changed and which behaviors have stayed the same. See the Pin
Transition Behavior Verification section.

ISR Files

The currently loaded script commands ISR files associated with each TPU interrupt are
listed. Script commands files can be associated with TPU interrupts. When the interrupt
associated with a particular TPU channel becomes asserted the ISR script commands file
associated with that channel gets executed. Script commands ISR files are loaded using
script commands. See the ISR Script Commands Files section for a description.

15.3.2 TPU Host Interface Registers Window

This window displays common TPU/CPU registers whose function is primarily to control.
These registers include the Channel Function Select Registers (CFSRs), Channel Priority
Registers (CPRs), the Host Service Request Register (HSRR), the Host Sequence
Registers (HSQRs), and the Channel Interrupt Service Request Register (CISR).

Each register is broken down by TPU channel so that the value for each channel is easily
found. All register values are displayed in both binary and hexadecimal formats.

The user can modify the value of each of these registers in a repeatable fashion via the
script commands file. Alternatively, these registers can be modified directly using the
keyboard and mouse. See the Script Commands File Window section for an explanation of
this capability.

The TPU affects the states of the registers in the normal execution of its microcode. For

15. Operational Status Windows

Multi Target Development Tool, page 211Reference Manual (C) 1994 ASH WARE, Inc.

example, the HSRR bits for a TPU channel are cleared when the microengine services
that channel.

15.3.3 TPU Scheduler Window

The TPU’s microengine responds to the various channels based on a round robin
scheduler. The scheduler bases its servicing decisions on the Channel Priority Register
(CPR), the Service Request Latch (SRL), and the Service Grant Latch (SGL). These
latches are affected by the Host Service Request Register (HSRR), the Link Service
Requests (LSRs), and the Match or Transition Service Requests (M/TSRs), which are also
displayed.

The M/TSR is generated from the Match Recognition Latch (MRL), Transition Detection
Latch (TDL), and the Match/Transition Service Request Inhibit (SRI) latch. The M/TSR
is formed from the following logical expression: [MRL and TDL] or SRI.

Each register is broken down by TPU channel such that the value for each channel is
easily found. Most of these registers can be modified only by the TPU.

15.3.4 TPU Micro Sequencer Registers Window

15. Operational Status Windows

page 212, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The TPU Microsequencer Registers window displays miscellaneous information generally
applying to the microsequencer. This window is something of a catch all.

The current Simulator time is displayed. The time is expressed in microseconds. The
count of CPU clocks since the last Simulator reset is also displayed.

The TCR1 and TCR2 counter values are displayed. These 16-bit counters are displayed in
hexadecimal. The TCR2 input pin's value is also displayed.

The active channel number is displayed. Since the active channel can be changed via the
microcode when the CHAN register is modified, the active channel numbers corresponding
to the current, previous, and second-most-previous microcycles are displayed. The last
channel number is that of the channel that was initially being serviced after the time slot
transition. This allows the user to calculate which channel a particular parameter is
associated with for those parameters that take multiple microcycles to adjust after the
CHAN register is changed.

The current opcode and prefetch opcode are displayed in this window. Sequencing
microinstructions that affect program flow may flush the prefetch opcode causing a NOP
to be executed. Loading a 0xFFFFFFFF as the current opcode simulates this situation.

The DEC register is used for various purposes such as loop indexing and subroutine
termination. The current DEC usage is displayed.

When MtDt is in TPU2 or TPU3 mode the two bank fields are displayed. The code bank
is the bank in which code is being executed. The entry bank is the bank from which the
active entry table is stored. In the real TPU the entry bank is specified via the TPUMCR2
register at bit positions 5 and 6. In MtDt this entry bank register is modified by the
write_entry_bank() script command.

15. Operational Status Windows

Multi Target Development Tool, page 213Reference Manual (C) 1994 ASH WARE, Inc.

15.3.5 TPU Execution Unit Window

This window displays the information associated with the microengine registers and the
branch PLA flags.

The A bus source, B bus source, and result (before any shifting) are also displayed.

The ERT register is that of the active channel.

An important consideration is that the branch PLA flags are, for the most part, latched on a
time slot transition. Therefore, they do not necessarily match the values displayed in the
channel windows. The following list shows those branch PLA flags that may change
during a channel service routine.

- The four execution unit flags, Z, C, N, and V, are latched whenever the CCL
is specified on an AU subcommand.

- The Pin State Latch (PSL) gets latched two microinstructions after the
CHAN_REG is written.

- FLAG2, FLAG1, and FLAG0 are always input directly to the branch PLA.
(They are not latched at all.) Two microinstructions after the CHAN_REG is
changed these flags reflect the new channel.

When MtDt is in TPU2 or TPU3 mode the FLAG2 flag and PIN branch conditional are
displayed. FLAG2 is an additional TPU2 flag similar to the existing FLAG1 and FLAG0

15. Operational Status Windows

page 214, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

flags. PIN branch conditional is a new branch condition available in the TPU2 that is
similar to the PSL latch. But whereas the PSL reflects the pin state on the last time slot
transition or channel register change, the PIN reflects the current pin state. Both the
FLAG2 flag and the PIN branch conditional are features of the TPU2 that do not exist in
the TPU1 and therefore are not displayed when in TPU1 mode.

15.3.6 TPU Channel Window

There are two versions of the TPU Channel window. The active channel version displays
information on the active channel (or previously active channel, if none is currently active)
while the fixed channel version displays information on a particular channel. The following
information is displayed.

- The match and capture registers;

- The channel’s bits from the Host Sequence Request (HSQR) register;

- Flag2 (TPU2 and TPU3 mode only), Flag1, and Flag0;

- The states of the Match Request Latch Enable (MRLE), Match Recognition
Latch (MRL), Transition Detection Latch (TDL), Match/Transition Service
Request Inhibit (SRI), and Link Service Latch (LSL);

- The disable match bit from the entry point. This bit controls whether a match

15. Operational Status Windows

Multi Target Development Tool, page 215Reference Manual (C) 1994 ASH WARE, Inc.

is inhibited during channel servicing;

- The active counter for capture and match (TCR1 or TCR2);

- The pin direction (input or output);

- The current pin state (high or low);

- The PAC setting (determines the pin action on a match if the pin is an output
or the transition to be detected if the pin, is an input)

- The effective match condition, greater-than-or-equal-to, or greater-than.
Since this field applies to TPU2 and TPU3 only, when in TPU1 mode this
field is not displayed;

Unlike previous versions of this software, the active channel is not specified directly from
the menu when the window is opened. Instead, the active channel is specified from within
the window by accessing the popup menu. To do this, right-click the mouse and select the
desired channel number from the menu. This makes it easier to view the various channel
settings without having to have lots of channel windows open.

During channel servicing the active channel can be changed by the microcode. The
microcode changes the active channel by writing to the CHAN register (found in the TPU
Execution Unit window). When the active channel is changed by the microcode the
effective active channel is somewhat murky. Some channel parameters migrate, after a
number of instructions, to the new channel, while other parameters remain attached to the
channel that originally caused the channel servicing. How does MtDt handle this situation
since the active channel version of the channel window is intended to show channel
information of the active channel? This is answered in the following paragraph.

The active channel version of the channel window shows the channel information
corresponding to the active parameters. For instance, the effective flag changes from the
old channel to the new channel two microcycles after the CHAN register is changed.
MtDt also switches the displayed flag two microcycles later. In this way, the user always
views the affective channel.

15. Operational Status Windows

page 216, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.3.7 TPU Parameter RAM Window

The parameter RAM is accessible by both the CPU and the TPU. It typically is used to
pass information between the CPU and TPU and is used by the TPU for scratch and
storage. For instance, the CPU might store the number of signal edges the TPU should
measure in one parameter RAM location. The TPU would then keep a running count of
the current number of edges measured in another parameter RAM location.

MtDt displays all existing RAM parameters in this window. The window is arranged in
rows and columns. Each row displays the six or eight parameter words (each word is 16-
bits wide) corresponding to a particular channel. Across each row are the six or eight
parameters belonging to that channel.

In the TPU1 design, NXP apparently ran out of room to provide the full eight parameters
for all 16 channels. In fact, of the 16 channels, the lower 14 contain six parameters while
only the final two channels contain the full complement of eight parameters. While MtDt is
in TPU1 mode the un-implemented parameter RAM locations are not displayed.

In TPU2 and TPU3 (and in MtDt while in TPU2 and TPU3 mode) all parameter locations
are implemented. While in TPU2 and TPU3 mode MtDt displays all parameter locations.

How do the TPU and MtDt deal with accesses to the missing locations in TPU1 mode? It
behooves the TPU microcoder to assume that new TPU versions will most likely have a
full complement of parameter RAM. For both the TPU and MtDt, writes to these
locations are ignored while the data returned from reads is always zero.

During reset it has been observed that the parameter RAM of the actual TPU remains
unchanged as long as power is not lost, though this behavior is apparently not documented.
MtDt allows the user to specify whether the parameter RAM is cleared to all zeros, or
remains unchanged after a reset. This is specified in the Reset Options dialog box.

15. Operational Status Windows

Multi Target Development Tool, page 217Reference Manual (C) 1994 ASH WARE, Inc.

15.4 CPU32-Specific Windows

The following windows are available in the simulator/debugger.

15.4.1 CPU32 Simulator Configuration Window

Files

The name of the project file is displayed. See the Project Sessions chapter for a detailed
explanation of this capability.

The name of the MtDt build script file is displayed. See the Building the Target
Environment chapter and the MtDt Build Commands File section for detailed explanations
of the available capabilities and format of this file.

The names of the open source code (executable image), primary script, primary script
report, and startup script files are displayed. These files are listed relative to the path of
the open project file.

The auto-build file name is displayed. The auto-build file allows direct building of the
executable image from within MtDt and is covered in the Auto-Build Batch File Options
Dialog Box section.

Verification

The count of the number of user-defined verification tests that have failed since the last
reset is displayed. User-defined tests are part of script commands files. See the Script
Commands Groupings section for a description of the various script commands that support
user-defined tests.

15. Operational Status Windows

page 218, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.4.2 CPU32 Simulator Busses Window

The CPU32 Simulator Busses window displays detailed information regarding the just
executed instruction. This includes the data flow within the simulated CPU32, the data
flow between the simulated CPU32 and external memory, and timing information.

15.4.3 CPU32 Simulator Interrupt Window

The CPU32 Simulator Interrupt window displays detailed information regarding the
currently pending CPU32 interrupts. Towards the top are the highest priority (first to be
serviced) interrupts and towards the bottom are the lowest priority (last to be serviced)
interrupts. Once interrupts are serviced they are removed from this window.

15. Operational Status Windows

Multi Target Development Tool, page 219Reference Manual (C) 1994 ASH WARE, Inc.

15.4.4 BDM32 Configuration Window

Files

The name of the project file is displayed. See the Project Sessions chapter for a detailed
explanation of this capability.

The name of the MtDt build script file is displayed. See the Building the Target
Environment chapter and the MtDt Build Script Commands File section for detailed
explanations of the available capabilities and format of this file.

The names of the open source code (executable image), primary script, primary script
report, and startup script files are displayed. These files are listed relative to the path of
the open project file.

The auto-build file name is displayed. The auto-build file allows direct building of the
executable image from within MtDt and is covered in the Auto-Build Batch File Options
Dialog Box section.

Verification

The count of the number of user-defined verification tests that have failed since the last
reset is displayed. User-defined tests are part of script commands files. See the Script
Commands Groupings section for a description of the various script commands that support
user-defined tests

15. Operational Status Windows

page 220, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.4.5 CPU32 Register Window

The CPU32 Registers window displays the CPU32's registers. These are the Program
Counter (PC), the Vector Base Register (VBR), the Supervisor and User Stack Pointers
(SSP and USP), the Alternate Function Code registers (SFC and DFC), the Address
registers (A0 through A7), the Data registers (D0 through D7), and the Status Register
(SR).

15.4.6 CPU32 Disassembly Dump Window

The CPU32 Disassembly Dump window displays disassembled code starting at the target's
program counter.

15.5 SIM Module Windows

The following windows display the System Integration Module (SIM) settings.

15. Operational Status Windows

Multi Target Development Tool, page 221Reference Manual (C) 1994 ASH WARE, Inc.

15.5.1 SIM Main Window

The SIM Main window displays the Module Configuration Register (SIMCR), the Clock
Synthesizer Control Register (SYNCR), the Reset Status Register (RSR), the System
Protection Control Register (SYPCR), the Periodic Interrupt Control Register (PICR), and
the Periodic Interrupt Timer Register (PITR).

15. Operational Status Windows

page 222, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.5.2 SIM Ports Window

The SIM Ports window contains the registers that determine the port pin usage, pin
direction (input or output) and value. These registers are the Port C, Port E, and Port F
Data Registers (PORTC, PORTE, PORTF), the Chip Select Pin Assignment Registers
one and zero (CSPAR1, CSPAR0), Port E and Port F Pin Assignment Registers (PEPAR,
PFPAR) and the Port E and Port F Data Direction Registers (DDRE, DDRF).

To the right of the bit position field are a variable number of fields. Depending on the
specific capability of each port the usage, direction and value can be selected.

15. Operational Status Windows

Multi Target Development Tool, page 223Reference Manual (C) 1994 ASH WARE, Inc.

15.5.3 SIM Chip Selects Window

The SIM Chip Selects window displays information for each of the SIMS chip select. The
second and third fields from the left are the Chip Select Base Address (CSBARX) and the
Chip Select Options register (CSORX), where X denotes the selects one of the 11 chip
selects.

Starting from the left and going to the right are the Base Address, Block Size,
Asynchronous/Synchronous E-Clock Mode, Upper/Lower Byte Option, Read/Write,
Address/Data Strobe, Wait States, Address Space Select, Interrupt Priority Level,
Autovector Enable, and Pin Widths fields. All except the Pin/Width field are bit groupings
derived from the CSBARX and the CSORX registers. The Pin/Width field is derived from
the Chip Select Pin Assignment registers one and zero (CSPAR1, CSPAR0) (not shown in
this window).

15.6 QSM Module Windows

The following windows display the Queued Serial Module (QSM) module settings.

15.6.1 QSM Main Window

15. Operational Status Windows

page 224, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The QSM Main window displays the QSM Configuration Register (QSMMCR) and the
QSM Interrupt Level and Vector Register (QILR/QIVR).

15.6.2 QSM Port Window

The QSM Port window displays the Port QS Pin Assignment Register (PQSPAR), the
Port QS Data Direction Register (DDRQS), and the Port QS Data Register (PORTQS).
Using the bit port bit fields, located to the right of the bit position fields, the use of each port
pin can be specified. Each pin can be specified as a generic I/O or assigned to the QSM.
In addition, both the data direction and register value can be specified.

15. Operational Status Windows

Multi Target Development Tool, page 225Reference Manual (C) 1994 ASH WARE, Inc.

15.6.3 QSM and QSPI Window

The QSM QSPI window displays the QSPI Control registers 0, 1, 2 and 3 (SPCR0,
SPCR1, SPCR2, and SPCR3). In addition the QSPI's Receive, Transmit and Command
RAM (RR[0:F], TR[0:F], and CR[0:F]) are displayed for each of the 16 locations. Below
the Command RAM field, each of the 16 command RAM locations is broken down by bit
groupings. These fields are the Continue (CONT), the Bits per Transfer Enable (BITSE),
the Delay After Transfer (DT) and the PCS to SCK Delay (DSCK).

15. Operational Status Windows

page 226, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.6.4 QSM and SCI (UART) Window

The QSM SCI window displays the SCI Control registers 0 and 1 (SCCR0 and SCCR1),
the SCI Status Register (SCSR), and the SCI Data Register (SCDR).

15.7 TPU Module Windows

The following windows display the Time Processing Unit (TPU) module settings.

15.7.1 TPU Emulation RAM Window

The TPU Emulation RAM window displays the TPURAM Module Configuration Register
(TRAMMCR) and the TPURAM Base Address Register (TRAMBAR).

15. Operational Status Windows

Multi Target Development Tool, page 227Reference Manual (C) 1994 ASH WARE, Inc.

15.7.2 TPU Main Window

The TPU Main window displays the TPU Module Configuration Register (TPUMCR) and
the TPU Interrupt Configuration Register (TICR).

15.7.3 TPU Host Interface Window

The TPU Host Interface window displays the Channel Function Select Register (CFSR),
the Channel Priority Register (CPR), the Host Service Request Register (HSRR), the Host
Sequence Register (HSQR), the Channel Interrupt Status Register (CISR), and the
Channel Interrupt Enable Register (CIER).

15. Operational Status Windows

page 228, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.7.4 TPU Parameter RAM Window

The TPU Parameter RAM window displays the TPU Parameter RAM. Each row in the
window displays the parameter RAM belonging to the row number's TPU channel.

15.8 GPT Module Windows

The following windows display the General Purpose Timer (GPT) module settings.

15. Operational Status Windows

Multi Target Development Tool, page 229Reference Manual (C) 1994 ASH WARE, Inc.

15.8.1 GPT Main Window

The GPT Main window displays the GPT Module Configuration Register (GPTMCR), the
GPT Interrupt Configuration Register (GPTICR), the Port G Data Direction Register
(DDGRP), the Port G Data Register (PORTGP), the OC1 Action Mask Register
(OC1M), the OC1 Action Data Register (OC1D), the Timer Counter Register (TCNT),
the Pulse Accumulator Control Register (PACTL), the Pulse Accumulate Counter
(PACNT), the Timer Interrupt Mask Registers 1 and 2 (TMSK1/TMSK2), the Timer
Interrupt Flag Registers 1 and 2 (TFLG1/TFLG2), the Compare Force Register(CFORC),
the PWM Control Register C (PWMC), and the GPT Prescaler (PRESCL.)

15.8.2 GPT Input Captures Window

The GPT Input Captures window displays the Timer Control Registers 1 and 2 (TCTL1/

15. Operational Status Windows

page 230, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

TCTL2), the Timer Interrupt Mask Registers 1 and 2 (TMSK1/TMSK2), the Port G Data
Direction Register (DDGRP), and the Port G Data Register (PORTGP).

15.8.3 GPT Output Compares Window

The GPT Output Captures window displays the Timer Control Registers 1 and 2 (TCTL1/
TCTL2), the OC1 Action Mask Register (OC1M), the OC1 Action Data Register
(OC1D), the Timer Interrupt Mask Registers 1 and 2 (TMSK1/TMSK2), the Timer
Interrupt Flag Registers 1 and 2 (TFLG1/TFLG2), the Compare Force Register (CFORC),
the PWM Force Register (PWMC), the Port G Data Direction Register (DDGRP), and
the Port G Data Register (PORTGP).

15.8.4 GPT Pulse Accumulation Window

The GPT Pulse Accumulate window displays the Pulse Accumulate Control Register
(PACTL), the Pulse Accumulate Counter Register (PACNT), the Timer Interrupt Mask
Registers 1 and 2 (TMSK1/TMSK2), and the Timer Interrupt Flag Registers 1 and 2

15. Operational Status Windows

Multi Target Development Tool, page 231Reference Manual (C) 1994 ASH WARE, Inc.

(TFLG1/TFLG2).

15.8.5 GPT Pulse Width Modulation Window

The GPT Pulse Accumulate Width Modulation window displays the Compare Force
Register (CFORC), and the PWM Control Register C Register (PWMC).

15.9 CTM4/CTM6 Module Windows

The following windows display the Counter Timer Module (CTM4/CTM6) settings.

15.9.1 CTM4/CTM6 Bus Interface and Clocks Window

The CTM4/CTM6 Bus Interface and Clocks window displays the BIU Module
Configuration Register (BIUMCR), the BIU Time Base Register (BIUTBR), and the
CPSM Control Register (CPCR). In addition, the prescaler clock period is calculated and
listed in both nano-seconds and division ratio.

15. Operational Status Windows

page 232, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.9.2 CTM4/CTM6 Free-Running Counter Submodule Window

The CTM4/CTM6 Free-Running Counter Submodule window displays the FCSM Status/
Interrupt/Control Register (FCSMSIC) and the FCSM Counter Register (FCSMCNT).

15.9.3 CTM4/CTM6 Modulus Counter Submodule Window

The CTM4/CTM6 Modulus Counters Submodule window displays the MCSM 2 and 11
Status/Interrupt/Control Registers (MCSM2SIC, MCSM11SIC), the MCSM 2 and 11
Counter Registers (MCSM2CNT, MCSM11CNT), and the MCSM 2 and 11 Modulus
Latch Registers (MCSM2ML, MCSM11ML).

15. Operational Status Windows

Multi Target Development Tool, page 233Reference Manual (C) 1994 ASH WARE, Inc.

15.9.4 CTM4 Double-Action Submodule Window

The CTM4 Double-Action Submodule window displays the DASM 3, 4, 9, and 10 Status/
Interrupt/Control Registers (DASM3SIC, DASM4SIC, DASM9SIC, DASM10SIC), and
the DASM 3, 4, 9, and 10 Data Register A and B registers (DASM3A, DASM4A,
DASM9A, DASM10A, DASM3B, DASM4B, DASM9B, and DASM10B).

15.9.5 CTM4 Pulse Width Modulation Window

The CTM4 Pulse Width Modulation Submodule window displays the DASM 5, 6, 7, and 8
Status/Interrupt/Control Registers (PWM5SIC, PWM6SIC, PWM7SIC, PWM8SIC), the
DASM 5, 6, 7, and 8 Period Registers (PWM5PER, PWM6PER, PWM7PER,
PWM8PER), the DASM 5, 6, 7, and 8 Pulse Width Registers (PWM5PW, PWM6PW,
PWM7PW, PWM8PW), and the DASM 5, 6, 7, and 8 Count Registers (PWM5CNT,
PWM6CNT, PWM7CNT, PWM8CNT).

15. Operational Status Windows

page 234, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.9.6 CTM6 Single-Action Submodule Window

The CTM6 Single-Action Submodule window displays the SASM 12A, 12B, 14A, 14B,
18A, 18B, 24A, 24B Status/Interrupt/Control Registers (SIC12A, SIC12B, SIC14A, etc.),
and the SASM 12A, 12B, 14A, 14B, 18A, 18B, 24A, 24B Registers (S12DATA,
S12DATB, S14DATA, etc.)

15.9.7 CTM6 Double-Action Submodule - Modes Window

The CTM6 Double-Action - Modes Submodule window displays the DASM 4, 5, 6, 7, 8, 9,
10, 26, 27, 28, and 29 Status/Interrupt/Control Registers (DASM4SIC, DASM5SIC,
DASM6SIC, DASM7SIC, DASM8SIC, DASM9SIC, DASM10SIC, DASM26SIC,
DASM27SIC, DASM28SIC, DASM29SIC).

See the Bits form of the CTM6 Double-Action Submodule window for display of additional
information.

15. Operational Status Windows

Multi Target Development Tool, page 235Reference Manual (C) 1994 ASH WARE, Inc.

15.9.8 CTM6 Double-Action Submodule Bits Window

The CTM6 Double-Action Bits Submodule window displays the DASM 4, 5, 6, 7, 8, 9, 10,
26, 27, 28, and 29 Status/Interrupt/Control Registers (DASM4SIC, DASM5SIC, etc.), and
the DASM Data A and B registers (DASM4A, DASM4B, DASM5A, etc.)

See the Modes form of the CTM6 Double-Action Submodule window for display of
additional information.

15.10 QADC Module Window

The following windows display the Queued Analog to Digital Converter (QADC) module
settings.

15. Operational Status Windows

page 236, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.10.1 QADC Main Window

The QADC Main window displays the QADC Module Configuration Register
(QADCMCR), the QADC Interrupt Register (QADCINT), the QADC Control Registers
0, 1, and 2 (QACR0, QACR1, QACR2), and the QADC Status Register (QASR).

15. Operational Status Windows

Multi Target Development Tool, page 237Reference Manual (C) 1994 ASH WARE, Inc.

15.10.2 QADC Ports Window

The QADC Ports window displays the QADC Port Data Direction Register (DDRQA)
and the QADC Port A and B registers (PORTQA, PORTQB).

15. Operational Status Windows

page 238, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.10.3 QADC Channel Window

The QADC Channels window displays the Conversion Command Word Table Registers
(CCW0 to CCW2F), the Right Justified Unsigned Result Registers (RJURR0 to
RJURR2F), the Left Justified Signed Result Registers (LJSRR0 to LJSRR63), and the
Left Justified Unsigned Result Registers (LJURR0 to LJURR27).

Note that the QADC normally has up to 16 analog input channels but can directly support
up to 40 analog channels with QADC-controlled external multiplexing.

15. Operational Status Windows

Multi Target Development Tool, page 239Reference Manual (C) 1994 ASH WARE, Inc.

15.11 Miscellaneous Module Windows

The following windows display miscellaneous module settings.

15.11.1 TouCAN Main Window

The TouCAN Main window displays the TouCAN Module Configuration Register
(CANMCR), the TouCAN Interrupt Configuration Register (CANICR), the TouCAN
Control Registers 0, 1 and 2 (CANCTRL0, CANCTRL1 and CANCTRL2), the touCAN
Prescaler Divide Register (PRESDIV), the Receive Global Mask High and Low Registers
(RXGMSKHI, RXGMSKLO), the Receive Buffer 14 and 15 High and Low Registers
(RX14MSKHI, RX14MSKLO, RX15MSKHI, RX15MSKLO), the Interrupt Mask and

15. Operational Status Windows

page 240, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Flag Registers (IMASK, IFLAG), the Receive and Transmit Error Counters (RXECTR,
TXECTR).

15.11.2 TouCAN Buffers Window

The TouCAN Buffers window displays information for each of the 16 buffers. For each
buffer the status, identification (high and low), eight data bytes, interrupt enable/disable, and
interrupt set/clear state is displayed

15.11.3 Masked ROM Window

The Masked ROM window displays the Masked ROM Module Configuration Register
(MRMCR), the ROM Array Base Address High Register (ROMBAH), the ROM Base
Address Low Register (ROMBAL), the ROM Signature High Register (RSIGHI), the
ROM Signature Low Register (RSIGLO), and the ROM Bootstrap Words 0 through 3

15. Operational Status Windows

Multi Target Development Tool, page 241Reference Manual (C) 1994 ASH WARE, Inc.

Registers (ROMBS0, ROMBS1, ROMBS2, and ROMBS3).

15.11.4 Standby RAM Submodule Window (68336/68376)

The Standby RAM Submodule window (68336/68376) displays the RAM Module
Configuration Register (RAMMCR), the RAM Array Base Address High Register
(RAMBAH), and the RAM Array Base Address Low Register (RAMBAL).

15.11.5 Static RAM Submodule Window (68338)

The Static RAM Submodule Window (68338) consists of 16 contiguous 16-bit words of
RAM.

15.11.6 Parallel Port I/O Submodule (PIOSM) Window

The Parallel Port I/O Submodule window displays the PIOSM Control Register (PIO17A)
which controls data direction and either reads or writes the port data.

15. Operational Status Windows

page 242, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

15.11.7 Real Time Clock (RTC) Window

The Real Time Clock window displays the RTC Status, Interrupt, Control Register
(RT16SIC), the RTCSM Prescaler Register (RTCSM), and the RTCSM Free-Running
Counter High and Low Registers (R16FRCH, R16FRCL).

16. Dialog Boxes

Multi Target Development Tool, page 243Reference Manual (C) 1994 ASH WARE, Inc.

16
Dialog Boxes

Dialog boxes provide an interface for setting the various Simulator options.

File Open, Save, and Save As Dialog Boxes
Auto-Build Batch File Options Dialog Box
Goto Time Dialog Box
Goto Angle Dialog Box
Occupy Workshop Dialog Box
IDE Options Dialog Box
MtDt Build Script Options Dialog Box
Workshop Options Dialog Box
Message Options Dialog Box
Source Code Search Options Dialog Box
Reset Options Dialog Box
Logic Analyzer Options Dialog Box
Thread Options Dialog Box
Complex Breakpoint Dialog Box
Trace Options Dialog Box
Local Variable Options Dialog Box
License Options Dialog Box
BDM Options Dialog Box
Memory Tool Dialog Box
Insert Watch Dialog Box
Watch Options Dialog Box

16. Dialog Boxes

page 244, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

16.1 File Open, Save, and Save As Dialog Boxes

The File Open, Save, and Save As dialog boxes support the opening and saving of a
number of files. Each of these is described individually below.

Load Executable Dialog Box

The Load Executable dialog box controls the opening of the executable image (source
code). This enables the user to change the source code, recompile the source code, and
reread it into MtDt. It also allows a different executable image (source code) to be loaded
into the target.

See the Source Code Files Windows section for information on viewing the executable
image (source code) files.

Open Primary Script File Dialog Box

This dialog box specifies which primary script commands file is open. Only one primary
script commands file may be opened for each target at one time. The default search is *.
XXXCommand, where XXX denotes the type of target. For instance, for TPU Targets,
the default search is *.TpuCommand.

Save Primary Script Commands Report File Dialog Box

This dialog box specifies the report file that is generated when the primary script
commands file is parsed. Note that selection of a file name does not actually cause the
report file to be written. Rather, the report file is written only when the primary script
commands file is parsed.

Open Startup Script Commands File Dialog Box

This dialog box specifies which startup script commands file is open. Only one startup
script commands file may be opened for each target at one time. This file is very similar to
the primary script file. Almost all script commands that are supported in the primary script
file are also supported in the startup script file. The primary difference between primary
and startup script command files is when they are executed. Startup script command files
are executed only when MtDt resets a target. Primary script files execute as the target
executes.

Startup script files do not support specification of a report file name. The report file name
generated for the startup script is always the same as the startup script file name except

16. Dialog Boxes

Multi Target Development Tool, page 245Reference Manual (C) 1994 ASH WARE, Inc.

the file suffix is changed to .report.

Open Test Vector File Dialog Box

This dialog box is accessed via the Files menu by selecting the Vector, Open submenu. It
is only available when a TPU simulation target is active.

This dialog box specifies a test vector file to be loaded. The entire file is loaded at once.
Loading additional files causes existing test vectors to be removed. This dialog box allows
full specification of drive, directory, and filename. The default filename is VECTORS.
Vector, and the default search is *.Vector.

Project Open and Project Save As Dialog Boxes

The Project Open and Project Save As dialog boxes are opened from the Files menu by
selecting the Project, Open submenu or the Project, Save submenu.

From the Project Open dialog box a Project filename is specified. MtDt loads a new
configuration from this file.

From the Project Save As dialog box a Project filename is specified. The current
configuration is saved to this file.

Run MtDt Build Script Dialog Box

The Run MtDt Build Script dialog box specifies which MtDt build script is to be run.
Running an MtDt build script has a large impact. Before the new script is run, open
windows are closed, and all target information is deleted from within MtDt. This
effectively erases most of the Project information; so it is usually best to create a new
project before opening a new MtDt build script.

Save Behavior Verification Dialog Box

The Behavior Verification dialog box is opened from the Files menu by selecting the
Behavior Verification Save submenu. This capability is only available for the eTPU and
TPU simulation targets. The recorded behavior is saved to this file.

Save Coverage Statistics Dialog Box

The Save Coverage Statistics dialog box is opened from the Files menu by selecting the
Coverage Statistics, Save submenu. This dialog box is currently only available for TPU

16. Dialog Boxes

page 246, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Simulation targets.

From the Save Coverage Statistics Dialog Box a coverage filename is specified. An
overview of the coverage statistics since the last reset on both a project and a file-by-file
basis is written to this file.

16.2 Auto Build Batch File Options Dialog Boxes

The Auto-Build Batch File Options dialog box provides the capability of building the
executable image file (source code) from within MtDt. This dialog box is opened from the
Files menu by selecting the Auto-Build, Open submenu.

The auto-build batch file is a console window batch file. In this batch file the user puts the
shell commands that build the executable image from the source code. MtDt executes this
auto-build batch file.

The following describes the various capabilities accessed from within the Auto-Build Batch
File Options dialog box.

Edit Window

From within this window the user can edit the currently-selected auto-build batch file.
Edits to this file are saved only if the user hits the OK button, the OK, Build button, or the
Build button. If the Cancel button is hit, or if a new file is selected before one of these
buttons is hit, then all edits are lost.

OK Button

This saves edits, makes the currently-selected auto-build batch file the default, and closes
the Auto-Build Batch File Options dialog box.

OK, Build Button

This saves edits, makes the currently-selected auto-build batch file the default, and closes
the Auto-Build Batch File Options dialog box. In addition, a build is performed.

Cancel Button

This closes the Auto-Build Batch File Options dialog box. Edits are not saved. The default
auto-build file is not set to be active for future builds. Instead, the default auto-build file
reverts back to whatever the default was before the Auto-Build Batch File Options dialog
box was opened.

16. Dialog Boxes

Multi Target Development Tool, page 247Reference Manual (C) 1994 ASH WARE, Inc.

Build Button

This saves edits and performs an auto-build. The Auto-Build Batch File Options dialog box
is not closed.

Help Button

This accesses this help menu.

Change File Button

This allows the user to select a new auto-build batch file. Beside this button is listed the
name of the currently-selected auto-build file.

16.3 Goto Time Dialog Box

The Goto Time Dialog Box is opened via the Run menu by selecting the Goto Time
submenu. It provides the capability to execute the simulator/debugger until a user-specified
time.

There are two types of Goto time options, one of which must be selected.

Goto Until Time

This sets the simulator/debugger to execute until an absolute (simulation) time is reached.
The simulation time is initially set to zero. The simulation time is reset to zero via the Run
menu by selecting the Reset submenu.

Goto Current Time, Plus

This sets the simulator/debugger to go to the current (simulation) time plus some user-
specified additional time.

User-specified time is entered as thousands of seconds (ksec), seconds (secs), milliseconds
(ms), microseconds (us), and nanoseconds (ns). Note that the simulator/debugger
resolution is one instruction cycle.

Help

This accesses this help window.

Goto

16. Dialog Boxes

page 248, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

This closes the Goto Time dialog box and runs the simulator/debugger until the specified
time.

OK, Save

This closes the Goto Time dialog box and saves any changes. The simulator/debugger
remains idle.

Cancel

This closes the Goto Time dialog box without saving any changes.

16.4 Goto Angle Dialog Box

The Goto Angle Dialog Box is opened via the Run menu by selecting the Goto Angle
submenu. It provides the capability to execute the active target until it gets at or beyond
the specified angle. The eTPU must be in angle mode (AM=1) in order for this to function
properly.

This dialog box uses the TCR2 counter, and user-defined angle indices to calculate the
angle. See the eTPU Time Base Configuration Script Commands section for setting the
angle indices.

The ‘Cycles’ field refers to the number of times the angle has rolled over. For example, in
an automobile engine, two rotations constitutes one cycle. The angle therefore goes from 0
degrees, to 720 degrees, then rolls over back to zero degrees. ‘Cycles’ is the count of
these rollovers.

The current angle can be seen in the status bar at the bottom of the IDE. See the IDE
Options Dialog Box section for information on enabling this feature.

Goto Until Angle

This sets the active target to go to an absolute (simulation) angle. The simulation angle is
initially set to zero. The simulation angle is reset to zero via the Run menu by selecting the
Reset submenu.

Note that if the desired stop cycle and angle has already been traversed, then the Cycles
field is ignored and the simulation is halted the next time the specified angle is traversed, in
either the current or next cycle.

Goto Current angle, Plus

16. Dialog Boxes

Multi Target Development Tool, page 249Reference Manual (C) 1994 ASH WARE, Inc.

This sets the additional angle to which the active target will be run. The angle to which the
active target will run is the current angle plus the specified delta angle.

Help

This accesses this help window.

OK

This closes the Goto Angle dialog box and runs the simulator until the simulator is at or
beyond the specified angle in the active target.

Cancel

This closes the dialog box without saving any changes.

16.5 IDE Options Dialog Box

The following describes the IDE Options dialog box.

All Targets Settings

The following settings are for all targets.

Change the simulator/debugger Wide Font

Changes the fonts used by all the windows.

Update Windows While Target is Running

This specifies whether the windows are continually updated as target runs. The window
update generally takes well under 1% of the simulator/debugger’s CPU time so this option
is generally selected. But in certain cases de-selection of this option can improve
performance.

View Toolbar

This specifies whether the toolbar and its associated buttons are visible. The toolbar is the
gray area located at the top of the simulator/debugger's application window.

View Status bar

This specifies whether the status bar and its associated indicators are visible. The status

16. Dialog Boxes

page 250, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

bar is the gray area located at the bottom of the simulator/debugger's application window.

Pop to Halted Target’s Workshop

Each target is generally assigned to a workshop. In a multiple target environment when a
target halts the workshop associated with the target that caused the system to halt. This
should generally be left selected.

Auto-Open Window for File of Active-Target’s Program Counter When Target
Halts

When this is selected, if the target halts the source code file corresponding to the program
counter of the active target is closed, it will automatically be opened. In addition, the
current line is automatically scrolled into view.

Display Angle (Instead of Clocks) if Available

In the status bar there is a box that shows either the angle or time of the active target.
This setting specifies that angle is shown rather than time, if it is available. The display has
the format of XC Y.Z, where X is the number of cycles and Y.Z is the current angle in
degrees. Note that determination of the engine angle relies on certain timing settings
specified using the set_angle_indices(); script command which is described in the eTPU
Time Base Configuration Script Commands section.

Use the ETEC CPP Preprocessor for Script Commands Files

Indicates if the 'ETEC_CPP.exe' preprocessor should be used to preprocess script
command files. See the ETEC CPP Preprocessor section for more details.

eTPU and TPU Simulator Target Only

The following settings are only available for eTPU and TPU Simulator targets.

View Coverage (TPU Targets Only)

This specifies whether the code coverage indicators are visible within source code
windows. These are the color coded boxes at the far left of each line of text that is
associated with an instruction. These boxes indicate if the associated instruction has been
executed, and, if it is a branch instruction, if the true and false cases have been traversed.

Active Target Settings

The following settings act only on the target that was active at the time that the dialog box

16. Dialog Boxes

Multi Target Development Tool, page 251Reference Manual (C) 1994 ASH WARE, Inc.

was opened. Each target can be individually set.

Source Code Spaces per Tab

Specifies the number of spaces that correspond to each tab character.

16.6 Workshop Options Dialog Box

The Workshops Options dialog box is used to associate targets with workshops, specify
workshop names, and place workshop buttons in the toolbar.

When adding a new target association to a workshop you will be prompted to indicate
whether you would like all windows belonging to that target to be made visible within that
workshop. It is generally desirable to select the "yes" or "yes to all" option.

The very first workshop is special in that all windows initially visible within this workshop.
This prevents windows from becoming lost. To avoid confusion, this workshop name is
always "All."

This dialog box allows you to remove a target association from a workshop. In this case
you will also be prompted to indicate whether you would like to remove visibility of all
windows belonging to the removed target from the affected workshops.

On Toolbar

Checking this option causes a button to appear on the toolbar that automatically switches to
that workshop when depressed.

Workshop Name

This is the name of the workshop. You can either type in a new name using the keyboard;
alternatively a button to the left of this edit control allows you to assign the associated
target's name to the workshop.

Primary Association

This is the target that is associated with the workshop. A dropdown list allows selection of
any target.

16. Dialog Boxes

page 252, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

16.7 Occupy Workshop Dialog Box

The Occupy Workshop dialog box provides the capability of specifying for individual
windows which workshop(s) the window will be visible.

OK

This closes the dialog box and saves any changes.

Cancel

This closes the dialog box and discards all changes.

Help

This accesses this help window.

Occupy All

This causes the window to be visible in all workshops.

Leave All

This causes the window to not be visible in any workshop. This should be treated as a
shortcut for clearing all selections. Note that this is not the same as closing the window as
the window will still exist within thesimulator/debugger .

Revert

This causes any settings made since the dialog box was opened to be discarded.

Options

This opens the Workshop Options dialog box.

16.8 MtDt Build Options Dialog Box

This MtDt Build Options Dialog Box is opened from the Options Menu. It is used to
specify options for the MtDt Build Script. The MtDt Build Script is run by the ASH
WARE simulator or debugger when the simulator/debugger is initially launched to build the
simulation or debugging environment as described in the System Simulation section.

An example usage of this would be to select an MCF5232 revision 0 eTPU (6Kshould

16. Dialog Boxes

Multi Target Development Tool, page 253Reference Manual (C) 1994 ASH WARE, Inc.

1.5K RAM) instead of the default MPC5554 revision B (16K code, 3K RAM.) This is
shown below.

See file “zzz_eTpuVersions.Dat” in the BuildScripts directory for definitions of all
supported microcontroller versions that contain an eTPU. Note that new microcontroller
derivatives that contain eTPU’s are constantly being developed. The following is a list of
all supported version at the time of this writing:

// JPC/SPC (eTPU-2's)
JPC563M60_1, SPC563M54_0, SPC563M60_0, SPC563M64_0,
// MPC56xx Family (eTPU-2's)
MPC5632M_0, MPC5633M_0, MPC5634M_0, MPC5674_0, MPC5674_2
// MPC55xx Family
MPC5534_0, MPC5553_A, MPC5554_B, MPC5534_A, MPC5565_0,
MPC5566_0, MPC5567_0
// MCF52xx Family
MCF5232_0, MCF5233_0, MCF5234_0, MCF5235_0, MCF5271_0

In order for any changes to take affect, the simulator/debugger must be closed and re-
opened.

#define

Used to specify a #define that is passed to the MtDt Build Script. Note that this setting is
overridden if this same #define is passed on the command line when the simulator/
debugger is launched. See the Command Line Parameters section.

Related Topics

16. Dialog Boxes

page 254, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

See the Building the MtDt Environment section
See the Command Line Options section.

16.9 Message Options Dialog Box

The Message Options dialog box provides the capability to disable the display of various
messages. These messages warn the users in a variety of situations such as a failed script
verification command failure or when suspicious code is encountered.

When there is a check next to the described message, a message is generated when the
described situation occurs. To disable the message, remove the check. The user might
wish to execute through a failing or suspicious section of code without having to
acknowledge each message and would therefore disable the associated message.

All Targets Messages

Behavior Verification Failure

Behavior verification failure messages are generated when the current execution does not
match that from a previously-recorded behavior verification file.

Script Verification Failure

Script verification failure messages are generated when a user-defined script verification
test fails.

Bad at_time() Script Command

Bad at_time() script commands specify when a particular script command is to be
executed. A message appears when this command specifies a time earlier than the
current time.

Obsolete set_cpu_frequency Script Command

The set_cpu_frequency script command is being deprecated and users should switch to the
set_period script command to achieve this functionality. The problem with the
set_cpu_frequency command is that the simulation engine now calculates all times in
periods rather than frequency. This command requires an inversion which can generate
extremely small error, and this error over many billions of simulation cycles can become
significant. Consider the case of two targets, where one target is running half the
frequency of the other. If one clock is 333 MHz and the other is 666 MHz, after the
inversion, the resulting clock periods may not be exactly double anymore.

16. Dialog Boxes

Multi Target Development Tool, page 255Reference Manual (C) 1994 ASH WARE, Inc.

TPU Messages

An Instruction Accessed Unimplemented Parameter RAM

The message that reports an access of un-implemented parameter RAM locations may be
disabled. Some users have taken advantage of the un-documented feature that accesses
to these un-implemented parameter RAM locations return zero. Taking advantage of this
un-documented feature is dangerous because NXP might choose to implement these
locations, such as in the TPU2, or might change the values returned when these locations
are accessed. In any case, these warning messages can be disabled.

WMER Instruction at N+1 after CHAN_REG Change

The TPU behavior in this situation is undefined so the simulator/debugger generates a
message.

READ_MER Instruction at N+2 after CHAN_REG Change

The TPU behavior in this situation is undefined so MtDt generates a message.

Subroutine Return from Outside a Subroutine

When the TPU performs a subroutine call, the calling address is pushed unto the stack. It
would be legal but highly suspicious to do multiple subroutine returns following a single
subroutine call.

Sequential TCRx Write than Read

This is actually legal, but it is unlikely that it does what you want it to. You see, the read
finds the pre-written value having to do with some usual TPU craziness.

Entry Bank Register Accessed Multiple Times

In the real TPU the register holding the entry bank number can be written only once. The
TPU Simulator allows this register to be written multiple times but gives a warning if you
choose to do so.

Address Rollover Within a Bank

TPU2 and TPU3 support multiple banks. TPU behavior is not defined if a non-end and
non-return last bank instruction is executed.

16. Dialog Boxes

page 256, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

16.10 Source Code Search Dialog Box

The Source Code Search Options dialog box is opened from the Options menu by selecting
the Source Search submenu.

When the executable image is loaded, there are normally a number of source code files
associated with the executable image that get loaded. The simulator/debugger needs to be
able to find these files. This dialog box allows specification of source code directories to
be searched when searching for these source code files.

The search locations can be specified for each individual target, and for all targets globally.
 Specifying global search options is useful in situations in which multiple targets are using
the same directories for their library files.

When searching for a source code file, the following algorithm.

If the path to the file is fully-specified (e.g. c:\SomeDir\SomeFile.c) use that if the
file exists there.

If the path is partially specified (e.g. ..\OneUpDir\SomeFile.c) resolve the path
relative to the code image file. For instance, if the code image file is at c:
\SomeDir\SubDir\CodeImage.Elf, then check for this file c:
\SomeDir\OneUpDir\SomeFile.c

If the source file is still not found, use the raw file name (strip any prepended
directory information) and search in the directory where the executable image file is
located.

If the source file is still not found, use the raw file name (strip any prepended
directory information) and search for the file in the directory(s) listed in the 'Selected
Targets' directory search list, starting from the top-listed directory.

If file is still not found, use the raw file name (strip any prepended directory
information) and search for the file in the directory(s) listed in the 'All Targets'
directory search list, starting from the top-listed directory.

Add

This button inserts a new directory into the search list.

Modify

This button modifies a previously entered search location.

16. Dialog Boxes

Multi Target Development Tool, page 257Reference Manual (C) 1994 ASH WARE, Inc.

Delete

This button removes a location from the search list.

Cut

This button removes the currently selected search location from the search list, and places
it into the paste buffer.

Copy

This button adds the currently selected search location to the paste buffer without
removing it from the search list.

Copy

This button creates a new search location using the paste buffer.

Move Up

This button moves the currently selected search location higher in the search list such that
this location is searched earlier.

Move Down

This button moves the currently selected search location lower in the search list such that
this location is searched later.

16.11 Reset Options Dialog Box

The Reset Options dialog box is accessed from the Options menu by selecting the Reset
submenu. It specifies the actions taken when either the Reset submenu or the Reset and
Go submenu is selected.

Reread Primary Script Commands File

Selecting this option causes the primary script commands file to be reread every time
simulator/debugger resets the targets.

Rewrite Code Image

Selecting this option causes a cached version of the executable image to be re-written
every time simulator/debugger resets the targets. The executable image file is not reread,

16. Dialog Boxes

page 258, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

instead, a cached version of the executable image is used. Since a cached version is used,
source code files are also not changed. Note that this option should be selected with care
as the executable image in the target should generally not be modified during target
execution and reloading every reset could mask such a bug.

Reread Test Vector File (eTPU and TPU Targets Only)

Selecting this option causes the test vector file to be reread every time simulator/debugger
resets the targets.

Initialize Global Variables (eTPU and TPU Targets Only)

Selecting this option causes global variables to be initialized with the values found in the .elf
(or similar) executable image file. Note that in the real silicon this operation must be
performed by the host CPU.

DATA Memory (eTPU and TPU Targets Only)

This option specifies whether the DATA memory is not changed, written to all zeroes, or is
randomized on reset.

TCR1 and TCR2 Counters (eTPU and TPU Targets Only)

This option specifies whether the TCR1 and TCR2 counters are not changed, written to
zero, or are randomized on reset.

Help

This accesses this help menu.

Cancel

This discards and changes and exits the Reset Options dialog box.

OK

This saves any changes and exits the Reset Options dialog box.

16. Dialog Boxes

Multi Target Development Tool, page 259Reference Manual (C) 1994 ASH WARE, Inc.

16.12 Logic Analyzer Options Dialog Box

The Logic Analyzer Options Dialog box defines the settings associated with the Logic
Analyzer Window.

Log TCRCLK (eTPU) and TCR2 (TPU) Pin Transition

This controls whether the TCRCLK/TCR2 input pin transitions are logged to the data
storage buffer. This pin can be used to clock and/or gate in the eTPU and TPU.
Disabling this increases the effective data storage buffer size.

Log TCR1/TCR2 Counter Transitions

The least significant bit of the TCR1 and TCR2 global counters can be logged, and thereby
displayed as a waveform in the logic analyzer. Disabling this increases the effective data
storage buffer size.

Log Angle Mode Transitions.

Various aspect of angle mode can be displayed in the logic analyzer as a waveform.
These include the mode (high-speed, Normal, Wait), angle ticks, synthesized PLL tooth
ticks, etc. Disabling this increases the effective data storage buffer size.

Log Threads

Threads can be grouped into thread groups, and the thread group activity can be displayed
in the logic analyzer window. Disabling this increases the effective data storage buffer
size.

Configure Thread Groups

There are eight thread groups labeled from 'A' to 'H'. This opens the Thread Group Dialog
Box allows configuration of which thread(s) are associated with each of these groups.

Time Display

The Logic Analyzer can base the timing display on either target clock count or Simulator
time. Both of these are set to zero when simulator/debugger is reset. This field allows the
user to select between the two display options.

Target Clocks Display

See the above description from the time display.

16. Dialog Boxes

page 260, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

16.13 Channel Group Dialog Box

The Channel Group Options Dialog box is used to select groups of one or more channels.
It is accessed in different locations for different purposes.

This dialog box is accessed from the Logic Analyzer Options Dialog Box to specify groups
for monitoring of eTPU thread activity. Note that thread group activity is displayed as a
waveform in the Logic Analyzer.

This dialog box also is used by the Complex Breakpoint Conditional Dialog to select which
channels a complex breakpoint conditional acts upon.

16.14 Complex Breakpoint Conditional Dialog Box

The complex breakpoint conditional dialog box allows the user to add conditionals to
complex breakpoints. Each complex breakpoint must contain one or more conditionals.
This dialog box is accessed from the complex breakpoints window.

16.15 Trace Options Dialog Box (MtDt)

Instruction Execution

Selecting this option causes each instruction execution to be logged to the trace buffer.

Instruction Boundary

Selecting this option causes each instruction boundary to be logged in the trace buffer.
While an instruction boundary contains no useful information, the resulting dividing line
makes the trace window easier to read.

Memory Read

Selecting this option causes each memory read to be logged to the trace buffer.

Memory Write

Selecting this option causes each memory write to be logged to the trace buffer.

Exception

Selecting this option causes each exception to be logged to the trace buffer. This is only

16. Dialog Boxes

Multi Target Development Tool, page 261Reference Manual (C) 1994 ASH WARE, Inc.

meaningful in the context of CPU targets.

Time Slot Transition

Selecting this option causes each time slot transition to be logged to the trace buffer. This
is only meaningful in the context of TPU targets.

State End

Selecting this option causes state end to be logged to the trace buffer. This is only
meaningful in the context of TPU targets.

Pin Transition

Selecting this option causes each pin transition to be logged to the trace buffer. This is only
meaningful in the context of TPU targets.

SGL Negation NOP

Selecting this option causes SGL negation NOP to be logged to the trace buffer.

Trace Window and Trace Buffer Considerations

The Trace Options Dialog Box specifies what is stored in the trace buffer. The Trace
Window displays all trace information stored in the trace buffer regardless of whether or
not this information is enabled for storage. If information has already been stored in the
buffer and you disable tracing of this information the information will not disappear from
the Trace Window until the buffer has been completely overwritten with new information,
or until the buffer is flushed following a reset.

Multiple Target Considerations

Individual trace settings are maintained for each target. In a multiple target environment it
is possible to enable trace settings in one target and disable these same settings in another
target. The target on which the Trace Options Dialog Box acts is listed at the top of the
dialog box. This corresponds with either the active target at the time that the dialog box is
opened or the target associated with the active window.

16. Dialog Boxes

page 262, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

16.16 Local Variable Options Dialog Box

It is important to note that the Local Variables window automatically tracks the current
function. When the target transitions from running to stopped, the active function’s local
variables are automatically displayed. But in addition, when you scroll through the Call
Stack window, the Local Variable window automatically displays the stacked local
variables associated with selected line in the Call Stack window. This automatic behavior
is generally quite useful but in certain cases it can get in the way. By locking the local
variable window you are able to disable this automation.

Lock the local variables from <functionName> at stack frame <frameAddress>

When this is checked, the Local Variable window displays a particular function’s local
variables. The normally automatic tracking of the current function’s local variables is
disabled. For example if you are parsing through text, a stacked function may point to the
beginning of a buffer that is being traversed by called functions. Use of this option would
allow you to lock onto display of the calling function’s local variables thereby viewing a
reference to the beginning of the buffer.

Note that the function name and frame address are determined by the window’s current
display state. The functionName is a symbolic name of a function, e.g. main(char argc,
char *argv[]). The frame address is the address such as 0x1000.

Maximum Expansion Level for Structure Members, Pointers, etc

It is common for structures to be members of other structures or to be referenced from
within structures. The local variable window expands these contained and referenced
structures. This setting specifies the number of levels to expand.

Maximum Number of Array Elements to Display

This specifies the number of local variable array members that are displayed. For example
an integer array might consist of multiple members but the actual number of members is
generally not available in the symbol table. This setting allows you to specify how many
elements to display.

16.17 License Options Dialog Box

This dialog box allows you to enter additional information prior to sending a license file to
ASH WARE Inc. A license file is generated whenever you install an ASH WARE
product. Unfortunately, the license file generated at install time contains very little

16. Dialog Boxes

Multi Target Development Tool, page 263Reference Manual (C) 1994 ASH WARE, Inc.

information other than a computer identifier. This dialog box allows you to add additional
information such as your name, purchase order number, etc.

The license file has been a problem for ASH WARE in that users have sent in license files
for purchased products but we were unable match the license files with the purchase. This
dialog box is intended to reduce this confusion, thereby allowing us to serve you better.

All information is optional. Generally, it is best to include at least your company’s purchase
order number or the ASH WARE invoice number, if available.

16.18 BDM Options Dialog Box

The following describes the Background Debug Mode (BDM) Options dialog box.

Halt Target for Periodic Update

When this is selected, the free-running hardware is halted when simulator/debugger
redraws its windows. The advantage of selecting this is that the windows can be updated
as the target runs. The disadvantages are that it effectively disables the target's ability to
service interrupts and in some cases the target will execute significantly slower.

16.19 Memory Tool Dialog Box

This tool supports specialized memory functions listed below. The dump file functions are
also accessible from the dump_file script command listed in the File Script Commands
section.

- Fill memory with data or text

- Search for data or text

- Dump to disassembly file

- Dump to Motorola SRecord (SREC) file

- Dump to Intel Hexadecimal (IHEX) file

- Dump to image file

- Dump to "C" structure file

For each function the address space and memory range can be specified. Earlier address
ranges are stored in a buffer and can be retrieved using the recall button. For the file-
dump options, selecting the change button can specify the file name.

16. Dialog Boxes

page 264, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

In disassembly dump files inclusion of address, raw values, addressing mode information,
and symbolic information can be selected.

When creating an image file or a "C" data structure file, or when using the fill function, the
data word size can of 8, 16, or 32-bits. For the fill function, verification after the fill can be
selected.

The find capability allows a specific byte pattern to be located in memory. Options include
the ability to search for between one and eight sequential bytes, as well as the ability to
search for both a case sensitive or case-insensitive string.

"C" data files can be written with the address included within a comment. Output format
can be either hexadecimal, which is the default, or decimal.

Selection of endian ordering is available for where the data size is exceeds one byte. This
option is available when dumping to an image or a "C" structure file or when using the find
function. In cases where the selected endian ordering does not match the natural endian
ordering of the target a warning is displayed.

16.20 Insert Watch Dialog Box

The Insert Watch dialog box is opened from within the Watch Window using the insert
function keys.

This dialog box contains three lists.

The left-most list of all watches that are currently in use. This is helpful when a new
watch is desired that is similarly spelled as an existing watch.

The middle list contains all recently used watches, even ones that are no longer in use.

The right-most list contains a list of the print action command and timing action commands.
 This is special tagged text in source code used to generate formatted output to trace files
(think printf) and for verifying that minimum and maximum timing criteria are met for
traversal of named timing regions.

Related Information

Naming timing regions in source code
Verifying traversal times a script command file
View named timing regions timing using the Watch Window
List named timing regions in the Insert Watch Dialog Box

16. Dialog Boxes

Multi Target Development Tool, page 265Reference Manual (C) 1994 ASH WARE, Inc.

16.21 Watch Options Dialog Box

The Watch Options dialog box is currently featureless. This dialog box is provided to
maintain forward-compatibility with future versions of this software.

16.22 The 'About' Dialog Box

The simulator/debugger (C) 1994 ASH WARE, Inc.. All rights are reserved. Various
national and international laws and treaties protect these rights. Any misuse or other
violation of the copyright will be prosecuted to the full extent of the law.

The simulator/debugger media may not be copied or transmitted except for the purpose of
creating a backup copy for archival purposes.

16.23 BDM Port Dialog Box

The BDM Port dialog box is used only in the rare event that simulator/debugger finds
BDM target hardware on multiple parallel ports. In this case you are asked to select target
hardware from a list found during BDM auto-detection.

page 266, Multi Target Development Tool

17. Menus

Multi Target Development Tool, page 267Reference Manual (C) 1994 ASH WARE, Inc.

17
Menus

The main menu consists of the following menu items

Files Menu
Step Menu
Run Menu
Breakpoints Menu
Activate Menu
View Menu
Window Menu
Options Menu
Help Menu

17.1 Files Menu

The Executable, Open submenu

This opens the Load Executable dialog box.

The Executable, Fast Submenu

This provides a fast repeat capability for the Load Executable dialog box. By selecting this
submenu the actions set up in the Load Executable dialog box are quickly repeated without
having to actually open the dialog box.

17. Menus

page 268, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The Primary Script, Open Submenu

This opens the Open Primary Script File dialog box.

The Primary Script, Fast Submenu

This provides a fast repeat capability for the Open Primary Script File dialog box. By
selecting this submenu the actions set up in the Open Primary Script File dialog box are
quickly repeated without having to actually open the dialog box.

The Primary Script, Report Submenu

This opens the Save Primary Script Commands Report File dialog box. This report file is
generated when the primary script commands file is parsed.

The Startup Script, Open Submenu

This opens the Open Startup Script Commands File dialog box. This script commands file
is executed after the simulator/debugger resets its targets.

The Vector, Open Submenu

This opens the Open Test Vector File dialog box.

The Vector, Fast Submenu

This provides a fast repeat load test vector file capability. By selecting this submenu the
last loaded test vector file is reloaded.

The Project, Open Submenu

The Project Open submenu opens the Project Open dialog box. Each dialog box provides
a project session capability where the simulator/debugger settings are associated with
Project files. This submenu allows the user to open a previously-saved project session.

The Project, Save As Submenu

The Project Save As submenu opens the Project Save As Dialog Box. Each dialog box
provides a project session capability where the simulator/debugger settings are associated
with Project files. This submenu provides the capability to both create a new Project file
and overwrite an existing project file with the currently-active configuration.

The MtDt Build Script, Run Submenu

This opens the Run MtDt Build Script Commands File dialog box and runs the selected

17. Menus

Multi Target Development Tool, page 269Reference Manual (C) 1994 ASH WARE, Inc.

MtDt build script commands file. This action has a large impact on MtDt so care must be
taken when selecting it.

The MtDt Build Script, Fast Submenu

This provides a fast repeat run MtDt build script commands file. By selecting this
submenu the last run MtDt build script file is re-run. This is useful when debugging a
custom MtDt build script file.

The Auto-Build, Edit Submenu

This opens the Auto-Build Batch File Options dialog box. for selection and editing of the
auto-build batch file.

The Auto-Build, Fast Submenu

This provides a fast repeat build capability. By selecting this submenu or using the <CTRL
A> hot key the default auto-build batch file is executed.

The Behavior Verification, Open Submenu

This opens the Open Behavior Verification dialog box. This is used to load previously
saved behavior files. NOTE: This option only exists prior to version 5.00. With 5.00 and
newer behavior verification files can only be loaded through scripting.

The Behavior Verification, Save Submenu

This opens the Save Behavior Verification dialog box. This is used to save the recorded
Simulator behavior into a behavior verification file. NOTE: This option only exists prior to
version 5.00. With 5.00 and newer behavior verification files can only be saved through
scripting.

The Coverage Statistics, Save Submenu

This opens the Coverage Statistics dialog box. This is used to store a coverage statistics
report to a file.

Help

This accesses this help screen.

17. Menus

page 270, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

17.2 Stepping

Into

This runs the active target until one line of source code is executed. If a function is called,
simulator/debugger halts on the first instruction within that function. If no instructions
associated with source code lines occur, simulator/debugger continues to run until stopped
by selecting the Stop submenu in the Run menu.

Over

This single steps the target by one line of source code, stepping over any function call.
This is the same as the above "Into" function except the "Into" function will halt on a line of
source code within the function that is called. If no instructions associated with source
code lines occur, simulator/debugger continues to run until stopped by selecting the Stop
submenu in the Run menu.

Out

This runs the active target until the current function returns. Execution is halted on the
next line of source to be executed in the calling function. If no instructions associated with
source code lines associated with a calling function occur, simulator/debugger continues to
run until stopped by selecting the Stop submenu in the Run menu.

Anything

This causes one action to be performed. This action may be execution of a single
instruction, execution of a script command, or simply a tick of the CPU clock. This is
helpful for advancing execution by as small an amount of possible, allowing you to really
zoom in on a problem.

Script

This runs simulator/debugger until one script command from the active target is executed.
If no new script commands become available simulator/debugger continues to run until
stopped by selecting the Stop submenu in the Run menu.

Thread Start (Time Slot)

Runs until the beginning of the next eTPU/TPU thread (time slot transition.) Execution
stops just prior to execution of the first opcode in the thread. If no thread occurs,
execution continues to run until stopped by selecting the Stop submenu in the Run menu.

17. Menus

Multi Target Development Tool, page 271Reference Manual (C) 1994 ASH WARE, Inc.

Thread End

This command is excellent for running from thread-to-thread in the same channel.

- If in a thread, run, then stop at the end of the thread.

- If at the end of a thread, run until the beginning of a thread on the same
channel.

- If no thread is active, run until the beginning of a thread on the last-active
channel.

Angle Tick

When the eTPU is in angle mode, this runs until the next angle tick occurs.

Angle Tooth

When the eTPU is in angle mode, this runs until the angle tooth occurs. The angle tooth
could be generated by a physical tooth, a tooth induced by asserting TPR.IPH, or by the
EAC decrementing TPR.MSCNT.

Assembly

This runs the active target until a single assembly instruction occurs. If instructions occur,
DevTool continues to run until stopped by selecting the Stop submenu in the Run menu.

Assembly, N

This runs the active target until a user-specified number of assembly instructions occur. A
dialog box opens allowing specification of the desired number of assembly instructions. If
no assembly instructions occur, simulator/debugger continues to run until stopped by
selecting the Stop submenu in the Run menu.

Help

This accesses this help screen.

17.3 Running

Goto Cursor

This runs simulator/debugger until an instruction associated with the current cursor location
is about to be executed or a breakpoint is encountered. A source code window must be

17. Menus

page 272, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

active for this command to work.

Goto Time

This opens the Goto Time dialog box. Runs simulator/debugger until the specified time or
until a breakpoint is encountered.

Goto Time, Fast

This behaves exactly like the Goto Time submenu, except the goto time dialog box is not
opened. Instead, the previously specified Goto Time options are used.

Go

This causes simulator/debugger to execute indefinitely. simulator/debugger executes until a
breakpoint is encountered or until the user terminates execution by selecting the Stop
submenu in the Run menu.

Stop

This causes simulator/debugger to stop executing. This is normally used to stop simulator/
debugger when the expected event (such as step, breakpoint, time slot transition, etc.)
failed to occur.

Reset and Go

This causes simulator/debugger to reset and immediately begin execution. The reset
actions are specified in the Reset Options submenu. simulator/debugger will execute until
a breakpoint is encountered or until interrupted by the user selecting the Stop submenu
from the Run menu.

Reset

This causes simulator/debugger to reset. The reset actions are specified in the Options
submenu in the Reset menu.

Help

This accesses this help screen.

17. Menus

Multi Target Development Tool, page 273Reference Manual (C) 1994 ASH WARE, Inc.

17.4 Breakpoints

The breakpoints menu controls the various functions associated with the breakpoint
capabilities of the simulator/debugger. These capabilities are accessed via the following
submenu's.

Set (Toggle)

This toggles a breakpoint at the source code window’s cursor. If the instruction already
has a breakpoint, then the breakpoint is deleted. A source code window must be active for
this to work. If the source code is in mixed assembly view mode, and the cursor is at a
dis-assembly line, then the breakpoint will be generated for only that address.

Disable All

This disables all active breakpoints. Disabled breakpoints remain disabled. the simulator/
debugger remembers which breakpoints have been disabled, such that the Enable
Breakpoints submenu can reactivate all disabled breakpoints.

Enable All

This enables all disabled breakpoints.

Delete All

This deletes all active and all disabled breakpoints.

At Address …

This opens a dialog box which allows placing a breakpoint any user-specified address.
This is useful when debugging code for which there is no line number information, such as
GNU assembly code.

Delete All Address …

This deletes all breakpoints for which there is no associated source code.

Delete All Script

This deletes all breakpoints that are in the script commands file.

All Targets Sub Menu

This is only available in multiple target simulators. It performs the Disable, Enable, and
Delete Breakpoint functions for all targets. The default is for just the active target.

17. Menus

page 274, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Help

This accesses this help screen.

17.5 Workshops

The Activate menu allows you to specify which workshop and target are active. These
capabilities are accessed via the following submenus.

Workshop

This displays a list of workshops that can be activated. Activation of a workshop causes
all windows within that workshop to be displayed, and the target associated with that
workshop, if any, to be activated. Activation of an associated target upon workshop
activation is a feature that can be disabled within the Workshop Options dialog box.

Target

This displays a list of targets that can be activated. The active target is the one used when
target-specific functions such as single stepping are selected. This feature is useful only in
a multiple target environment.

Help

This accesses this help screen.

17.6 View Menu

This menu opens the various Simulator windows for viewing. The simulator/debugger
allows multiple instances of each window to be open simultaneously. When there are
multiple targets a submenu for each target appears. Otherwise, all available windows are
available directly within the view menu.

See the Operational Status Windows chapter for a listing of the available windows for each
target.

Help

This accesses this help screen.

17. Menus

Multi Target Development Tool, page 275Reference Manual (C) 1994 ASH WARE, Inc.

17.7 Window Menu

The Window menu accesses the four standard windows functions: Cascade, Tile, Arrange
Icons, and Close All. The standard Windows size toggle function switches the window
between maximized and normal size. In addition there is a list of all open windows.
Selecting an open window from this list causes that window to pop to the front.

Occupy Workshop

This opens the Occupy Workshop dialog box. This allows display of the currently active
window within the various workshops to be enabled and disabled.

Redraw All

This causes all windows to be redrawn. In addition, all windows caches are invalidated,
thereby forcing simulator/debugger to go out to the hardware (for hardware targets) to
refresh window data. This is helpful on hardware targets for updating the display of
hardware registers that may be changing even while execution is halted.

Help

This accesses this help screen.

17.8 Options Menu

The Options menu provides the user with the capability of setting various Simulator options.
 These are listed below.

IDE

This opens the IDE Options dialog box.

Workshop

This opens the Workshops Options dialog box.

Messages

This opens the Message Options dialog box.

Reset

This opens the Reset Options dialog box. It specifies the actions taken when simulator/

17. Menus

page 276, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

debugger is reset from the Reset menu by selection of the Reset submenu.

Waveform Logic Analyzer

This opens the Logic Analyzer dialog box. Note that a Logic Analyzer window must be
active for this submenu item to be available.

BDM

This opens the BDM Options dialog box. Note that a 683xx Hardware Debugger target
must be active for this submenu item to be available.

Memory Tool

This opens the Memory Tool dialog box. Note that if a Memory Dump Window is selected
when this dialog box is opened, settings from the window are automatically loaded into the
dialog box. This supports a variety of capabilities including dumping memory to files,
searching for patterns in memory, and filling memory.

Memory

This lists a variety of settings available for a Memory Dump Window. Note that this type
of window must be selected for these options to be available.

Toggle Mixed Assembly

This toggles the visibility of assembly within Source Code File windows. Note that this
type of window must be selected for these options to be available.

Verify Recorded Behavior

This verifies the recorded behavior against the currently active master behavior verification
file. See the Pin Transition Behavior Verification section for a description of this
capability. NOTE: This option only exists prior to version 5.00. With 5.00 and newer
behavior verification can only be controlled via scripting.

Enable Continuous Verification

This enables continuous verification of behavior against the currently active master
behavior verification file. This provides immediate feedback if the microcode behavior has
changed. See the Pin Transition Behavior Verification section for a description of this
capability. NOTE: This option only exists prior to version 5.00. With 5.00 and newer
behavior verification can only be controlled via scripting.

17. Menus

Multi Target Development Tool, page 277Reference Manual (C) 1994 ASH WARE, Inc.

Disables Continuous Verification

This disables continuous verification of behavior against the currently active master
behavior verification file. This prevents a large number of verification errors from being
displayed if microcode behavior has changed significantly. See the Pin Transition Behavior
Verification section for a description of this capability. NOTE: This option only exists prior
to version 5.00. With 5.00 and newer behavior verification can only be controlled via
scripting.

Timer

This lists a variety of options available for timers. These options are only available if a
Source Code File window is selected. Options include setting the timer's start or stop
address to be equal to that associated with the cursor location within the Source Code File
window. A timer can also be enabled or disabled.

Watch

This lists a variety of options available for a watch. These options are available only if a
Watches window is selected. Options include inserting and removing a watch, moving a
watch up or down, and setting the options for a specific watch.

Help

This accesses this help screen.

17.9 Help Menu

The Help menu provides the following options.

Contents

Accesses the contents screen of simulator/debugger’s on-line help program.

Using Help

Accesses the standard Microsoft Windows "help on help" program.

Latest Enhancements

This accesses information on the enhancements added in the various versions of this
software.

17. Menus

page 278, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Technical Support

This accesses information on obtaining technical support for this product.

About

This gives general information about simulator/debugger.

18. Hot Keys, Toolbar, Status Window

Multi Target Development Tool, page 279Reference Manual (C) 1994 ASH WARE, Inc.

18
Hot Keys, Toolbar, Status

Window

Pointing and clicking with the mouse activate Toolbar buttons. The toolbar is located
toward the top of the main screen.

Toolbar buttons also allows you to quickly switch between workshops. These are the text
buttons located at the top right of the main screen.

An execution status indicator appears at the top right of the main screen. This indicator
appears as a moving error while the targets are executing. When the targets are stopped,
a bitmap appears that depicts the cause of the halt.

An active target button appears at the top right of the main screen. This button lists the
active target. Depressing this button causes a list of all targets to appear as a menu.
Selection of a target from this menu causes that target to become activated.

The status window is located at the bottom of simulator/debugger. Miscellaneous
information is displayed in this window.

Both the toolbar and the status window can be hidden as explained in the Options Menu
section.

At the bottom right of the main window is a menu help indicator. This indicator shows the
function of all menus and toolbar buttons prior to selection.

18. Hot Keys, Toolbar, Status Window

page 280, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

To the right of the menu help indicator is the ticks/angle indicator. This displays either the
number of ticks since the last target reset (if available) or the current angle (if available.)
This indication may not be valid for hardware targets that have been free-run since the last
reset as simulator/debugger is not able to determine the number of clock ticks under this
condition. The users selects between ticks and angle from the IDE Options Dialog Box.

To the right of the ticks indicator is the steps indicator. This indicates the number of
opcodes that have been executed for the active target since the last reset. The limitations
listed above for the ticks indicator also applies to the steps indicator.

To the right of the steps indicator is the failures indicator. The failures indicator lists the
number of script commands and behavior failures, respectively.

To the right of the failures indicator is the target type indicator. This is a bitmap that
depicts the type of target that is currently active.

To the right of the target type indicator is the current time indicator. This displays the
amount of time that has occurred since the last target reset. The limitations listed above for
the ticks indicator also applies to the current time indicator.

To the right of the current time indictor is a clock. Use this to determine if it is time to go
home.

19. Supported Targets and Available Products

Multi Target Development Tool, page 281Reference Manual (C) 1994 ASH WARE, Inc.

19
Supported Targets and Available

Products

Due to its layered design, simulator/debugger supports a variety of both simulated and
hardware targets. Customer requirements dictate that these capabilities to be offered as
specific individual products.

19.1 MC33816 Hardware Debugger

The MC33816 Hardware Debugger can only be launched from the 'Run On Hardware'
button in the IDE, as show below.

When the debugger opens everything from the simulation session is duplicated in the
debugger. This includes loading of the source code, running the startup script file, etc.

The MC33816 Hardware Debugger and MC33816 Simulation IDE share this same
manual. However not all capabilities available to the simulator are available to the

19. Supported Targets and Available Products

page 282, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

debugger. Conspicuous examples are source code breakpoints, goto source code line, goto
state machine state, and so forth. These simulation capabilities are simply not supported by
the hardware and therefore cannot be replicated in the debugger. The timing in the
wait_time and at_time script commands will not be at all accurate due to the relatively
slow SPI interface to the target hardware.

Important debugger features that are supported are the watch window items that are
available across the SPI bus such as data variables and all SPI-accessible registers. The
circuit windows have a high level of functionality. The script commands file is largely
functional though not every script command is supported.

To return to the simulation environment simply close the debugger.

19.2 MC33816/CPU System Simulator

Our MC33816/CPU System Simulator supports instantiation and simulation of an arbitrary
number and combination of MC33816s and CPUs. A dedicated external system modeling
CPU could be used, for instance, to model the behavior of an automobile engine.
Executable code can be individually loaded into each of these targets. Synchronization
between targets is fully retained as the full system simulation progresses.

All CPU engine targets can be used with this system simulation include the CPU32 and
soon-to-be-released, PPC simulation engines.

19.3 eTPU/CPU System Simulator

Our eTPU/CPU System Simulator supports instantiation and simulation of an arbitrary
number and combination of eTPUs and CPUs. A dedicated external system modeling
CPU could be used, for instance, to model the behavior of an automobile engine.
Executable code can be individually loaded into each of these targets. Synchronization
between targets is fully retained as the full system simulation progresses.

All CPU engine targets can be used with this system simulation include the CPU32, and
soon-to-be-released, PPC simulation engines.

19. Supported Targets and Available Products

Multi Target Development Tool, page 283Reference Manual (C) 1994 ASH WARE, Inc.

19.4 TPU CPU32 Full System Simulator

Our TPU/CPU32 System Simulator supports instantiation and simulation of an arbitrary
number and combination of TPUs and CPU32s. A dedicated external system modeling
CPU32 could be used, for instance, to model the behavior of an automobile engine.
Executable code can be individually loaded into each of these targets. Synchronization
between and among targets is fully retained as the full system simulation progresses.

Standard single-target debugging capabilities such as single stepping, breakpoints, goto
cursors, etc., are fully supported within this full system simulation environment. For
instance, breakpoints can be inserted and activated within several targets simultaneously.
The full system simulation is halted as soon as a breakpoint is encountered in any target.

19.5 MC33816 Stand-Alone Simulator

This product is a single-target version that uses only the MC33816 simulation engine.
Because it is a stand-alone product the user must use script commands files to act as the
host and test vector files to act as the external system.

The MC33816 Stand-Alone Simulator is a superset of the MC33816/CPU System
Simulator in that purchase of the Stand Alone Simulator license allows installation of a
fully-functional Stand-Alone Simulator product as well as the full System Simulator
configuration.

19.6 eTPU2 Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our eTPU2
simulation engine. Because it is a stand-alone product the user must use script commands
files to act as the host and test vector files to act as the external system.

The eTPU2 Stand-Alone Simulator is a superset of the eTPU Stand Alone Simulator in
that purchase of the eTPU2 Stand Alone Simulator license allows installation of a fully-
functional eTPU Stand-Alone Simulator product as well as an eTPU2 Stand-Alone
Simulator product.

19. Supported Targets and Available Products

page 284, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

19.7 eTPU Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our eTPU
simulation engine. Because it is a stand-alone product the user must use script commands
files to act as the host and test vector files to act as the external system.

This product simulates the original eTPU1 from NXP. For simulation of the new eTPU2,
see the eTPU2 Stand-Alone Simulator product.

19.8 TPU Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our TPU
Simulation engine. Because it is a stand-alone product the user must use script commands
files to act as the host and TPU test vector files to act as the external system. This is the
original ASH WARE product.

19.9 683xx Hardware Debugger

Our TPU Standard Mask Simulator allows you to develop your CPU code used in
conjunction with any standard c:\trees\mtdt_BRANCH\Mtdt\Helpfiles\PDFs\ TPU
microcode. Currently ASH WARE supports the following three TPU Microcode builds.

- MASK A

- MASK G

- MASK MPC5xx

This product supports all the capabilities of our system simulator products with the single
exception that you cannot load microcode that you have modified. Instead, the only TPU
microcode that can be loaded is the one of the aforementioned standard TPU microcode
masks.

Although you can tailor your configuration to any specific microcontroller mapping the
following three configurations are the defaults. The default configurations are usually
sufficient and intricacies of custom configuration generation need not be explored.

- MASK A: 683xx with one TPU mapped at 0xFFFE00

- MASK G: 683xx with one TPU mapped at 0xFFFE00

- MASK MPC5xx: MPC555 with two TPUs mapped at 0x304000 and

19. Supported Targets and Available Products

Multi Target Development Tool, page 285Reference Manual (C) 1994 ASH WARE, Inc.

0x304400.

19.10 CPU32 Stand-Alone Simulator

Our CPU32 Stand-Alone Simulator allows you to load code into a single simulated CPU32.
 You can also load the standard mask TPU microcode into a simulated TPU.

19.11 683xx Hardware Debugger

Our 683xx Hardware Debugger allows you to control any 683xx microcontroller across a
BDM port. You can load and execute code. Standard debugging capabilities such as
single step, breakpoints, goto cursor, etc., are supported.

Operational status windows support viewing of CPU32 registers, memory,
peripherals, etc.

19.12 eTPU2 Simulation Engine Target

The Enhanced Time Processing Unit Two, or ‘eTPU2’, is a microsequencer sold by
STMicroelectronics and NXP Semiconductor on a variety of microcontrollers including the
SPC563Mxx. This is sold as a stand alone product and also as a system simulator in which
it is co-simulated along with one or more CPU targets.

The eTPU2 simulation engine can be used both as a stand-alone device and in conjunction
with other targets including multiple TPUs. When used in stand-alone mode, of primary
importance are script commands files and test vector files.

19.13 eTPU Simulation Engine Target

The Enhanced Time Processing Unit, or eTPU, is a microsequencer sold by NXP on a
variety of microcontrollers.

19. Supported Targets and Available Products

page 286, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

19.14 TPU Simulation Engine Target

The Time Processing Unit, or TPU, is a microsequencer sold by NXP on a variety of
microcontrollers. There are currently three varieties, known as TPU1, TPU2, and TPU3.
simulator/debugger supports all three varieties.

The TPU simulation engine can be used both as a stand-alone device and in conjunction
with other targets including multiple TPUs. When used in stand-alone mode, of primary
importance are script commands files and test vector files.

The TPU simulation engine is used for developing, debugging, and verifying operation of
TPU microcode. User microcode is loaded from files currently generated by NXP’s TPU
Microcode Assembler. These files are loaded into the TPU simulation target's microcode
space. The storage format is the binary equivalent of the microcode actually executed by
the TPU. The simulator/debugger also displays user microcode source files in source code
windows, highlighting the line associated with the actual microinstruction being executed.

Additional TPU operational status information is displayed in various context windows.
The windows include information about channel control registers, host CPU interface
registers, microengine control registers, the scheduler, script commands files, source
microcode files, etc.

The Time Processor Unit (TPU)

The TPU is a microsequencer developed by NXP for measurement and generation of
time-critical waveforms. It is a single silicon target that is offered on several
microcontroller products, such as the MC68332 and the HC16.

The TPU has two operational modes. It can execute microcode out of its internal ROM,
or it may execute custom microcode out of its internal RAM. In order to execute custom
microcode, the microcontroller’s operational software must first copy the microcode into its
internal RAM and then configure the TPU to execute out of RAM.

Support for TPU1

The simulator/debugger supports the TPU1. This is the original TPU.

Support for TPU2

The simulator/debugger supports the TPU2. The following is a list of new and supported
features of the TPU2, not available in TPU1.

19. Supported Targets and Available Products

Multi Target Development Tool, page 287Reference Manual (C) 1994 ASH WARE, Inc.

- Entry table bank (ETBANK)

- Code bank

- Full parameter RAM

- Load zero using a RAM sub-instruction

- Additional TCR2 and TCR1 clock options

- Flag2 set, clear, and conditional execution

- Branch on current pin state

- Negation of MRL and TDL using TBS sub-instruction

- Match on equal

The entry bank is controlled in the TPU simulation engine using a write_entry_bank()
script command as described in the TPU Bank and Mode Control Script Commands
section. The current state of this field is displayed in the microsequencer window.

The code bank is set during a time slot transition using bits 10 and 9 of the entry table. The
user modifies this directly within the source microcode. The current state of this field is
displayed in the microsequencer window.

The TPU1 does not implement parameters six and seven of the parameter RAM for
channels zero through 13. The TPU2 supports a full complement of parameter RAM for
all channels.

The TPU2 supports a loading of zero using the parameter RAM sub-instruction. In the
TPU1 one could make use of the undocumented feature that reading from the un-
implemented parameter RAM returned a zero. In this case a zero was able to be
effectively loaded. This capability is supported in the TPU2 by a direct clear or write of
zero using the RAM sub-instruction.

New counter options support a higher resolution (faster count) for TCR1 and improved
edge control (clock on rising pin edge, falling pin edge, or both pin edges) for TCR2. These
include a DIV2 control bit for TCR1 and a T2CSL control bit for the TCR2. These fields
are displayed in the configuration window. Script commands for controlling these two bits
are described in the TPU Clock Control Script Commands section.

A Flag2, which is quite similar to Flag1 and Flag0, has been added.

A conditional branch can now be made on the current pin state using the PIN conditional.
This field is displayed in the Execution Unit window. Previously only the PSL conditional
could be used, and the PSL is updated only on a time slot transition or a write to the

19. Supported Targets and Available Products

page 288, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

CHAN_REG register. The PIN conditional allows a branch based on the most current pin
state.

MRL and TDL can be negated using the TBS field of instruction format three.

A match can be set to occur on an equal condition. Previously matches always occurred
based on a greater than or equal logic. This match-on-equal allows the user to schedule a
match further out in the future because, using this feature, the concept of past events is
dropped. All events are effectively considered to occur in the future. This field is
displayed in the Channel window.

Setting the TPU Mode

The simulator/debugger automatically sets the TPU mode when the source microcode files
are parsed. The %type command is located and the appropriate TPU mode (TPU1,
TPU2, or TPU3) is set based on the values of this field.

The simulator/debugger also supports a script command described in the TPU Bank and
Mode Control Script Commands section for setting the TPU mode. Use of this command
is highly discouraged since there are subtle differences among the TPU1, TPU2, and
TPU3 that the TPU assembler hides from the user.

Support for TPU3

Version 2.1 of simulator/debugger supports the TPU3. The following is a list of new and
supported features of the TPU3.

- Enhanced TCR1 prescaler

- TCR2 pre-divider prescaler

- TCR2 controllable clock edge (rising, falling, or both)

The prescaler options listed above are accessible using script commands described in the
TPU Clock Control Script Commands section.

19.15 CPU32 Simulation Engine Target

The CPU32 is sold on a number of NXP microcontrollers, including the very popular
68332. The CPU32 Simulation Engine can be used both in stand-alone mode and in
conjunction with other CPUs and peripherals including multiple CPU32s.

19. Supported Targets and Available Products

Multi Target Development Tool, page 289Reference Manual (C) 1994 ASH WARE, Inc.

19.16 CPU32 Hardware across a BDM Port

The 683xx line of microcontrollers can be debugged using this BDM Debugger.

page 290, Multi Target Development Tool

20. Building the Target Environment

Multi Target Development Tool, page 291Reference Manual (C) 1994 ASH WARE, Inc.

20
Building the Target Environment

The simulated or hardware development environment is specified in special MtDt build
script files. ASH WARE provides standard build scripts for all its products. In the vast
majority of cases these build scripts are sufficient and therefore effectively transparent to
the user. But occasionally a user may desire to modify the simulation environment to
unlock advanced capabilities. This chapter describes how to do so.

A complete system may consist of multiple CPUs, TPUs, peripherals, and non-electrical
devices such as automobile engines. MtDt supports simulation of such advanced systems
using MtDt build script files. MtDt build script files are used to create the targets and
specify how they interact.

Theory of Operation

simulator/debugger is capable of instantiating and simulating multiple targets, allowing them
to interact via shared memory while maintaining the correct synchronization and relative
timing. In addition, a rich set of debugging capabilities normally associated with single
target systems has been extended to this multiple target environment.

Each target loads and runs its own executable code image.

Each target can have primary and startup script commands files. TPU targets can also
have ISR files that are associated with and activated by specific interrupts, and test vector
file that can be used to wiggle the TPU's I/O pins.

20. Building the Target Environment

page 292, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The relative timing of targets is maintained with one femto-second precision. Each target
has its own atomic execution step size that must be a multiple of the femto-second
precision. Negative numbers and zero are valid steps sizes. Since the currently-supported
targets are all execution cycle simulators, the step size is equal to the amount of simulated
time it takes to execute a single opcode.

As each target executes it is advanced by the amount of time the last opcode took to
execute. It is then scheduled to execute again when the simulation time is equal to the
target's next scheduled time. The current simulation time is defined as the time that the
next scheduled target will execute.

Although all the currently-supported targets are execution-cycle simulation engines, this is
not a fundamental restriction of MtDt. In fact, MtDt can support targets that have much
finer execution granularities. This would allow, for instance, a VHDL target that properly
models inter-target interaction down to the transistor level.

Debugging Capabilities

All standard single-target debugging capabilities such as single stepping, breakpoints, goto
cursor, etc., are available in the multiple target debugging environments. For instance, if
breakpoints are injected and activated within multiple targets, the simulation halts on
whichever breakpoint is encountered first.

A concept of an "active target" is employed to support specifically single-target capabilities
such as single stepping. When the active target is single-stepped, the entire system
simulation proceeds until the active target completes the commanded single step.

With an essentially limitless number of targets, and with the large number of possible
windows per target, the vast number of windows can become unwieldy, to say the least.
Actually, without some mechanism to bring order to the chaos of having way too many
windows, MtDt becomes unusable. Workshops bring order to this chaos and are therefore
a key enabling feature that makes MtDt usable. Each target can be associated with a
specific workshop. Those target's windows are displayed only when the workshop
associated with that target is activated. Individual windows can be overridden to appear in
more than one target.

A target other than the active target can halt a simulation. In this situation the workshop is
changed to one associated with the halting target. This can be caused, for instance, if a
breakpoint is encountered in a non-active target. In this case, the simulation is halted, the
halting target becomes the active target, and the workshop is switched to the one

20. Building the Target Environment

Multi Target Development Tool, page 293Reference Manual (C) 1994 ASH WARE, Inc.

associated with the newly-active target.

Building the MtDt Environment

With MtDt an entire hardware or simulation environment can be built. This is done using a
dedicated build script file that gets loaded when the project file is loaded. A detailed
description of each command that can be used within MtDt build script files is found in the
MtDt Build Script Commands File section. That section explains how a complete system is
defined using these build script commands.

MtDt Simulated Memory

Simulated targets require memory for executing code, for holding data, and for providing
capabilities supported in a simulated environment. The following is a list of simulated
memory characteristics supported by MtDt memory.

- Multiple address spaces

- Memory sizing

- Read only or read/write accesses

- Shared memory

- Byte, word, and long-word access widths

- Access speed based on even or odd access addresses

- Privilege violations

- Bus faults

- Address faults

- Banking

- Mirroring

The ASH WARE MtDt simulated memory model supports all of these characteristics
though at the cost of increased complexity. The good news is that for many applications
the standard memory models work just fine so a detailed understanding of memory
modeling is not required. In the vast majority of other cases only a small percentage of
these capabilities are required.

Memory Block

20. Building the Target Environment

page 294, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

Whereas a simulated memory map can support a large variety of characteristics that might
change from one memory range and address space to the next, a memory block is a range
of memory that has a single uniform set of characteristics.

A target's address space comprises a finite number of memory blocks. For instance, a 3
wait state RAM could reside at address 0 to FFFF hexadecimal. A 0 wait state ROM
could reside at address 1000 to 1FFFF. The rest of memory, from 1000 to FFFFFFFF
hexadecimal, could be empty.

There are a number of rules associated with memory blocks. A build of MtDt simulated
memory will succeed only if both of the following rules are met:

Memory blocks must cover all memory.
Memory blocks may not occupy both the same address and address space.

A report file for each build attempt provides a detailed listing of the memory map, including
the information required to fix any problems.

The following is an example script commands sequence.

#define MEM_DEVICE_STOP 0xffff
#define BLANK_START MEM_DEVICE_STOP + 1
#define MEM_END 0xffffffff
instantiate_target(SIM32, "MySim32");
add_mem_block("MySim32", 0, MEM_DEVICE_STOP,
 "RAM", ALL_SPACES);
add_non_mem_block("MySim32", BLANK_START, MEM_END,"OFF",
 ALL_SPACES);

In this example a single CPU32 CPU is instantiated. A 64K simulated memory device is
added between addresses 0 and FFFF hexadecimal and is assigned the name "RAM." The
device resides in all address spaces. A second memory block, also residing in all address
spaces, fills the rest of memory between 1000 hexadecimal and FFFFFFFF hexadecimal
and is assigned the name "OFF." This block is blank and as such takes up no physical
memory on your computer.

Address Spaces

All MtDt simulated memory supports eight address spaces. The function of each address
space depends entirely on the particular target and how it is specified in the build script file.
 For instance, a simulated TPU target makes use of three address spaces: Code, Data, and
Pins. By treating its I/O pins as shared memory the simulated TPU exposes its pins to
other targets. This allows, for instance, a simulated engine model to read and modify the
TPU's pins.

20. Building the Target Environment

Multi Target Development Tool, page 295Reference Manual (C) 1994 ASH WARE, Inc.

With the nearly universal acceptance of the superiority of a single, unified, large address
space why does MtDt still support non-unified memory space architecture? The answer is
twofold. First, the MtDt supports older but still popular architectures such as CPU32 in
which a split code/data and space might actually be employed. Second, the multiple
address space model provides the required mechanism for support of advanced simulation
features. These mechanisms do not necessarily exist in the actual hardware. For
example, an engine modeling CPU might be set up to query and modify TPU channel I/O
pins. To support this, the TPU pins have been exposed in a purely theoretical "PINS"
address space. MtDt can be configured so that a read or write in the engine modeling
CPU's DATA_SPACE occurs in the TPU's PINS space, thus allowing the engine
modeling CPU to react to and drive the TPU's pins. This mechanism does not have a
hardware corollary, but it provides the powerful capability of simulating the full system.

In many cases a uniform address model is desirable. This is achieved by mapping all
address spaces to the same physical memory.

The following diagram depicts the address spaces accessed by the TPU simulation engine.

(Unused)

TPU Pins Space

0

FFFFFFFF

3

TPU CODE Space

0

FFFFFFFF

1FFF

(Unused)

TPU DATA Space

0

FFFFFFFF

1FF

(Unused)

The TPU simulation model fetches code between 0 and 1FFF hexadecimal from its CODE
space. It accesses its parameter RAM and host interface registers between 0 and 1FF
hexadecimal of its DATA space. And it accesses its channel pins in the first four bytes of
a simulated PINS space. Note that its code banks are "unrolled" and placed linearly in
memory.

20. Building the Target Environment

page 296, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

In order for accesses to these spaces to behave properly, simulated memory devices must
be placed into these address spaces. The following build script commands create the
required memory for a stand-alone TPU Simulation engine.

// Create a target TPU
instantiate_target(TPU_SIM, "TpuSim");
// Create a simulated memory block
// for the TPU's code (microcode)
add_mem_block("TpuSim", 0, 0x1fff, "Code",
 TPU_CODE_SPACE);
add_non_mem_block("TpuSim", 0x2000, 0xFFFFFFFF,
 "UnusedCode", TPU_CODE_SPACE);

// Create a simulated memory block
// for the TPU's data (host interface)
add_mem_block("TpuSim", 0, 0x1ff, "Data",
 TPU_DATA_SPACE);
add_non_mem_block("TpuSim", 0x200, 0xFFFFFFFF,
 "UnusedData", TPU_DATA_SPACE);

// Create a simulated memory block for the TPU's pins
// (channel pins and TCR2 counter pin)
add_mem_block("TpuSim", 0x0, 0x3, "Pins",
 TPU_PINS_SPACE);
add_non_mem_block("TpuSim", 0x4, 0xFFFFFFFF,
 "UnusedPins", TPU_PINS_SPACE);

// Be sure to provide a non_mem block
// for the unused address spaces
add_non_mem_block("TpuSim", 0x0, 0xffffffff, "B4",
 TPU_UNUSED_SPACE);

In this example the TPU's code, data, and pins address spaces are filled with the memory
devices required for proper operation. Unused space above and below the simulated
devices is filled in with blank blocks. This is required, as all space must be filled in; even
unused space must be provided with memory block(s).

Memory Block Size

Each memory block has a specific size. The size is equal to the stop address minus the
start address plus one. A common error is to overlap by one byte the end of one device
with the start of the next device. MtDt cannot support multiple devices occupying the
same address in the same address space so this causes an error. One method for avoiding

20. Building the Target Environment

Multi Target Development Tool, page 297Reference Manual (C) 1994 ASH WARE, Inc.

this error is to cascade ‘#define’ directives and thereby ensure that contiguous devices
form the proper zero-byte seam.

#define FLASH_SIZE 0x10000 /* 64K FLASH device */
#define RAM_SIZE 0x8000 /* 32K RAM device */
#define FLASH_START 0
#define FLASH_END FLASH_START + FLASH_SIZE - 1
#define RAM_START FLASH_END + 1
#define RAM_END RAM_START + RAM_SIZE - 1
#define BLANK_START RAM_END + 1
#define BLANK_END FFFFFFFF
instantiate_target(SIM32, "MyCpu");
add_mem_block("MyCpu", FLASH_START, FLASH_END,
 "Flash", ALL_SPACES);
add_mem_block("MyCpu", RAM_START, RAM_END, "RAM",
 ALL_SPACES);
add_non_mem_block("MyCpu", BLANK_START, BLANK_END,
 "Empty", ALL_SPACES);

In this example, two devices are created in such a way that a zero-byte seams between
them is guaranteed. All memory for every address spaces is covered. Notice that the
FLASH and RAM sizes can be changed at a single location and that the devices will
remain contiguous in memory.

Memory Block Access Control

The purpose of the memory block access control is to make a simulated model match the
behavior of real hardware. For instance you might want to make a ROM read-only, such
that reads are simply ignored or perhaps cause a bus fault. An odd access may cause an
address fault or an additional wait state. Memory block access control allows the required
level of control to achieve this. This section serves as a high-level guide rather than a
detailed description.

Each memory block supports the following access types.

8-bit read
8-bit write
16-bit read
16-bit write
24-bit read
24-bit write
32-bit read
32-bit write
64-bit read

20. Building the Target Environment

page 298, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

64-bit write
128-bit read
128-bit write

For each access type, the user can specify a number of parameters. The following
parameters are available.

Clocks per even access
Clocks per odd access
Odd access causes bus fault yes/no?
Bus fault yes/no?
Blank access yes/no?
Dock offset (applicable docked accesses only!)
Dock function code (applicable to docked accesses only)

In addition, there is a block-wide default, "blank access value." This is the value that is
returned on a read access to a memory block that has been marked as blank.

Read/Write Control

It is possible to disable specific types of memory accesses.

In this example a memory device is configured as read only. A write to this memory
device will not cause the values in memory to change. This read only behavior could be
used to model a ROM device.

#define ROM_STOP 0xffff
#define BLANK_START ROM_STOP + 1
#define MEM_END 0xffffffff
instantiate_target(SIM32, "MyCpu");
add_mem_block("MyCpu", 0, ROM_STOP, "Rom", ALL_SPACES);
add_non_mem_block("MyCpu", BLANK_START, MEM_END, "Empty",
 ALL_SPACES);
// Turn off READ access for the ROM device
#define WRITE_ALL RW_WRITE8 + RW_WRITE16 + RW_WRITE32
set_block_to_off("MyCpu", "Rom", ALL_SPACES, WRITE_ALL);

The command specifies that for all address spaces, all write accesses will be "empty."
Despite this being an "empty" access, other parameters such as clocks per even cycle
remain valid. The last two arguments specify the address spaces and access types
affected by this script command. It is possible to indicate specific address spaces and a
specific type of access. For instance, using this script command, one could specify 32-bit
writes to user data space.

Clocks per Access Control

20. Building the Target Environment

Multi Target Development Tool, page 299Reference Manual (C) 1994 ASH WARE, Inc.

For each memory block and type of access, the clocks per even access and the clocks per
odd access can be specified. This capability effectively provides the capability of setting
the number of wait states.

set_block_timing("MyCpu", "Rom", ALL_SPACES, RW_ALL, 2, 3);

In this example even accesses are set to two clocks per access and odd accesses are set
to three clocks per access. In this example these settings apply to all address spaces and
for all read and write accesses, though it is possible to indicate the specific set of address
spaces and access types for which this applies.

Address Fault Control

For each address space and access type an address fault can be set to occur on odd
accesses. Note that this is generally not applicable to 8-bit accesses, though it is still
available.

#define CODE_SPACE CPU32_SUPV_CODE_SPACE \
 + CPU32_USER_CODE_SPACE
set_block_to_addrs_fault("MyCpu", "Rom", CODE_SPACE,
 READ_ALL);

In this example, odd read accesses to the memory block's code space are configured to
cause an address fault.

Bus Fault Control

For each address space and access type a bus fault can be set to occur.

set_block_to_bus_fault("MyCpu", "Rom",
 CPU32_USER_CODE_SPACE, RW_ALL);

In this example, any access while at the user privilege level result in a bus fault. This might
be useful in a protected system in which a user process is prevented from accessing
hardware.

Sharing Memory

A fundamental aspect of multiple target simulation is the ability to share memory. MtDt
employs "docking" to implement shared memory. If two targets are to share memory, one
target must dock memory blocks to another target.

There is a fundamental and important lack of symmetry in that one target must provide the
"dock-from" block and the other target must be the "dock-to." The "dock-to" target is
relatively unaffected by being the recipient of a dock, other than that its physical memory

20. Building the Target Environment

page 300, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

might be modified on occasion.

On the other hand, there are numerous effects to the "dock-from" target. First and
foremost, it must be able to support extrinsic, or externally mapped, memory. In other
words, it must be able to project its memory access outside of itself and to a different
target.

Note that this command must match exactly the memory bounds of an existing memory
block for the docking device, but not for the "dock-to" target. In fact, the "dock-to" target
could be any target such as a MC68332 across a BDM port. In fact, the "dock-to" target
could be itself, and this is the recommended way of modeling multiple image memory.
Although memory accesses are fully re-entrant, legal, and often necessary, it is possible to
create an infinitely cyclic access that would, without guards, cause a stack overflow on
your computer. To guard against this, MtDt has limited memory accesses re-entrance to a
depth of 100.

The following build script command is presented in a later example.

// ...
set_block_to_dock("HostCpu", "TpuDataDock", ALL_SPACES,
 "Tpu", 0-0x80000);
// ...

In the above command a previously-added blank block is docked to memory contained in a
target named "TPU." The last argument, ALL_SPACES, is potentially problematic, as will
be discussed later.

Shared Memory Address Space Transformation

No assumptions should be made about address spaces between or among dissimilar
targets. In other words, the code space of a CPU32 may not map to the code space of
memory shared with a TPU. For memory docks between dissimilar target types it is
critical to fully specify all address spaces from the docking memory block. Due to the lack
of symmetry, this is not true for the dockee. The following script command should be used
to fully define all docked address spaces between dissimilar targets.

When docking a CPU to a TPU the following address space transformation such as that
shown in the following figure is often required.

20. Building the Target Environment

Multi Target Development Tool, page 301Reference Manual (C) 1994 ASH WARE, Inc.

TPU PINS Space

0

FFFFFFFF

Other TPU Spaces

0

FFFFFFFF
All Modeling CPU Spaces

0

FFFFFFFF

C0003

3

C0000

The following build script commands generate the address space transformations shown in
the above figure. If the modeling CPU does a read from its address C0000 hexadecimal,
the read will actually access the shared memory with the TPU in its PINS space.

set_block_dock_space("ModelingCpu", "TpuPinsDock",
 ALL_SPACES, RW_ALL, TPU_PINS_SPACE);

In this example all address spaces from a docked block of a modeling CPU are set to the
TPU's PINS address space. This is an eight-to-one transformation in that an access in any
of the CPU's address spaces becomes an access to the TPU's PINS space. For example
if the CPU performs a data read within this block, the value of the TPU's channel pins will
be what actually gets read.

Shared Memory Address Offset

Shared memory need not appear in the same address from the perspective of each target.
Indeed, shared memory usually appears at different addresses for each target that is
sharing that memory. The following illustrates this.

set_block_to_dock("HostCpu", "TpuDataDock", ALL_SPACES,
 "Tpu", TPU_DOCK_OFFSETT);

In this example an offset of TPU_DOCK_OFFSETT is applied to any HostCpu access
within the docking block. For example if the docking block is at address FFE00

20. Building the Target Environment

page 302, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

hexadecimal and an offset of -FFE00 hexadecimal is applied by defining
TPU_DOCK_OFFSETT to this value, a CPU access at address FFE20 occurs at address
20 within the TPU.

Shared Memory Timing

Timing transformations allow the clock per access to be specified for the docking block.
For instance a shared memory block between a TPU and a CPU might take the CPU two
clocks to access, but might take the TPU only a single clock.

There is no special method for doing this. The timing parameters specified by each of the
targets own dock block apply to the docking target.

A Complete Shared Memory Example

The example in this section creates a TPU simulation engine, a host CPU simulation
engine, and a modeling CPU simulation engine. The shared memory architecture from the
following figure is generated.

20. Building the Target Environment

Multi Target Development Tool, page 303Reference Manual (C) 1994 ASH WARE, Inc.

C0003

C0004

D0003

7FFFF

FFFFF

Modeling CPU All Spaces

TPU PINS Space

Host CPU All SpacesTPU DATA Space

3

0

FFFFFFFF

1FF

0

FFFFFFFF

C0000

0

FFFFFFFF
70000

0

FFFFFFFF

FFE00

The following build script commands instantiate the shared memory architecture found in
the above figure.

#define MEM_END 0xffffffff

// Create a target TPU
instantiate_target(TPU_SIM, "Tpu");

// Create a simulated memory block
// for the TPU's code (microcode)
add_mem_block("Tpu", 0, 0x1fff, "Code", TPU_CODE_SPACE);
add_non_mem_block("Tpu", 0x2000, MEM_END, "B1",

20. Building the Target Environment

page 304, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

 TPU_CODE_SPACE);

// Create a simulated memory block
// for the TPU's data (host interface)
add_mem_block("Tpu", 0, 0x1ff, "Data", TPU_DATA_SPACE);
add_non_mem_block("Tpu", 0x200, MEM_END, "B2",
 TPU_DATA_SPACE);
// Create a simulated memory block for the TPU's pins
// (channel pins and TCR2 counter pin)
add_mem_block("Tpu", 0x0, 0x3, "Pins", TPU_PINS_SPACE);
add_non_mem_block("Tpu", 0x4, MEM_END, "B3",
 TPU_PINS_SPACE);
// Be sure to provide a non_mem block
// for the unused address spaces
add_non_mem_block("Tpu", 0x0, MEM_END, "B4",
 TPU_UNUSED_SPACE);

//***************** END OF TPU *************************

// Create a target host CPU
instantiate_target(SIM32, "HostCpu");

// Add a half-meg RAM
add_mem_block("HostCpu", 0, 0x7FFFF, "RAM", ALL_SPACES);

// Add three empty spaces
add_non_mem_block("HostCpu", 0x80000, 0xFFDFF, "B1",
 ALL_SPACES);
add_non_mem_block("HostCpu", 0xFFE00, 0xFFFFF,
 "TpuDataDock", ALL_SPACES);
add_non_mem_block("HostCpu", 0x100000, MEM_END, "B2",
 ALL_SPACES);

// Set the middle empty block to dock with the TPU target
set_block_to_dock("HostCpu", "TpuDataDock", ALL_SPACES,
 "Tpu", 0-0x80000);
// Make sure that no matter which space
// the TPU accesses within this dock
// the TPU's data space is always accessed
set_block_dock_space("HostCpu", "TpuDataDock",
 ALL_SPACES, RW_ALL, TPU_DATA_SPACE);

//***************** END OF HOST CPU *********************

20. Building the Target Environment

Multi Target Development Tool, page 305Reference Manual (C) 1994 ASH WARE, Inc.

// Create a CPU for modeling the external system
instantiate_target(SIM32, "ModelCpu");

// Add a half-meg RAM
add_mem_block("ModelCpu", 0, 0xBFFFF, "RAM", ALL_SPACES);

// Add three empty spaces
add_non_mem_block("ModelCpu", 0xC0000, 0xC0003,
 "TpuPinsDock", ALL_SPACES);
add_non_mem_block("ModelCpu", 0xC0004, 0xD0003,
 "CpuCpuShare", ALL_SPACES);
add_non_mem_block("ModelCpu", 0xD0004, MEM_END, "B2",
 ALL_SPACES);

// Set the lowest empty block to dock with the TPU target
set_block_to_dock("ModelCpu", "TpuPinsDock", ALL_SPACES,
 "Tpu", 0-0xC0000);

// Make sure that no matter which space
// the TPU accesses within this dock
// the TPU's pins space is always accessed
set_block_dock_space("ModelCpu", "TpuPinsDock",
 ALL_SPACES, RW_ALL, TPU_PINS_SPACE);

// Set the middle empty block to dock with the HOST CPU
set_block_to_dock("ModelCpu", "CpuCpuShare", ALL_SPACES,
 "HostCpu", 0x70000-0xC0000);

//***************** END OF MODELING CPU *****************

In this example the shared memory architecture from the above figure is generated.

Simulating Mirrored Memory

Mirrored memory is memory that is accessible at multiple address ranges within a memory
map. This can occur, for instance, when not all address bits are decoded for a memory
device. The following figure depicts an 8K memory device that resides in a 64K memory
system. Assume it is an 8-bit wide device. Since the 8K device is on a byte wide bus, the
device itself decodes the lower 13 address bits, A12 through A0. Assume that the memory
controller decodes only the upper two address bits, A15 and A14, and enables the device
when both are zero. This means that nothing decodes A13, and thus the memory device is

20. Building the Target Environment

page 306, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

activated when A15 and A14 are zero, regardless of the state of A13.

All Spaces

FFFFFFFF

2000

0

1FFF

3FFF
The memory here

is mirrored here

This mirrored memory architecture is created by implementing a dock from the address
space to itself as follows.

instantiate_target(SIM32, "MyCpu");
add_non_mem_block("MyCpu", 0x0, 0x1FFF, "Mirror",
 ALL_SPACES);
add_mem_block("MyCpu", 0x2000, 0x3FFF, "RAM",
 ALL_SPACES);
add_non_mem_block("MyCpu", 0x4000, 0xFFFFFFFF, "B1",
 ALL_SPACES);

// Create a mirror at the lowest 8K of the next higher 8K
set_block_to_dock("MyCpu", "Mirror", ALL_SPACES, "MyCpu",
 0x2000);

In this example the previously-described memory architecture with mirrored memory is
implemented.

20. Building the Target Environment

Multi Target Development Tool, page 307Reference Manual (C) 1994 ASH WARE, Inc.

Computer Memory Considerations

MtDt uses your computer's memory to model the memory devices belonging to your target.
 There is roughly a one-to-one correspondence between the total amount of memory
occupied by the simulated devices and the amount of your computer's memory that is
required. In the examples shown in the previous sections, simulated memory totals a few
hundred kilobytes. This is a trivial amount of memory for a modern computer. When
many megabytes are required, you are limited to the amount of virtual memory available
for the MtDt application that your computer can provide. If you attempt to simulate a 100-
gigabyte memory device, for example, but have only 50-gigabytes of available virtual
memory on your computer, the build script file will fail to execute.

Note that since modern computer systems employ virtual memory, the amount of simulated
memory can exceed the amount of RAM actually in your computer. Adjusting the
available amount of virtual memory on your computer can increase the total amount of
memory devices that you can simulate. A description of how to increase the swap file size
of your computer is beyond the scope of this manual.

20.1 The Build Script File

simulator/debugger supports both debugging and simulation of a variety of targets. Since
simulator/debugger can both simulate and debug a variety of simulation and hardware
targets, how does simulator/debugger know what to do?

Build batch files provide the instructions that simulator/debugger requires to create and glue
together the various copies of hardware and simulation targets. Although the user is
encouraged to modify copies of these files when required, in many cases the standard build
batch files loaded during simulator/debugger installation will suffice.

Typical build script files might instantiate a CPU and a eTPU, then instantiate RAM and
ROM for the CPU, and then cause the eTPU's memory to reside in the CPU's address
space.

MtDt Build Script Commands File Naming Conventions

In order to prevent future installations of ASH WARE software from overwriting build
script files that you have created or modified, ASH WARE recommends that you follow
the following naming convention.

- Build script files from ASH WARE begin with "zzz."

- Build script files not from ASH WARE don't begin with "zzz."

20. Building the Target Environment

page 308, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

The string "zzz" was chosen so that these files would appear at the end of a directory
listing sorted by file name. ASH WARE recommends that when you modify a build batch
file you remove the letters "zzz" from the file name. When you create a new file, ASH
WARE recommends that the file name not begin with the string "zzz." The following is a
list of some of the build batch files loaded by the ASH WARE installation utility.

zzz_1Gtm.MtDtBuild

zzz_1ETpuSim.MtDtBuild

zzz_1Mc33816.MtDtBuild

zzz_1Sim32.MtDtBuild

zzz_1Sim32_1ETpuSim.MtDtBuild

zzz_1Sim32_1GTM.MtDtBuild

zzz_1Sim32_1Mc33816.MtDtBuild

zzz_1Sim32_3ETpuSim_MPC5676.MtDtBuild

zzz_1Sim32_3ETpuSim_MPC5777.MtDtBuild

How would you modify the zzz_1Sim32.MtDtBuild file to create a larger RAM? ASH
WARE recommends the following procedure.

Copy file zzz_1Sim32.MtDtBuild to file BigRamSim32.BuildScript

Modify file BigRamSim32.BuildScript

20.2 Custom Build Script File Pathing

When creating a Custom Build Script the question arises of, "where should the custom
build script file be placed? There are three options discussed here.

Option 1, Installation Location. Place your Custom Build Script in the Build Scripts
directory in the installation directory where the standard build scripts are located.

C:\Program Files (x86)\ASH WARE\Full System DevTool IDE

V2_20A\BuildScripts

Advantage. Works seamlessly with the toolset.

Disadvantages. Every user needs to place the file into their installation directory and does
not work well with CVS.

20. Building the Target Environment

Multi Target Development Tool, page 309Reference Manual (C) 1994 ASH WARE, Inc.

Option 2, Project-File Relative . If the custom build script is placed in the same
directory tree as the project file in which it is referenced then only the 'relative path' to the
project file is used.

Project File: c:\SomeDir\MyProjectDir\MyProject.GtmIdeProj

Custom Build Script File: c:

\SomeDir\MyCustomBuildScripts\MyCustomSimCfg.MtDtBuild

Then in the project file the following pathing will be used to find the build script.

..\MyCustomBuildScripts\MyCustomSimCfg.MtDtBuild

Advantage. Works well with CVS and projects are easily relocatable as long as the Build
Script is retained and it relative pathing spot.

Option 3, Independent Directory. If the custom build script is placed in a separate
directory tree as the project file in which it is referenced then only the complete fully-
qualified path is stored in the project file.

Project File: c:\SomeDir\MyProjectDir\MyProject.GtmIdeProj

Custom Build Script File: c:\Tools\MyCustomSimCfg.MtDtBuild

Then in the project file the following pathing will be used to find the build script.

c:\Tools\MyCustomSimCfg.MtDtBuild

Advantage. Eliminates confusion on the location of the custom build script.

Disadvantages. Difficult to maintain.

Pathing Search Rules

If the path is fully qualified, file must be at the fully-qualified location. Otherwise, first the
'BuildScripts' directory is used. If the file is not found, then the directory of the project file
is searched.

When saving, if the file is in the BuildScripts directory then the path is fully removed.
Otherwise, if the file is in the same directory tree as the BuildScripts directory then the file
is saved relative to the BuildScripts directory. Otherwise, if the file is in the same directory
tree as the Project file then the file is saved relative to the Project File. Otherwise, the file
along with it's fully-qualified directory is saved.

20. Building the Target Environment

page 310, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

GTM Register Definitions File .

The GTM Register Definitions file allows each vendor's memory mapping to match that of
the actual target hardware.Since each vendor can have a different memory mapping, the
GTM Register Definition file allows the mapping of each vendors device within the Host
CPU's address space. The pathing rules described above also apply to this file.

20.3 Build Script Commands

instantiate_target_ex1(enum TARGET_TYPE,
 enum TARGET_SUB_TYPE,
 "TargetName");

This command instantiates a target enum TARGET_TYPE and assigns it the name
TargetName. The enum TARGET_SUB_TYPE specifies target/core-specific settings.
Subsequent references to this target use the target name specified in this command.

Of particular interest to the eTPU is file “zzz_eTpuVersions.Dat,” which is found in the
build directory. This file supports selection of the eTPU version (and associated errata and
memory sizes) via a #define. The #define is selected in the the Build Script Options Dialog
Box.

instantiate_target_ex1(SIM32, MC33816, "Host");
instantiate_target_ex1(ETPU_SIM, MPC5554_B_1, "eTPU_A");

This example instantiates two simulation models, a CPU32 simulation model, and an eTPU
simulation model. The name Host is assigned to the CPU32 and the name eTPU_A is
assigned to the eTPU. Subsequent build script commands use these names when referring
to these targets. These names are also referenced in a variety of other places such as in
workshops and the menu system.

add_mem_block("TargetName", StartAddress, StopAddress,
 "BlockName", enum ADDR_SPACE);

This command adds a memory block to a range of simulated memory. The memory
appears between stopAddress and startAddress in the memory space ADDR_SPACE.
The name BlockName is assigned to this block and is used by other script commands when
referencing this block. The block name must be unique within its target, but other targets
can have a block with this same block name. The size of the memory block is equal to one

20. Building the Target Environment

Multi Target Development Tool, page 311Reference Manual (C) 1994 ASH WARE, Inc.

plus stopAddress minus startAddress. Only a single copy of this memory is created,
regardless of how many address spaces the block occupies.

add_mem_block("Host", 0, 0xFFFF, "RAM1", ALL_SPACES);

In this example a 64K block of simulated memory is created and the name "RAM1" is
assigned to this memory block. This memory is accessible from all of the CPU's address
spaces.

add_non_mem_block("TargetName", StartAddress, StopAddress,
 enum ADDR_SPACE);

This command adds a blank block of simulated memory to the target TargetName. It
indicates that no physical memory exists in the specified memory range and specified
address spaces, ADDR_SPACE. The name BlockName is assigned to this block and is
used by other script commands when referencing this block. The block name must be
unique within its target, but other targets can have a block with this same block name.

Since no memory is actually modeled by this command, it effectively uses almost none of
your computer’s virtual memory. This is important since the entire four GB address space
must be represented by memory blocks, regardless of whether or not the simulation target
actually supports this large of an address space.

#define DATA_SPACE CPU32_SUPV_DATA_SPACE \
 + CPU32_USER_DATA_SPACE
add_non_mem_block("Host", 0x1000, 0xffffffff,
 "Empty", DATA_SPACE);

This example specifies that no physical memory exists above the first 64K for both user
and supervisor data spaces. Data space is defined by the define declaration as consisting
of a combination of the supervisor data space and the user data space.

set_block_to_off("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE);

This command allows accesses of a simulated memory blocks can be turned off using this
script command. Using this command a read-only memory device such as a ROM can be
created. Accesses to target TargetName within the block BlockName and specified
address spaces ADDR_SPACE and read and/or write cycles <enum READ_WRITE>
are turned off. A turned-off write access behaves exactly like a normal write access
except the actual memory is not written. A turned-off read cycle behaves exactly like a
regular read cycle except that the value returned is the OFF_DATA constant defined for
the entire block. The affected address spaces and read/write cycles must be subsets of
the referenced memory block.

add_mem_block("Host", 0, 0xFFFF, "ROM", ALL_SPACES);
#define ALL_WRITES RW_WRITE8 + RW_WRITE16 + RW_WRITE32

20. Building the Target Environment

page 312, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

set_block_to_off("Host", "ROM", ALL_SPACES, ALL_WRITES);

This example creates a 64K memory device and configures it to be a read-only or "ROM"
memory device.

set_block_off_data32("TargetName", "BlockName",
 enum ADDR_SPACE, OFF_DATA);
set_block_off_data("TargetName", "BlockName",
 enum ADDR_SPACE, OFF_DATA);

These commands specify that read cycles to the target TargetName within the block
BlockName return the data <OFF_DATA> but only if the block is either a "non_mem"
block or a block in which the read cycles have been set to off. The affected address
spaces must be a subset of the address spaces to which the referenced memory block
applies. The first command sets an eight bit value, the second sets a 32-bit value.

add_non_mem_block("eTPU_A", 0x4000, 0xFFFFFFFF,
"UnusedCode",
 ETPU_CODE_SPACE);
set_block_off_data32("eTPU_A", "UnusedCode",
ETPU_CODE_SPACE,
 0xF7F757FA);

In this example the address space between 0x4000 and FFFFFFFF hexadecimal is
specified to contain no memory. Quad read cycles to this block will return the specified off
data, 0xF7F757FA hexadecimal, at every quad address.

set_block_to_bus_fault("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE);

This command results in bus faults for accesses to the target TargetName within the block
BlockName for the applicable address spaces, ADDR_SPACE, and read/write cycles
enum READ_WRITE. The effected address spaces must be a subset of the spaces to
which the referenced memory block applies.

add_mem_block("Host", 0x10000,0xFFFFFFFF, "Unused",
 ALL_SPACES);
set_block_to_bus_fault("Host", "Unused", ALL_SPACES,
RW_ALL);

In this example, a memory block has been added to represent the unused address space
above 64K. Any access to this memory block results in a bus fault.

set_block_to_priv_viol("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE);

This command results in privilege violations for accesses to the target TargetName for the
memory block BlockName for the applicable address spaces ADDR_SPACE, and read

20. Building the Target Environment

Multi Target Development Tool, page 313Reference Manual (C) 1994 ASH WARE, Inc.

and/or write cycles enum READ_WRITE. The affected address spaces must be a subset
of the address spaces to which the referenced memory block applies.

#define ALL_DATA_SPACE CPU32_SUPV_DATA_SPACE \
 + CPU32_USER_DATA_SPACE
add_mem_block("Host", 0x10000,0x1FFFF, "Protected",
 ALL_DATA_SPACE);
set_block_to_priv_viol("Host", "Protected",
 CPU32_USER_DATA_SPACE, RW_ALL);

In this example, data space accesses to the simulated memory while at the supervisor
privilege level will succeed whereas accesses at the user privilege level will result in a
privilege violation.

set_block_to_addrs_fault("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE);

This command results in address faults for odd accesses to the target TargetName within
the block BlockName for the applicable address spaces ADDR_SPACE, and read and/or
write cycles enum READ_WRITE. The affected address spaces must be a subset of the
address spaces to which the referenced memory block applies. Even accesses will not
result in an address fault.

set_block_to_addrs_fault("Host", "EvenMem",
 CPU32_CODE_SPACE, RW_ALL);

In this example code space accesses to odd addresses are configured to result in an
address fault.

set_block_timing("TargetName", "BlockName",
 enum ADDR_SPACE, enum READ_WRITE,
 ClockPerEvenAccess, ClocksPerOddAccess);

This command sets the timing for the target TargetName in the block BlockName. This
command applies only to memory spaces ADDR_SPACE, and for the read and/or write
cycles enum READ_WRITE. Even accesses are set to ClocksPerEvenAccess while odd
accesses are set to ClocksPerOddAccess.

#define NOT_DATA_SPACE ALL_SPACES - CPU32_DATA_SPACE
add_mem_block("Host", 0, 0xFFFF, "SlowMem", ALL_SPACES);
set_block_timing("Host", "SlowMem", CPU32_DATA_SPACE,
 RW_READ, 4, 8);
set_block_timing("Host", "SlowMem", CPU32_DATA_SPACE,
 RW_WRITE, 2, 3);
set_block_timing("Host", "SlowMem", NOT_DATA_SPACE, RW_ALL,
 5, 6);

In this example the even data reads are set to take four clocks while odd data reads are set

20. Building the Target Environment

page 314, Multi Target Development Tool Reference Manual(C) 1994 ASH WARE, Inc.

to take eight clock cycles. Even data writes take two clock cycles while odd accesses
take three. All non-data even reads and writes take five clocks while odd take six.

This example illustrates an important aspect of timing design. A separate copy of the
timing data is kept for each address space and for both read and write cycles. So even
though only a single memory block was created in this example, timing data for each
address space is able to be individually specified.

set_block_to_dock("FromTargetName", "BlockName",
 enum ADDR_SPACE, "ToTargetName",
 AddressOffset);

This script establishes a memory share between a docking target FromTargetName and a
"docked-to" second target ToTargetName. Memory accesses for the docking target
actually occur in the second target, while this command has no effect on the second
target's accesses.

Docking target accesses within the block BlockName in the address space
ADDR_SPACE are projected to the "docked-to" target at on offset address
AddressOffset.

The address range corresponds exactly to a previously defined block within the docking
target. There is no such requirement for the "docked-to" target.

add_mem_block("Cpu_A", 0x0, 0xFFFF, "Shared", ALL_SPACES);
add_non_mem_block("Cpu_B", 0x600, 0x6FF, "ShareRange",
 ALL_SPACES);
set_block_to_dock("Cpu_B", "ShareRange", ALL_SPACES,
 "Cpu_A", 0x250);

In this example a memory share is setup between targets Cpu_A and Cpu_B. The
memory that is shared resides in Cpu_A. The shared block is accessed by Cpu_B
between addresses 600 and 6FF hexadecimal. An offset of 250 hexadecimal is applied to
the address of each of Cpu_B's accesses such that from the perspective of Cpu_A the
accesses occur between 850 and 94F hexadecimal.

Note that, as required, the set_block_to_dock script command has the identical address
range as a previous add_non_mem_block script command. Interestingly, there is no such
restriction on the Cpu_A target.

set_block_dock_space("TargetName", "BlockName",
 enum ADDR_SPACE DockFromSpace,
 enum READ_WRITE,
 enum ADDR_SPACE DockToSpace);

This command supports an address space transformation for a docked memory access.

20. Building the Target Environment

Multi Target Development Tool, page 315Reference Manual (C) 1994 ASH WARE, Inc.

Read and/or write cycles enum READ_WRITE from target TargetName between within
the block BlockName in the address spaces enum ADDR_SPACE DockFromSpace are
transformed to occur in address space enum ADDR_SPACE DockToSpace. The
DockToSpace argument must specify a single space.

It is important to fully specify all shared memory accesses between dissimilar targets.
Docks with unspecified address space transformations result in indeterminate results. For
instance, a eTPU sharing memory with a CPU32 could easily result in a opcode being
fetched out of data space, even though both targets have both code and data spaces.
Assumptions about similarity of address spaces between dissimilar targets simply should
not be made.

add_non_mem_block("Host", 0x1000, 0x1003, "ShareRange",
 ALL_SPACES);
set_block_to_dock("Host", "ShareRange", ALL_SPACES,
 "eTPU_A", 0-0x1000);
set_block_dock_space("Host", "ShareRange", ALL_SPACES,
 RW_ALL, TPU_PINS_SPACE);

In this example a target Host is docked to target eTPU_A. An address space
transformation is specified such that accesses to any of the CPU's address spaces occur in
the TPU's PINS address space.

check("TargetName", "ReportFileName");

This command does a check on the simulated memory for a target TargetName and
creates a report file ReportFileName. The check invoked by this command occurs
whether or not this script command is included in the script file. Use of this command
allows you to specify the name of the report file and limit the scope of the check to a single
target.

check("Host", "C:\\Temp\\CpuBuildReport.txt");
check("eTPU_A", "TpuBuildReport.txt");

In this example report files named C:\\Temp\\CpuBuildReport.txt and TpuBuildReport.txt
are generated for the Host and eTPU_A targets, respectively. Note that C-style double
backslashes are required when separating directory names.

	Overview
	On-Line Help Contents

	Demo Descriptions
	Software Upgrades
	Version 3.0 to 4.3 Enhancements

	The Project
	The Pre-Build Windows' Console '.BAT' File

	Source Code Files
	Source Code Search Rules
	Supported Compilers and Assemblers

	Script Commands Files
	The "ETEC_cpp.exe" Preprocessor
	The Primary Script Command Files
	ISR Script Commands Files
	The Startup Script Commands File
	File Format and Features
	Multiple-Target Scripts
	Script Directives, Define, Ifdef, Include
	Script Enumerated Data Types
	Script Integer Data Types
	Referencing Memory in Script Files
	Assignments in Script Commands Files
	Operators and expressions in Script Commands Files
	Syntax for global access of eTPU Function Variables
	Syntax for eTPU Channel Hardware Access
	Syntax for eTPU ALU Register Access
	String within a string supports formatted symbolic information
	Comments in Script Commands Files
	Decimal, Hexadecimal, and Floating Point Notation in Script Files
	String Notation

	Script Commands Groupings
	Clock Control Script Commands
	Timing Script Commands
	Verify Timing Script Commands
	Memory Modify Script Commands
	Memory Verify Script Commands
	Register Write Script Commands
	Register Verify Script Commands
	Symbol Write Script Commands
	Verify Symbol Value Script Commands
	System Script Commands
	File Script Commands
	Trace Script Commands
	Code Coverage Script Commands
	RAM Test Script Commands
	Channel Function Select Register Commands
	Channel Priority Register Commands
	Pin Control Script Commands
	Pin Transition Behavior Script Commands
	Thread Script Commands
	Disable Messages Script Commands
	eTPU System Configuration Commands
	eTPU Timing Configuration Commands
	eTPU STAC Bus Script Commands
	eTPU Global Data Write/Verify Commands
	eTPU Channel Data Script Commands
	eTPU Channel Address Script Commands
	eTPU Engine Data Script Commands
	eTPU Channel Function Mode Script Command
	eTPU Event Vector Entry Condition (Standard/Alternate) Commands
	eTPU Interrupt Script Commands
	eTPU Shared Subsystem Script Commands
	eTPU Link Script Command
	TPU Parameter Ram Script Commands
	eTPU/TPU Host Service Request Register Script Commands
	TPU Channel Interrupt Service Register Commands
	TPU Host Sequence Request Register Commands
	TPU Clock Control Script Commands
	TPU Bank and Mode Control Script Commands
	TPU Match, Transition & Link Script Commands
	eTPU/TPU Interrupt Association Script Commands
	External Logic Commands

	Automatic and Pre-Defined Define Directives
	Listing of Script Enumerated Data Types
	Script FILE_TYPE Enumerated Data Type
	Script VERIFY_FILES Enumerated Data Type
	Script FILE_OPTIONS Enumerated Data Type
	Trace Options Enumerated Data Types
	Code Coverage Listing Options Enumerated Data Type
	Base Time Options Enumerated Data Type
	Build Script TARGET_TYPE Enumerated Data Type
	Build Script TARGET_SUB_TYPE Enumerated Data Type
	Build Script ADDR_SPACE Enumerated Data Type
	Build Script READ_WRITE Enumerated Data Type
	eTPU Register Enumerated Data Types
	TPU Register Enumerated Data Types
	CPU32 Register Enumerated Data Types

	Trace Buffer and Files
	Test Vector Files
	Node Command
	Group Command
	State Command
	Frequency Command
	Wave Command
	Engine Example, eTPU

	Functional Verification
	Data Flow Verification
	Pin Transition Behavior Verification
	Code Coverage Analysis
	Regression Testing (Automation)
	Testing with a Specific Compiler Version
	Console Mode
	Command Line Options
	Using the –d (define) Option and Escape Characters
	Preventing Multiple Rebuilds by Forcing 'No Build'

	File Location Considerations
	Test Termination
	Cumulative Logged Regression Testing
	Regression Test Example

	Action Tags
	Print Action Tag
	Timer Action Commands
	Write Value Action Tag

	External Circuitry
	Logic Simulation

	Integrated Timers
	Workshops
	The Logic Analyzer
	Executing to a Precise Time
	Waveform Selection
	The Active Waveform
	Left and Right Vertical Cursors
	Displaying Behavior Verification Data
	Mouse Functionality
	Vertical Yellow Context Time Cursor
	Scroll Bars
	Display Pane Boundary Time Indicators
	Data Storage Buffer Start Indicator
	Current Time Indicator
	Auto Scroll
	Button Controls
	Timing Display
	Data Storage Buffer

	Operational Status Windows
	Generic Windows
	Source Code Windows
	Script Commands Window
	Watch Windows
	Local Variable Windows
	Call Stack Window
	Thread Window
	Trace Window
	Complex Breakpoint Window
	Memory Dump Window
	Timers Window
	Background Debug Mode (BDM) Hardware Window

	eTPU-Specific Windows
	eTPU Configuration Window
	eTPU Channel Frame Window
	eTPU Global Timer and Angle Counters Window
	eTPU Host Interface Window
	eTPU Channel Hardware Window
	eTPU Scheduler Window
	eTPU Execution Unit Registers Window

	TPU-Specific Windows
	TPU Configuration Window
	TPU Host Interface Registers Window
	TPU Scheduler Window
	TPU Micro Sequencer Registers Window
	TPU Execution Unit Window
	TPU Channel Window
	TPU Parameter RAM Window

	CPU32-Specific Windows
	CPU32 Simulator Configuration Window
	CPU32 Simulator Busses Window
	CPU32 Simulator Interrupt Window
	BDM32 Configuration Window
	CPU32 Register Window
	CPU32 Disassembly Dump Window

	SIM Module Windows
	SIM Main Window
	SIM Ports Window
	SIM Chip Selects Window

	QSM Module Windows
	QSM Main Window
	QSM Port Window
	QSM and QSPI Window
	QSM and SCI (UART) Window

	TPU Module Windows
	TPU Emulation RAM Window
	TPU Main Window
	TPU Host Interface Window
	TPU Parameter RAM Window

	GPT Module Windows
	GPT Main Window
	GPT Input Captures Window
	GPT Output Compares Window
	GPT Pulse Accumulation Window
	GPT Pulse Width Modulation Window

	CTM4/CTM6 Module Windows
	CTM4/CTM6 Bus Interface and Clocks Window
	CTM4/CTM6 Free-Running Counter Submodule Window
	CTM4/CTM6 Modulus Counter Submodule Window
	CTM4 Double-Action Submodule Window
	CTM4 Pulse Width Modulation Window
	CTM6 Single-Action Submodule Window
	CTM6 Double-Action Submodule - Modes Window
	CTM6 Double-Action Submodule Bits Window

	QADC Module Window
	QADC Main Window
	QADC Ports Window
	QADC Channel Window

	Miscellaneous Module Windows
	TouCAN Main Window
	TouCAN Buffers Window
	Masked ROM Window
	Standby RAM Submodule Window (68336/68376)
	Static RAM Submodule Window (68338)
	Parallel Port I/O Submodule (PIOSM) Window
	Real Time Clock (RTC) Window

	Dialog Boxes
	File Open, Save, and Save As Dialog Boxes
	Auto Build Batch File Options Dialog Boxes
	Goto Time Dialog Box
	Goto Angle Dialog Box
	IDE Options Dialog Box
	Workshop Options Dialog Box
	Occupy Workshop Dialog Box
	MtDt Build Options Dialog Box
	Message Options Dialog Box
	Source Code Search Dialog Box
	Reset Options Dialog Box
	Logic Analyzer Options Dialog Box
	Channel Group Dialog Box
	Complex Breakpoint Conditional Dialog Box
	Trace Options Dialog Box (MtDt)
	Local Variable Options Dialog Box
	License Options Dialog Box
	BDM Options Dialog Box
	Memory Tool Dialog Box
	Insert Watch Dialog Box
	Watch Options Dialog Box
	The 'About' Dialog Box
	BDM Port Dialog Box

	Menus
	Files Menu
	Stepping
	Running
	Breakpoints
	Workshops
	View Menu
	Window Menu
	Options Menu
	Help Menu

	Hot Keys, Toolbar, Status Window
	Supported Targets and Available Products
	MC33816 Hardware Debugger
	MC33816/CPU System Simulator
	eTPU/CPU System Simulator
	TPU CPU32 Full System Simulator
	MC33816 Stand-Alone Simulator
	eTPU2 Stand-Alone Simulator
	eTPU Stand-Alone Simulator
	TPU Stand-Alone Simulator
	683xx Hardware Debugger
	CPU32 Stand-Alone Simulator
	683xx Hardware Debugger
	eTPU2 Simulation Engine Target
	eTPU Simulation Engine Target
	TPU Simulation Engine Target
	CPU32 Simulation Engine Target
	CPU32 Hardware across a BDM Port

	Building the Target Environment
	The Build Script File
	Custom Build Script File Pathing
	Build Script Commands

